Retrieval of High Temporal Resolution Aerosol Optical Depth Using the GOCI Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. GOCI Data
2.2. MODIS L1B/MODIS BRDF Data
2.3. AERONET AOD Products
2.4. Framework of the AOD Retrieval Algorithm
2.4.1. Theoretical Basis
2.4.2. Determination of Surface Reflectance
2.4.3. Aerosol Lookup Table
3. The Study Area
4. Results and Discussion
4.1. Validation of Satellite Retrieved AOD with Ground Observations
4.2. Sensitivity Analysis of the AOD Retrieval to Surface Reflectance Deviation and Sun Angle Change
- (1)
- The impact of residual clouds. The residual cloud after GOCI cloud removal may cause GOCI AOD to be higher. Kaufman et al. [41] found that the presence of cirrus clouds over the ocean can cause the MODIS AOD to be higher by 0.015 ± 0.003, suggesting that residual clouds may also be one of the reasons for the higher GOCI AOD over land (Figure 12).
- (2)
- The influence of surface reflectance. It can be seen from the Equation (4) that the surface reflectance of GOCI is obviously affected by the MODIS surface reflectance determined by the V5.2 algorithm. Moreover, the surface types of different underlying layers may also affect the effect of our algorithm, which mainly affects the surface reflectance, and this topic could be our further study in future.
- (3)
- Influence from different aerosol types. The aerosol types are constantly changing in different regions and at various time periods. The determination of regional aerosol types can improve the accuracy of AOD retrieval, while this study assumes one single continental aerosol type, and this may be one of the sources of AOD retrieval errors.
5. Conclusions
- (1)
- The algorithm proposed in this study for retrieving AOD using GOCI data is feasible and it can be used to retrieve AOD with high temporal resolution. Using Taihu and Xuzhou-CUMT stations for verification, it can be seen that R can reach 0.84 (8:30 a.m.), and the minimum RMSE is 0.2077 (11:30 a.m.) and 0.1937 (10:30 a.m.), respectively.
- (2)
- By comparing the estimated surface reflectance of GOCI with the atmospheric corrected reflectance, it is shown that the uncertainty of estimating surface reflectance is the root cause of the errors in retrieving AOD using GOCI data.
- (3)
- The greater the solar angle of the GOCI sensor, i.e., in the morning and afternoon, the retrieved AOD are more accurate, while the retrieved AOD at noon has the largest error, and thus the GOCI data at noon is unfavorable for retrieving AOD.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viana, M.; Pey, J.; Querol, X.; Alastuey, A.; Leeuw, F.D.; Luekewille, A. Natural sources of atmospheric aerosols influencing air quality across europe. Sci. Total Environ. 2014, 472, 825–833. [Google Scholar] [CrossRef]
- Strahler, A.H.; Muller, J.; Lucht, W.; Schaaf, C.; Tsang, T.; Gao, F.; Barnsley, M.J. MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0. MODIS Doc. 1999, 23, 42–47. [Google Scholar]
- Keywood, M.; Cope, M.; Meyer, C.P.M.; Iinuma, Y.; Emmerson, K. When smoke comes to town: The impact of biomass burning smoke on air quality. Atmos. Environ. 2015, 121, 13–21. [Google Scholar] [CrossRef]
- Crippa, P.; Sullivan, R.C.; Thota, A.; Pryor, S.C. Evaluating the skill of high-resolution wrf-chem simulations in describing drivers of aerosol direct climate forcing on the regional scale. Atmos. Chem. Phys. 2016, 16, 397–416. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanré, D.; Gordon, H.R.; Nakajima, T.; Lenoble, J.; Frouin, R.; Teillet, P.M. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res. Atmos. 1997, 102, 16815–16830. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Ryu, J.H.; Ahn, J.H.; Kim, Y.J. First Retrieval of Data regarding Spatial Distribution of Asian Dust Aerosol from the Geostationary Ocean Color Imager. Ocean Sci. J. 2012, 47, 465–472. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, S.; Wang, L.; Cai, K.; Ge, Q. Retrieval and Validation of Aerosol Optical Depth by using the GF-1 Remote Sensing Data. IOP Conf. Ser. 2017, 68, 23–25. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Qu, Y. Retrieval of High Spatial Resolution Aerosol Optical Depth from HJ-1 A/B CCD Data. Remote Sens. 2019, 11, 832. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Qiu, Z. Aerosol Retrievals over Bright Urban Surfaces Using Landsat 8 Images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7560–7563. [Google Scholar]
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of formosat-2, landsat, venμs and sentinel-2 images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef] [Green Version]
- Carrer, D.; Ceamanos, X.; Six, B.; Roujean, J.-L. Aerus-geo: A newly available satellite-derived aerosol optical depth product over europe and africa. Geophys. Res. Lett. 2014, 41, 7731–7738. [Google Scholar] [CrossRef]
- Zawadzka-manko, O.; Stachlewska, I.S.; Markowicz, K.M. Near-real-time application of seviri aerosol optical depth algorithm. Remote Sens. 2020, 12, 1481. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Zhang, Y.; Hou, W.; Xu, H.; Chen, C.; Ma, Y. High temporal resolution aerosol retrieval using Geostationary Ocean Color Imager: Application and initial validation. J. Appl. Remote Sens. 2014, 8, 83612. [Google Scholar] [CrossRef]
- Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T.F.; et al. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign. Atmos. Meas. Tech. 2016, 9, 1377–1398. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.-J.; Holben, B.; Eck, T.F.; Li, Z.; Song, C.H. GOCI Yonsei aerosol retrieval version 2 products: An improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia. Atmos. Meas. Tech. 2018, 11, 385–408. [Google Scholar] [CrossRef] [Green Version]
- Son, Y.B.; Choi, B.-J.; Kim, Y.H.; Park, Y.-G. Tracing floating green algae blooms in the yellow sea and the East China Sea using goci satellite data and lagrangian transport simulations. Remote Sens. Environ. 2015, 156, 21–33. [Google Scholar] [CrossRef]
- Choi, J.-K.; Park, Y.J.; Ahn, J.H.; Lim, H.-S.; Eom, J.; Ryu, J.-H. The world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J. Geophys. Res. Oceans. 2012, 117, 9004. [Google Scholar] [CrossRef]
- Xu, J.-W.; Martin, R.V.; Van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; et al. Estimating ground-level pm2.5 in eastern china using aerosol optical depth determined from the goci satellite instrument. Atmos. Chem. Phys. 2015, 15, 13133–13144. [Google Scholar] [CrossRef] [Green Version]
- Wongsai, N.; Wongsai, S.; Lim, A.; McNeil, D.; Huete, A.R. Impacts of spatial heterogeneity patterns on long-term trends of moderate resolution imaging spectroradiometer (modis) land surface temperature time series. J. Appl. Remote Sens. 2020, 14, 1. [Google Scholar] [CrossRef]
- Hong, G.; Yang, P.; Gao, B.-C.; Baum, B.A.; Hu, Y.X.; King, M.D.; Platnick, S. High cloud properties from three years of modis terra and aqua collection-4 data over the tropics. J. Appl. Meteorol. Clim. 2007, 46, 1840–1856. [Google Scholar] [CrossRef]
- Bandaru, V.; West, T.O.; Ricciuto, D.M.; Izaurralde, R.C. Estimating crop net primary production using national inventory data and modis-derived parameters. ISPRS J. Photogramm. 2013, 80, 61–71. [Google Scholar] [CrossRef]
- Gao, B.; Jia, L.; Wang, T. Derivation of land surface albedo at high resolution by combining hj-1a/b reflectance observations with modis brdf products. Remote Sens. 2014, 6, 8966–8985. [Google Scholar] [CrossRef] [Green Version]
- You, D.; Wen, J.; Xiao, Q.; Liu, Q.; Liu, Q.; Tang, Y. Development of a high resolution brdf/albedo product by fusing airborne casi reflectance with modis daily reflectance in the oasis area of the heihe river basin, china. Remote Sens. 2015, 7, 6784–6807. [Google Scholar] [CrossRef] [Green Version]
- Rengarajan, R.; Goodenough, A.A.; Schott, J.R. Simulating the directional, spectral and textural properties of a large-scale scene at high resolution using a MODIS BRDF product. SPIE Remote Sens. Int. Soc. Optics Photonics. 2016, 10000, 100000Y. [Google Scholar] [CrossRef]
- Zhu, G.; Ju, W.; Chen, J.M.; Gong, P.; Zhu, J. Foliage clumping index over china’s landmass retrieval from the modis brdf parameters product. IEEE Trans. Geosci. Remote 2012, 50, 2122–2137. [Google Scholar] [CrossRef]
- Bhandari, S.; Phinn, S.; Gill, T. Assessing viewing and illumination geometry effects on the modis vegetation index (mod13q1) time series: Implications for monitoring phenology and disturbances in forest communities in Queensland, Australia. Int. J. Remote Sens. 2011, 32, 7513–7538. [Google Scholar] [CrossRef]
- Holben, B.; Eck, T.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. Aeronet—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from aerosol robotic network (aeronet) sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Mateos, D.; Antón, M.; Toledano, C.; Cachorro, V.E.; Arboledas, L.A.; Sorribas, M.; Costa, M.J.; Baldasano, J.M. Aerosol radiative effects in the ultraviolet, visible, and near-infrared spectral ranges using long-term aerosol data series over the iberian peninsula. Atmos. Chem. Phys. 2014, 14, 13497–13514. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Adams, P.J. Evaluation of aerosol distributions in the giss-tomas global aerosol microphysics model with remote sensing observations. Atmos. Chem. Phys. 2010, 9, 2129–2144. [Google Scholar] [CrossRef] [Green Version]
- Torres, B.; Toledano, C.; Berjón, A.; Fuertes, D.; Molina, V.; González, R.; Canini, M.; Cachorro, V.E.; Goloub, P.; Podvin, T.; et al. Measurements on pointing error and field of view of cimel-318 sun photometers in the scope of aeronet. Atmos. Meas. Tech. 2013, 6, 3013–3057. [Google Scholar] [CrossRef] [Green Version]
- Volkova, K.A.; Poberovsky, A.V.; Timofeev, Y.M.; Ionov, D.V.; Slutsker, I. Aerosol optical characteristics retrieved from cimel sun photometer measurements (aeronet) near st. petersburg. Atmos. Oceanic Opt. 2018, 31, 635–641. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Lu, S.; Xue, Y.; Yang, X.H.; Leys, J.; Guang, J.; Che, Y.H.; Fan, C. Joint Retrieval of Aerosol Optical Depth and Surface Reflflectance Over Land Using Geostationary Satellite Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1489–1501. [Google Scholar]
- Gao, L.; Chen, L.; Li, J.; Li, C.; Zhu, L. An improved dark target method for aerosol optical depth retrieval over China from Himawari-8. Atmos. Res. 2021, 250, 105399. [Google Scholar] [CrossRef]
- Chen, L.; Wang, R.; Wei, G.; Han, J.; Zha, Y. A surface reflectance correction model to improve the retrieval of MISR aerosol optical depth. Adv. Space Res. 2021, 67, 858–867. [Google Scholar] [CrossRef]
- He, J.; Zha, Y.; Zhang, J.; Gao, J.; Wang, Q. Synergetic retrieval of terrestrial aod from modis images of twin satellites terra and aqua. Adv. Space Res. 2014, 53, 1337–1346. [Google Scholar] [CrossRef]
- Holben, B.; Vermote, E.; Kaufman, Y.; Tanre, D.; Kalb, V. Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Trans. Geosci. Electron. 1992, 30, 212–222. [Google Scholar] [CrossRef]
- He, J.; Zha, Y.; Zhang, J.; Gao, J.; Li, Y.; Chen, X. Retrieval of aerosol optical thickness from HJ-1 CCD data based on MODIS-derived surface reflectance. Int. J. Remote Sens. 2015, 36, 882–898. [Google Scholar] [CrossRef]
- Wang, Z.T.; Li, Q.; Wang, Q.; Li, S.S.; Xu, Y.J. HJ-1 terrestrial aerosol data retrieval using deep blue algorithm. J. Remote Sens. 2012, 16, 596–610. [Google Scholar]
- Qi, X.M.; Ding, A.J.; Nie, W.; Petäjä, T.; Kerminen, V.-M.; Herrmann, E.; Xie, Y.N.; Zheng, L.F.; Manninen, H.E.; Aalto, P.P.; et al. Aerosol size distribution and new particle formation in the western yangtze river delta of china: 2 years of measurements at the sorpes station. Atmos. Chem. Phys. 2015, 15, 12445–12464. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Remer, L.A.; Tanre, D.; Li, R.-R.; Kleidman, R.; Mattoo, S.; Levy, R.C.; Eck, T.; Holben, B.; Ichoku, C.; et al. A critical examination of the residual cloud contamination and diurnal sampling effects on modis estimates of aerosol over ocean. IEEE Trans. Geosci. Electron. 2005, 43, 2886–2897. [Google Scholar] [CrossRef]
Band. | Center Band (nm) | Band Width (nm) | Types | Primary Use |
---|---|---|---|---|
B1 | 412 | 20 | Visible light | Yellow substance and turbidity |
B2 | 443 | 20 | Visible light | Maximum chlorophyll absorption |
B3 | 490 | 20 | Visible light | Visible chlorophyll and other pigments |
B4 | 555 | 20 | Visible light | Turbidity |
B5 | 660 | 20 | Visible light | Fluorescence signal and suspended sediment |
B6 | 680 | 10 | Visible light | Atmospheric correction and fluorescence signal |
B7 | 745 | 20 | Near infrared | Atmospheric correction and fluorescence signal baseline |
B8 | 865 | 40 | Near infrared | Aerosol optical depth and water vapor volume |
Station | Longitude/Latitude | Selected Observation Time |
---|---|---|
Taihu | 120.215 ° E/31.421 ° N | 2017–2018 |
Xuzhou-CUMT | 117.142 ° E/34.217 ° N | 2017–2018 |
ID | Parameter Name | Input Parameters |
---|---|---|
1 | Solar zenith angle | According to the actual angle range of the image, the step size is set to 1° |
2 | Satellite view zenith angle | 39, 40, 41, 42, 43 |
3 | Relative azimuth angle | According to the actual angle range of the image, the step size is set to 1° |
4 | AOD | 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3,1.4, 1.5, 1.95 |
5 | Atmospheric model | Mid-latitude summer and mid-latitude winter |
6 | Aerosol type | Continental |
Station | Time | Surface Reflectance | Atmospheric Correction Reflectance | Surface Reflectance Difference | GOCI AOD | AERONET AOD | AOD Difference |
---|---|---|---|---|---|---|---|
Taihu | 8:30 | 0.03252 | 0.07065 | 0.03813 | 0.55223 | 0.39254 | 0.15969 |
9:30 | 0.03246 | 0.07260 | 0.04014 | 0.66477 | 0.42120 | 0.24357 | |
10:30 | 0.03223 | 0.07222 | 0.03999 | 0.70966 | 0.43703 | 0.27262 | |
11:30 | 0.03399 | 0.07914 | 0.04515 | 0.69665 | 0.44210 | 0.25455 | |
12:30 | 0.03670 | 0.07750 | 0.04080 | 0.71721 | 0.44714 | 0.27007 | |
13:30 | 0.03592 | 0.08063 | 0.04471 | 0.73667 | 0.47507 | 0.26160 | |
14:30 | 0.03646 | 0.07743 | 0.04097 | 0.66074 | 0.45218 | 0.20856 | |
15:30 | 0.03682 | 0.08557 | 0.04875 | 0.63534 | 0.47257 | 0.16277 | |
Xuzhou- CUMT | 8:30 | 0.05464 | 0.08859 | 0.03395 | 0.56162 | 0.46961 | 0.09201 |
9:30 | 0.05258 | 0.08407 | 0.03149 | 0.63016 | 0.49100 | 0.13915 | |
10:30 | 0.05283 | 0.08785 | 0.03502 | 0.66432 | 0.48309 | 0.18122 | |
11:30 | 0.05015 | 0.09177 | 0.04162 | 0.73021 | 0.48862 | 0.24159 | |
12:30 | 0.05255 | 0.08542 | 0.03287 | 0.66287 | 0.45848 | 0.20439 | |
13:30 | 0.05213 | 0.09028 | 0.03814 | 0.71173 | 0.49807 | 0.21366 | |
14:30 | 0.05009 | 0.10063 | 0.05054 | 0.68705 | 0.50761 | 0.17944 | |
15:30 | 0.05101 | 0.08841 | 0.03740 | 0.62772 | 0.51354 | 0.11418 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Fei, Y.; Wang, R.; Fang, P.; Han, J.; Zha, Y. Retrieval of High Temporal Resolution Aerosol Optical Depth Using the GOCI Remote Sensing Data. Remote Sens. 2021, 13, 2376. https://doi.org/10.3390/rs13122376
Chen L, Fei Y, Wang R, Fang P, Han J, Zha Y. Retrieval of High Temporal Resolution Aerosol Optical Depth Using the GOCI Remote Sensing Data. Remote Sensing. 2021; 13(12):2376. https://doi.org/10.3390/rs13122376
Chicago/Turabian StyleChen, Lijuan, Ying Fei, Ren Wang, Peng Fang, Jiamei Han, and Yong Zha. 2021. "Retrieval of High Temporal Resolution Aerosol Optical Depth Using the GOCI Remote Sensing Data" Remote Sensing 13, no. 12: 2376. https://doi.org/10.3390/rs13122376
APA StyleChen, L., Fei, Y., Wang, R., Fang, P., Han, J., & Zha, Y. (2021). Retrieval of High Temporal Resolution Aerosol Optical Depth Using the GOCI Remote Sensing Data. Remote Sensing, 13(12), 2376. https://doi.org/10.3390/rs13122376