A Review of Passive and Active Ultra-Wideband Baluns for Use in Ground Penetrating Radar
Abstract
:1. Introduction
2. Summary of Balun Designs for GPR Antennas
3. Experimental Methodology
4. Results and Discussion
4.1. Active Balun Input Power Limitations
4.2. Single Balun Measurements
4.3. Back-to-Back Measurements
4.4. Current Probe Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daniels, D.J. Ground Penetrating Radar, 2nd ed.; The Institution of Electrical Engineers: Stevenage, UK, 2004. [Google Scholar]
- Daniels, D.J. A review of GPR for landmine detection. Sens. Imaging Int. J. 2006, 7, 90–123. [Google Scholar] [CrossRef]
- Lee, J.S.; Nguyen, C.; Scullion, T. A novel, compact, low-cost, impulse ground-penetrating radar for nondestructive evaluation of pavements. IEEE Trans. Instrum. Meas. 2004, 53, 1502–1509. [Google Scholar] [CrossRef]
- Jenssen, R.O.R.; Eckerstorfer, M.; Jacobsen, S. Drone-Mounted Ultrawideband Radar for Retrieval of Snowpack Properties. IEEE Trans. Instrum. Meas. 2019, 69, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Byers, K.J.; Harish, A.R.; Seguin, S.A.; Leuschen, C.J.; Rodriguez-Morales, F.; Paden, J.; Arnold, E.J.; Hale, R.D. A modified wideband dipole antenna for an airborne VHF ice-penetrating radar. IEEE Trans. Instrum. Meas. 2012, 61, 1435–1444. [Google Scholar] [CrossRef]
- De Angelis, A.; Dionigi, M.; Moschitta, A.; Carbone, P. A low-cost ultra-wideband indoor ranging system. IEEE Trans. Instrum. Meas. 2009, 58, 3935–3942. [Google Scholar] [CrossRef]
- Abdullah, M.Z.; Binajjaj, S.A.; Zanoon, T.F.; Peyton, A.J. High-resolution imaging of dielectric profiles by using a time-domain ultra wideband radar sensor. Meas. J. Int. Meas. Confed. 2011, 44, 859–870. [Google Scholar] [CrossRef]
- Jofre, L.; Toda, A.P.; Montana, J.M.J.; Carrascosa, P.C.; Romeu, J.; Blanch, S.; Cardama, A. UWB short-range bifocusing tomographic imaging. IEEE Trans. Instrum. Meas. 2008, 57, 2414–2420. [Google Scholar] [CrossRef]
- Woodhead, I.; Buchan, G.; Platt, I.; Christie, J. Improved electric field modelling for TDR. Meas. Sci. Technol. 2007, 18, 1110–1117. [Google Scholar] [CrossRef]
- Hokmabadi, A.; Keshtkar, A.; Bayat, A.; Keshtkar, A. A CPW-fed tapered slot antenna with improved time and frequency domain characteristics. Int. J. Microw. Wirel. Technol. 2017, 9, 1185–1190. [Google Scholar] [CrossRef]
- Marsh, L.A.; van Verre, W.; L. Davidson, J.; Gao, X.; Podd, F.J.W.; J. Daniels, D.; J. Peyton, A. Combining Electromagnetic Spectroscopy and Ground-Penetrating Radar for the Detection of Anti-Personnel Landmines. Sensors 2019, 19, 3390. [Google Scholar] [CrossRef] [Green Version]
- Sefa, R.; Maraj, A. Analysis and design of microstrip to balanced stripline transitions. In Proceedings of the 10th WSEAS international conference on Telecommunications and informatics and microelectronics, nanoelectronics, optoelectronics, and WSEAS international conference on Signal processing, Canary Islands, Spain, 27–29 May 2011; pp. 137–142. [Google Scholar]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Venkatesan, J.; Scott, W., Jr. Investigation of the double-Y balun for feeding pulsed antennas. In Proceedings of the Detection and Remediation Technologies for Mines and Minelike Targets IX, Orlando, FL, USA, 12–16 April 2004; Volume 5089. [Google Scholar] [CrossRef]
- Chiappe, M.; Gragnani, G. Vivaldi antennas as detectors for microwave imaging: Some theoretical results and design considerations. IEEE Trans. Instrum. Meas. 2005, 55, 22–27. [Google Scholar]
- Icheln, C.; Krogerus, J.; Vainikainen, P. Use of Balun Chokes in Small-Antenna Radiation Measurements. IEEE Trans. Instrum. Meas. 2004, 53, 498–506. [Google Scholar] [CrossRef]
- Kawana, T.; Osakabe, M.; Koike, K. Evaluation of Dipole Antenna Balun Loss in the UHF Band. IEEE Trans. Instrum. Meas. 1991, 40, 480–482. [Google Scholar] [CrossRef]
- Morioka, T.; Komiyama, K. Measurements of antenna characteristics above different conducting planes. IEEE Trans. Instrum. Meas. 2002, 50, 393–396. [Google Scholar] [CrossRef]
- Vinayagamoorthy, K.; Coetzee, J.; Jayalath, D. Microstrip to parallel strip balun as spiral antenna feed. In Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Vandersteen, G.; Barel, A.; Rolain, Y. Broadband high-frequency hybrid. IEEE Trans. Instrum. Meas. 2002, 51, 1204–1209. [Google Scholar] [CrossRef]
- Lu, S.; Elshabini-Riad, A.; Riad, S.M. Design, Fabrication, and Characterization of a Wideband Hybrid Balun. IEEE Trans. Instrum. Meas. 1991, 40, 486–489. [Google Scholar]
- Ruthroff, C.L. Some Broad-Band Transformers. Proc. IRE 1959, 47, 1337–1342. [Google Scholar] [CrossRef]
- Guanella, G. New Method of Impedance Matching in Radio-Frequency Circuits. Brown Boveri Rev. 1944, 31, 327–329. [Google Scholar]
- Duncan, J.; Minerva, V. 100:1 Bandwidth Balun Transformer. Proc. IRE 1960, 48, 156–164. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sawada, N. Analysis and Synthesis of Tapered Microstrip Transmission Lines. IEEE Trans. Microw. Theory Tech. 1992, 40, 1642–1646. [Google Scholar] [CrossRef]
- Pramanick, P.; Bhartia, P. A Generalized Theory of Tapered Transmission Line Matching Transformers and Asymmetric Couplers Supporting Non-TEM Modes. IEEE Trans. Microw. Theory Tech. 1989, 37, 1184–1191. [Google Scholar] [CrossRef]
- Marchand, N. Transmission line conversion transformers. Electronics 1944, 17, 142–145. [Google Scholar]
- Cloete, J.H. Exact Design of The Marchand Balun. In Proceedings of the 9th European Microwave Conference, Brighton, UK, 17–20 September 1979. [Google Scholar]
- Trifunovic, V.; Jokanovic, B. Review of Printed Marchand and Double Y Baluns: Characteristics and Application. IEEE Trans. Microw. Theory Tech. 1994, 42. [Google Scholar] [CrossRef]
- Ahn, H.R.; Nam, S. New Design Formulas for Impedance-Transforming 3-dB Marchand Baluns. IEEE Trans. Microw. Theory Tech. 2011, 59, 2816–2823. [Google Scholar] [CrossRef]
- Ang, K.S.; Robertson, I.D. Analysis and Design of Impedance-Transforming Planar Marchand Baluns. IEEE Trans. Microw. Theory Tech. 2001, 49, 402–406. [Google Scholar]
- Lu, J.C.; Lin, C.C.; Chang, C.Y. Exact Synthesis and Implementation of New High-Order Wideband Marchand Baluns. IEEE Trans. Microw. Theory Tech. 2011, 59, 80–86. [Google Scholar] [CrossRef]
- Jorgesen, D.; Marki, C. Balun Basics Primer; Technical report; Marki Microwave: Morgan Hill, CA, USA, 2014. [Google Scholar]
- Trifunovic, V.; Jokanovic, B. Four decade bandwidth uniplanar balun. Electron. Lett. 1992, 28, 534–535. [Google Scholar] [CrossRef]
- Venkatesan, J.B.; Scott, W.R., Jr. Design of the double-y balun for use in GPR applications. In Proceedings of the Detection and Remediation Technologies for Mines and Minelike Targets IX, Orlando, FL, USA, 12–16 April 2004; Volume 5415. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, S.; Lee, Y.T.; Kim, D.H.; Lim, J.S.; Seo, K.S.; Nam, S. Ultra-wideband (from DC to 110 GHz) CPW to CPS transition. Electron. Lett. 2002, 38, 622. [Google Scholar] [CrossRef]
- Butrym, A.; Pivnenko, S. A Tapered Coplanar Strip Antenna with Improved Matching. In Ultra-Wideband, Short-Pulse Electromagnetics 7; Sabath, F., Mokole, E.L., Schenk, U., Nitsch, D., Eds.; Springer: New York, NY, USA, 2007; pp. 342–353. [Google Scholar]
- Ahn, H.R. Asymmetric Passive Components in Microwave Integrated Circuits; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 1–291. [Google Scholar] [CrossRef]
- Ho, C.H.; Fan, L.; Chang, K. Broad-Band Uniplanar Hybrid-Ring and Branch-Line Couplers. IEEE Trans. Microw. Theory Tech. 1993, 41, 2116–2125. [Google Scholar]
- Ho, C.H.; Fan, L.; Chang, K. New uniplanar coplanar waveguide hybrid-ring couplers and magic-T’s. IEEE Trans. Microw. Theory Tech. 1994, 42, 2440–2448. [Google Scholar]
- Analog Devices. ADL5569 Datasheet and Product Info|Analog Devices. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/ADL5569.pdf (accessed on 16 December 2019).
- Texas Instruments. LMH3401 7-GHz, Ultra-Wideband, Fully Differential Amplifier|TI.com. Available online: https://www.ti.com/lit/ds/symlink/lmh3401.pdf (accessed on 16 December 2019).
Start Frequency | 5 MHz |
---|---|
Stop Frequency | 6 GHz |
Step Frequency | 5 MHz |
Steps | 1200 |
IF Bandwidth | 100 Hz |
Output Power | 0 dBm |
Output Headroom | 1.4 V/13 dBm (Output) |
---|---|
Input Headroom | 1.0 V/5 dBm (Input) |
Slew rate | 18,000 V/s |
Noise Figure | 9 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Verre, W.; Podd, F.J.W.; Gao, X.; Daniels, D.J.; Peyton, A.J. A Review of Passive and Active Ultra-Wideband Baluns for Use in Ground Penetrating Radar. Remote Sens. 2021, 13, 1899. https://doi.org/10.3390/rs13101899
van Verre W, Podd FJW, Gao X, Daniels DJ, Peyton AJ. A Review of Passive and Active Ultra-Wideband Baluns for Use in Ground Penetrating Radar. Remote Sensing. 2021; 13(10):1899. https://doi.org/10.3390/rs13101899
Chicago/Turabian Stylevan Verre, Wouter, Frank J. W. Podd, Xianyang Gao, David J. Daniels, and Anthony J. Peyton. 2021. "A Review of Passive and Active Ultra-Wideband Baluns for Use in Ground Penetrating Radar" Remote Sensing 13, no. 10: 1899. https://doi.org/10.3390/rs13101899
APA Stylevan Verre, W., Podd, F. J. W., Gao, X., Daniels, D. J., & Peyton, A. J. (2021). A Review of Passive and Active Ultra-Wideband Baluns for Use in Ground Penetrating Radar. Remote Sensing, 13(10), 1899. https://doi.org/10.3390/rs13101899