Signal Subspace Reconstruction for DOA Detection Using Quantum-Behaved Particle Swarm Optimization
Abstract
:1. Introduction
2. Problem Formulation
2.1. Array Signal Model
2.2. Introduction of MUSIC Algorithm
3. DOA Detection Approach Using QPSO through Signal Subspace Reconstruction
- (1)
- Initialize particle position vector and the best previous position of each particle.
- (2)
- Calculate the mean best position using Equation (15).
- (3)
- Determine the current fitness value by substituting into the cost function and compare it with the particle’s previous best value. If the current fitness value is smaller than the previous best value, replace the previous best value with the current value.
- (4)
- Similarly, calculate the current global best position and compare it with the previous global position. If the current global best position is smaller, set the global position to the current global.
- (5)
- Determine the local attractor through Equation (16) and update the particle position according to Equation (17).
- (6)
- Repeat the iteration from step (2) to step (5) until the termination condition or the optimal solution of particle position vector is reached, such as taking iterative 100 times as an end.
4. Experimental Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiong, C.; Fan, C.; Huang, X. Time reversal linearly constrained minimum power algorithm for direction of arrival estimation in diffuse multipath environments. Remote Sens. 2020, 12, 3344. [Google Scholar] [CrossRef]
- Paik, J.; Hong, W.; Lee, J. Direction-of-departure and direction-of-arrival estimation algorithm based on compressive sensing: Data fitting. Remote Sens. 2020, 12, 2773. [Google Scholar] [CrossRef]
- Quan, Y.; Zhang, R.; Li, Y.; Xu, R.; Zhu, S.; Xing, M. Microwave correlation forward-looking super-resolution imaging based on compressed sensing. IEEE Trans. Geosci. Remote Sens. 2021, 1–12. [Google Scholar] [CrossRef]
- Bie, B.; Sun, G.; Xia, X.; Xing, M.; Guo, L.; Bao, Z. High-speed maneuvering platforms squint beam-steering SAR imaging without subaperture. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6974–6985. [Google Scholar] [CrossRef]
- Norrdine, A.; Cetinkaya, H.; Herschel, R. Radar wave based positioning of spatially distributed MIMO radar antenna systems for near-field nondestructive testing. IEEE Sens. Lett. 2020, 4, 5500804. [Google Scholar] [CrossRef]
- Dontamsetti, G.; Kumar, R. A distributed MIMO radar with joint optimal transmit and receive signal combining. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 623–635. [Google Scholar] [CrossRef]
- Xu, K.; Pedrycz, W.; Li, Z.; Nie, W. High-accuracy signal subspace separation algorithm based on gaussian kernel soft partition. IEEE Trans. Ind. Electron. 2019, 66, 491–499. [Google Scholar] [CrossRef]
- Alieldin, A.; Huang, Y.; Saad, W. Optimum partitioning of a phased-MIMO radar array antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2287–2290. [Google Scholar] [CrossRef]
- Wang, W.; Dai, M.; Zheng, Z. FDA Radar ambiguity function characteristics analysis and optimization. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1368–1380. [Google Scholar] [CrossRef]
- Dey, S.; Bhattacharya, A.; Frery, A. A model-free four component scattering power decomposition for polarimetric SAR data. IEEE J. Sel. Top. Appl. Earth Obs. 2021, 14, 3887–3902. [Google Scholar] [CrossRef]
- Chen, J.; Xing, M.; Xia, X. SVD-based ambiguity function analysis for nonlinear trajectory SAR. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3072–3087. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, Maximum Likelihood, and Cramer-Rao Bound: Further results and comparisons. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 2140–2150. [Google Scholar] [CrossRef]
- Kim, B.; Jin, Y.; Lee, J.; Kim, S. Low-complexity MUSIC-based direction-of-arrival detection algorithm for frequency-modulated continuous-wave vital radar. Sensors 2020, 20, 4295. [Google Scholar] [CrossRef]
- Wagner, M.; Park, Y.; Gerstoft, P. Gridless DOA estimation and Root-MUSIC for non-uniform linear arrays. IEEE Trans. Signal Process. 2021, 69, 2144–2157. [Google Scholar] [CrossRef]
- Claudio, E.; Parisi, R.; Jacovitti, G. Space time MUSIC: Consistent signal subspace estimation for wideband sensor arrays. IEEE Trans. Signal Process. 2018, 66, 2685–2699. [Google Scholar] [CrossRef] [Green Version]
- Selva, J. Computation of spectral and root MUSIC through real polynomial rooting. IEEE Trans. Signal Process. 2005, 53, 1923–1927. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance technique. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef] [Green Version]
- Steinwandt, J.; Roemer, F.; Haardt, M. Generalized least squares for ESPRIT-type direction of arrival estimation. IEEE Signal Process. Lett. 2017, 24, 1681–1685. [Google Scholar] [CrossRef]
- Pan, J.; Sun, M.; Wang, Y.; Zhang, X. An enhanced spatial smoothing technique with ESPRIT algorithm for direction of arrival estimation in coherent scenarios. IEEE Trans. Signal Process. 2020, 68, 3635–3643. [Google Scholar] [CrossRef]
- Zhang, T.; Hui, T.; Lu, Y. Compensation for the mutual coupling effect in the ESPRIT direction finding algorithm by using a more effective method. IEEE Trans. Antennas Propag. 2005, 53, 1552–1555. [Google Scholar] [CrossRef]
- Bencheikh, M.; Wang, Y. Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar. Electron. Lett. 2010, 46, 1081–1083. [Google Scholar] [CrossRef]
- Nie, W.; Xu, K.; Feng, D.; Wu, C.; Hou, A.; Yin, X. A fast algorithm for 2D DOA estimation using an omnidirectional sensor array. Sensors 2017, 17, 515. [Google Scholar] [CrossRef] [Green Version]
- Alkubti, A.S.; Pöhlmann, R.; Doose, N.; Hoeher, P.A.; Dammann, A. Modeling aspects of planar multi-mode antennas for direction-of-arrival estimation. IEEE Sens. J. 2019, 19, 4585–4597. [Google Scholar] [CrossRef]
- Zeng, W.; Li, X.; Zhang, X. Direction-of-Arrival estimation based on the joint diagonalization structure of multiple fourth-order cumulant matrices. IEEE Signal Process. Lett. 2009, 16, 164–167. [Google Scholar] [CrossRef]
- Viberg, M.; Ottersten, B. Sensor array processing based on subspace fitting. IEEE Trans. Signal Process. 1991, 39, 1110–1121. [Google Scholar] [CrossRef]
- Zheng, C.; Li, G.; Li, Y. Subspace fitting via sparse representation of signal covariance for DOA estimation. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 3251–3255. [Google Scholar] [CrossRef]
- Meng, D.; Wang, X.; Huang, M.; Wan, L.; Zhang, B. Robust weighted subspace fitting for DOA estimation via block sparse recovery. IEEE Commun. Lett. 2020, 24, 563–567. [Google Scholar] [CrossRef]
- Mahata, K. Subspace fitting approaches for frequency estimation using real-valued data. IEEE Trans. Signal Process. 2005, 53, 3099–3110. [Google Scholar] [CrossRef]
- Strobach, P. Two-dimensional equirotational stack subspace fitting with an application to uniform rectangular arrays and ESPRIT. IEEE Trans. Signal Process. 2000, 48, 1902–1914. [Google Scholar] [CrossRef]
- Bengtsson, M.; Ottersten, B. A Generalization of weighted subspace fitting to full-rank models. IEEE Trans. Signal Process. 2001, 48, 1002–1012. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Meng, D. Multi-UAV cooperative localization for marine targets based on weighted subspace fitting in SAGIN environment. IEEE Internet Things 2021, 1. [Google Scholar] [CrossRef]
- Nikias, C.; Mendel, M. Signal processing with higher-order spectra. IEEE Signal Process. Mag. 1993, 10, 10–37. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Y. Cumulant-based method for bearing estimation in the presence of nongaussian Noise. IEEE Trans. Antennas Propag. 1994, 42, 548–552. [Google Scholar] [CrossRef]
- Gallay, M.; Eck, C.; Zgraggen, C.; Kaňuk, J.; Dvorný, E. High resolution airborne laser scanning and hyperspectral imaging with a small UAV platform. In Proceedings of the of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; pp. 823–827. [Google Scholar] [CrossRef]
- Sun, J.; Feng, B.; Xu, B. Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 19–23 June 2004; pp. 325–331. [Google Scholar] [CrossRef]
- Sun, J.; Fang, W.; Xu, W. A quantum-behaved particle swarm optimization with diversity-guided mutation for the design of two-dimensional IIR digital filters. IEEE Trans. Circuits Syst. II Exp. Briefs. 2010, 57, 141–145. [Google Scholar] [CrossRef]
- Sun, J.; Fang, W.; Wu, X.; Palade, V.; Xu, W. Quantum-behaved particle swarm optimization: Analysis of individual particle behavior and parameter selection. Evol. Comput. 2012, 20, 349–393. [Google Scholar] [CrossRef]
- Yang, P.; Yang, F.; Nie, Z. Robust adaptive beamformer using interpolation technique for conformal antenna array. Prog. Electromagn. Res. B 2010, 23, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Paulraj, A.; Kailath, T. Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Tampa, FL, USA, 26–29 April 1985; pp. 640–643. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, C. On the resiliency of music direction finding against antenna sensor coupling. IEEE Trans. Antennas Propag. 2008, 56, 371–380. [Google Scholar] [CrossRef]
- Liu, J.; Wu, X.; Emery, W.; Zhang, L.; Li, C.; Ma, K. Direction-of-arrival estimation and sensor array error calibration based on blind signal separation. IEEE Signal Process. Lett. 2017, 24, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, X.; Chen, H.; ZHU, X. An effective localization method for mixed far-field and near-field strictly non-circular sources. Digit. Signal Process. 2019, 94, 125–136. [Google Scholar] [CrossRef]
- Su, G.; Morf, M. The signal subspace approach for multiple wide-band emitter location. IEEE Trans. Acoust. Speech Signal Process. 1984, 31, 1502–1522. [Google Scholar] [CrossRef]
- Yao, Y.; Guo, T.; Chen, Z. A fast multi-source sound DOA estimator considering colored noise in circular array. IEEE Sens. J. 2019, 19, 6914–6926. [Google Scholar] [CrossRef]
- Barthelme, A.; Utschick, W. DOA estimation using neural network-based covariance matrix reconstruction. IEEE Signal Process. Lett. 2021, 28, 783–787. [Google Scholar] [CrossRef]
- Muller, M.; Ellis, D.; Klapuri, A.; Richard, G. Signal processing for MUSIC analysis. IEEE J. Sel. Top. Signal Process. 2011, 5, 1088–1110. [Google Scholar] [CrossRef] [Green Version]
- Hyberg, P.; Jansson, M.; Ottersten, B. Array interpolation and DOA MSE reduction. IEEE Trans. Signal Process. 2005, 53, 4464–4471. [Google Scholar] [CrossRef]
- Kennedy, J. Particle swarm optimization. In Proceedings of the 1995 IEEE Interior Conference Neural Networks, Perth, Australia, 27 November–1 December 2011; pp. 1942–1948. [Google Scholar] [CrossRef]
- Eberhart; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea, 27–30 May 2001; pp. 81–86. [Google Scholar] [CrossRef]
- Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Xu, W.; Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004; pp. 111–116. [Google Scholar] [CrossRef]
- Clerc, M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; pp. 1951–1957. [Google Scholar] [CrossRef]
- Ojha, V.; Abraham, A.; Snášel, V. Metaheuristic design of feedforward neural networks: A review of two decades of research. Eng. Appl. Artif. Intell. 2017, 60, 97–116. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Nie, W.; Feng, D.; Chen, X.; Fang, D. A multi-direction virtual array transformation algorithm for 2D DOA estimation. Signal Process. 2016, 125, 122–133. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Xu, K.; Quan, Y.; Zhu, S.; Xing, M. Signal Subspace Reconstruction for DOA Detection Using Quantum-Behaved Particle Swarm Optimization. Remote Sens. 2021, 13, 2560. https://doi.org/10.3390/rs13132560
Zhang R, Xu K, Quan Y, Zhu S, Xing M. Signal Subspace Reconstruction for DOA Detection Using Quantum-Behaved Particle Swarm Optimization. Remote Sensing. 2021; 13(13):2560. https://doi.org/10.3390/rs13132560
Chicago/Turabian StyleZhang, Rui, Kaijie Xu, Yinghui Quan, Shengqi Zhu, and Mengdao Xing. 2021. "Signal Subspace Reconstruction for DOA Detection Using Quantum-Behaved Particle Swarm Optimization" Remote Sensing 13, no. 13: 2560. https://doi.org/10.3390/rs13132560