Identification of Phyllosilicates in the Antarctic Environment Using ASTER Satellite Data: Case Study from the Mesa Range, Campbell and Priestley Glaciers, Northern Victoria Land
Abstract
:1. Introduction
2. Geologic Setting of the Study Area
3. Materials and Methods
3.1. ASTER Data Characteristics and Pre-Processing
3.2. Image Processing Techniques
3.2.1. The Implementation of the MTMF Algorithm
3.2.2. The Implementation of the CEM Algorithm
3.3. Fieldwork Data and Laboratory Analysis
4. Results
4.1. Detection of Phyllosilicates Using the MTMF Algorithm
4.2. Identification of Phyllosilicates Using the CEM Algorithm
4.3. Evaluation of the Mineralogical Content Derived from Image Analysis
4.4. Field Occurrences and Mineralogy of the Exposed Bedrock in the Study Area
4.4.1. Field Occurrences
4.4.2. Mineralogy of the Exposed Rocks
Wilson Metamorphic Complex
Granite Harbour Intrusives
Beacon Supergroup
Ferrar Supergroup
McMurdo Igneous Complex
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farmer, V.C. The layer silicates. In The Infrared Spectra of Minerals; Mineralogical Society: London, UK, 1974; pp. 331–363. [Google Scholar]
- Farmer, V.C.; Palmieri, F. The characterization of soil minerals by infrared spectroscopy. In Soil Components; Springer: Berlin/Heidelberg, Germany, 1975; pp. 573–670. [Google Scholar]
- Bailey, S.W. Structures of layer silicates. In Crystal Structures of Clay Minerals and Their X-ray Identification; Mineralogical Society: London, UK, 1980; pp. 1–124. [Google Scholar]
- Howie, R.A.; Zussman, J.; Deer, W. An Introduction to the Rock-Forming Minerals; Longman: London, UK, 1992; p. 696. [Google Scholar]
- Chamley, H. Clay Sedimentology; Springer: New York, NY, USA, 1989. [Google Scholar]
- Jackson, M.L. Frequency distribution of clay minerals in major soil groups as related to factors of soil formation. Clays Clay Miner. 1959, 6, 133–143. [Google Scholar] [CrossRef]
- Nagy, K.L. Dissolution and precipitation kinetics of sheet silicates. In Chemical Weathering Rates of Silicate Minerals; De Gruyter: Berlin, Germany, 1995; pp. 173–233. [Google Scholar]
- Velde, B. Clay Minerals: A Physico-Chemical Explanation of Their Occurrence; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Bishop, J.L.; Pieters, C.M.; Edwards, J.O. Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner. 1994, 42, 701–715. [Google Scholar] [CrossRef]
- Bishop, J.L.; Murad, E.; Dyar, M.D. The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Miner. 2002, 37, 617–628. [Google Scholar] [CrossRef]
- Bishop, J.L.; Madejova’, J.; Komadel, P.; Froeschl, H. The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Miner. 2002, 37, 607–616. [Google Scholar] [CrossRef]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brwon, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Hunt, G.R.; Ashley, R.P. Spectra of altered rocks in the visible and near-infrared. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Walter, L.S.; Vergo, N.; D’Aria, D.M. Infrared (2.1–25 μm) Spectra of Minerals; Johns Hopkins University Press: Baltimore, MD, USA, 1991. [Google Scholar]
- Salisbury, J.W.; D’Aria, D.M. Infrared (8–14 gm) Remote Sensing of Soil Particle Size. Remote Sens. Environ. 1992, 42, 157–165. [Google Scholar] [CrossRef]
- Hunt, G.R.; Salisbury, J.W. Visible and near-infrared spectra of minerals and rocks, I, Silicate minerals. Mod. Geol. 1970, 1, 283–300. [Google Scholar]
- Burns, R.G. Mineralogical Applications of Crystal Field Theory; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Mars, J.C.; Rowan, L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, S.; Nasir, S. ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman. Ore Geol. Rev. 2019, 108, 33–53. [Google Scholar] [CrossRef]
- Noori, L.; Pour, B.A.; Askari, G.; Taghipour, N.; Pradhan, B.; Lee, C.-W.; Honarmand, M. Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens. 2019, 11, 495. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, Y.; Fu, B. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geol. Rev. 2019, 108, 54–72. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Sci. 2018, 16, 23–46. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Park, Y.; Hong, J.K. Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int. 2018, 33, 1281–1306. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, T.S.; Park, Y.; Hong, J.K.; Zoheir, B.; Pradhan, B.; Ayoobi, I.; Hashim, M. Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens. 2018, 10, 1186. [Google Scholar] [CrossRef] [Green Version]
- Pour, A.B.; Hashim, M.; Hong, J.K.; Park, Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geol. Rev. 2019, 108, 112–133. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto Int. 2019, 34, 785–816. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Crispini, L.; Läufer, A.; Kuk Hong, J.; Park, T.-Y.S.; Zoheir, B.; Pradhan, B.; Muslim, A.M.; Hossain, M.S.; et al. Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data. Remote Sens. 2019, 11, 1408. [Google Scholar] [CrossRef] [Green Version]
- Pour, A.B.; Park, T.-Y.; Park, Y.; Hong, J.K.; Muslim, A.M.; Läufer, A.; Crispini, L.; Pradhan, B.; Zoheir, B.; Rahmani, O.; et al. Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and WorldView-3 Multispectral Satellite Imagery for Prospecting Copper-Gold Mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland. Remote Sens. 2019, 11, 2430. [Google Scholar] [CrossRef] [Green Version]
- Bolouki, S.M.; Ramazi, H.R.; Maghsoudi, A.; Beiranvand Pour, A.; Sohrabi, G. A Remote Sensing-Based Application of Bayesian Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran. Remote Sens. 2020, 12, 105. [Google Scholar] [CrossRef] [Green Version]
- Sekandari, M.; Masoumi, I.; Beiranvand Pour, A.; M Muslim, A.; Rahmani, O.; Hashim, M.; Zoheir, B.; Pradhan, B.; Misra, A.; Aminpour, S.M. Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 Spectral Imagery for Exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT). Remote Sens. 2020, 12, 1239. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA‘s Terra platform. Int. J. Remote Sens. 2000, 21, 847–859. [Google Scholar] [CrossRef]
- Abrams, M.; Tsu, H.; Hulley, G.; Iwao, K.; Pieri, D.; Cudahy, T.; Kargel, J. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 292–301. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B.; Cudahy, T.J. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared radiance-at-sensor data. Remote Sens. Environ. 2005, 99, 127–139. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B. Regional lithological mapping using ASTER-TIR data: Case study for the Tibetan Plateau and the surrounding area. Geosciences 2016, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Haselwimmer, C.E.; Riley, T.R.; Liu, J.G. Assessing the potential of multispectral remote sensing for lithological mapping on the Antarctic Peninsula: Case study from eastern Adelaide Island, Graham Land. Antarct. Sci. 2010, 22, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Haselwimmer, C.E.; Riley, T.R.; Liu, J.G. Lithologic mapping in the Oscar II Coast area, Graham Land, Antarctic Peninsula using ASTER data. Int. J. Remote Sens. 2011, 32, 2013–2035. [Google Scholar] [CrossRef]
- Salvatore, M.R.; Mustard, J.F.; Head, J.W.; Cooper, R.F.; Marchant, D.R.; Wyatt, M.B. Development of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars. Geochim. Cosmochim. Acta 2013, 115, 137–161. [Google Scholar] [CrossRef]
- Salvatore, M.R.; Mustard, J.F.; Head, J.W.; Marchant, D.R.; Wyatt, M.B. Characterization of spectral and geochemical variability within the Ferrar Dolerite of the McMurdo Dry Valleys, Antarctica: Weathering, alteration, and magmatic processes. Antarct. Sci. 2013, 1–20. [Google Scholar] [CrossRef] [Green Version]
- GANOVEX Team. Geological map of North Victoria Land, Antarctica, 1:500,000—Explanatory notes. Geol. Jahrb. B 1987, 66, 7–79. [Google Scholar]
- Salvi, S.; Mazzarini, F.; Doumaz, F.; Lombardo, V.; Tolomei, C. Spectral reflectance measurments of geological materials in Northern Victoria Land, Antarctica. Aitinforma-Riv. Ital. Telerilevamento 2001, 23, 45–54. [Google Scholar]
- Veevers, J.J. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci. Rev. 2004, 68, 1–132. [Google Scholar] [CrossRef]
- Veevers, J.J. Edge tectonics (Trench rollback, terrane export) of Gondwanaland–Pangea synchronized by supercontinental heat. Gondwana Res. 2005, 8, 449–456. [Google Scholar] [CrossRef]
- Goodge, J.W.; Fanning, C.M.; Norman, M.D.; Bennet, V. Temporal, Isotopic and Spatial Relations of Early Paleozoic Gondwana-Margin Arc Magmatism, Central Transantarctic Mountains, Antarctica. J. Petrol. 2012, 53, 2027–2065. [Google Scholar] [CrossRef] [Green Version]
- Estrada, S.; Läufer, A.; Eckelmann, K.; Hofmann, M.; Gärtner, A.; Linnemann, U. Continuous Neoproterozoic to Ordovician sedimentation at the East Gondwana margin—Implications from detrital zircons of the Ross Orogen in northern Victoria Land, Antarctica. Gondwana Res. 2016, 37, 426–448. [Google Scholar] [CrossRef]
- Federico, L.; Capponi, G.; Crispini, L. The Ross orogeny of the Transantarctic Mountains: A northern Victoria Land perspective. Int. J. Earth Sci. 2006, 95, 759–770. [Google Scholar] [CrossRef]
- Federico, L.; Crispini, L.; Capponi, G.; Bradshaw, J.D. The Cambrian Ross Orogeny in northern Victoria Land (Antarctica) and New Zealand: A synthesis. Gondwana Res. 2009, 15, 188–196. [Google Scholar] [CrossRef]
- Paulsen, T.; Deering, C.; Sliwinski, J.; Bachmann, O.; Guillong, M. A continental arc tempo discovered in the Pacific-Gondwana margin mudpile? Geology 2016, 44, 915–918. [Google Scholar] [CrossRef]
- Menneken, M.; John, T.; Läufer, A.; Giese, J. Zircons from the Granite Harbour Intrusives, northern Victora Land, Antarctica. In Proceedings of the POLAR 2018 Open Science Conference, Davos, Switzerland, 19–23 June 2018; pp. 19–23. [Google Scholar]
- Jordan, H.; Findlay, R.; Mortimer, G.; Schmidt-Thome, M.; Crawford, A.; Muller, P. Geology of the northern Bowers Mountains, North Victoria Land, Antarctica. Geol. Jahrb. B 1984, 60, 57–81. [Google Scholar]
- Rocchi, S.; Capponi, G.; Crispini, L.; Di Vincenzo, G.; Ghezzo, C.; Meccheri, M.; Palmeri, R. Mafic rocks at the WilsoneBowers terrane boundary and within the Bowers Terrane: Clues to the Ross geodynamics in northern Victoria Land, Antarctica. In Proceedings of the Abstract of the 9th International Symposium on Antarctic Earth Sciences, Potsdam, Germany, 8–12 September 2003. [Google Scholar]
- Crispini, L.; Vincenzo, G.D.; Palmeri, R. Petrology and 40Ar–39Ar dating of shear zones in the Lanterman Range (northern Victoria Land, Antarctica): Implications for metamorphic and temporal evolution at terrane boundaries. Mineral. Petrol. 2007, 89, 217–249. [Google Scholar] [CrossRef]
- Roland, N.W.; Läufer, A.L.; Rossetti, F. Revision of the Terrane Model of Northern Victoria Land (Antarctica). Terra Antart. 2004, 11, 55–65. [Google Scholar]
- Rossetti, F.; Tecce, F.; Aldega, L.; Brilli, M.; Faccenna, C. Deformation and fluid flow during orogeny at the palaeo-Pacific active margin of Gondwana: The Early Palaeozoic Robertson Bay accretionary complex (North Victoria Land, Antarctica). J. Metamorph. Geol. 2006, 24, 33–53. [Google Scholar] [CrossRef]
- Goodge, J.W. Metamorphism in the Ross orogen and its bearing on Gondwana margin tectonics. Spec. Pap.-Geol. Soc. Am. 2007, 419, 185–203. [Google Scholar]
- Rocchi, S.; Armienti, P.; D’Orazio, M.; Tonarini, S.; Wijbrans, J.; Di Vincenzo, G. Cenozoic magmatism in the western Ross Embayment: Role of mantle plume vs. plate dynamics in the development of the West Antarctic Rift System. J. Geophys. Res. 2002, 107, 2195. [Google Scholar] [CrossRef] [Green Version]
- Grindley, G.W. The geology of the Queen Alexandra Range, Beardmore Glacier, Ross Dependency, Antarctica; with notes on the correlation of Gondwana sequences. N. Z. J. Geol. Geophys. 1963, 6, 307–347. [Google Scholar] [CrossRef] [Green Version]
- Siders, M.A.; Elliot, D.H. Major and trace element geochemistry of the Kirkpatrick Basalt, Mesa Range, Antarctica. Earth Planet. Sci. Lett. 1985, 72, 54–64. [Google Scholar] [CrossRef]
- Faure, G.; Mensing, T.M. K-Ar dates and paleomagnetic evidence for Cretaceous alteration of Mesozoic basaltic lava flows, Mesa Range, northern Victoria Land, Antarctica. Chem. Geol. 1993, 109, 305–315. [Google Scholar] [CrossRef]
- Faure, G.; Mensing, T.M. Cretaceous alteration of Jurassic volcanic rocks, Pain Mesa, northern Victoria Land, Antarctica. Chem. Geol. 1996, 129, 153–161. [Google Scholar]
- Barrett, P.J.; Grindley, G.W.; Webb, P.N. The Beacon Supergroup of East Antarctica. Antarct. Geol. Geophys. 1972, 319, 332. [Google Scholar]
- Schöner, R.; Viereck-Götte, L.; Schneider, J.; Bomfleur, B. Triassic–Jurassic sediments and multiple volcanic events in North Victoria Land, Antarctica: A revised stratigraphic model. In Antarctica: A Keystone in a Changing World–Online Proceedings of the 10th ISAES; Cooper, A.K., Raymond, C.R., Eds.; USGS Open-File Report; National Academies Press: Washington, DC, USA, 2007; Volume 1047. [Google Scholar]
- Schöner, R.; Bomfleur, B.; Schneider, J.; Viereck-Götte, L. A systematic description of the Triassic to Lower Jurassic Section Peak Formation in north Victoria Land (Antarctica). Polarforschung 2011, 80, 71–87. [Google Scholar]
- Elsner, M.; Schöner, R.; Gerdes, A.; Gaupp, R. Reconstruction of the early Mesozoic plate margin of Gondwana by U–Pb ages of detrital zircons from northern Victoria Land, Antarctica. Geol. Soc. Lond. Spec. Publ. 2013, 383, 211–232. [Google Scholar] [CrossRef]
- Palmeri, R. P-T paths and migmatite formation: An example from Deep Freeze Range, northern Victoria Land, Antarctica. Lithos 1997, 42, 47–66. [Google Scholar] [CrossRef]
- Pertusati, P.C.; Musumeci, G.; Carosi, R.; Meccheri, M.; Baroni, C.; Capponi, G.; Carmignani, L.; Castelli, D.; Colombo, F.; Crispini, L.; et al. Antarctic Geological 1:250000 Map Series, Mount Melbourne Quadrangle (Victoria Land); GIGAMAP—German-Italian Geological Antarctic Map Program. 2012. [Google Scholar]
- Kyle, P.R.; Elliot, D.H.; Sutter, J.F. Jurassic Ferrar Supergroup Tholeiites from the Transantarctic Mountains, Antarctica, and Their Relationship to the Initial Fragmentation of Gondwana; Pascal: Vendin-lès-Béthune, France, 1981; pp. 283–287. [Google Scholar]
- Kyle, P.R.; Cole, J.W. Structural controls of volcanism in the McMurdo Volcanic Group, McMurdo Sound, Antarctica. Bull. Volcanol. 1974, 38, 16–35. [Google Scholar] [CrossRef]
- Storti, F.; Rossetti, F.; Salvini, F. Structural architecture and displacement accommodation mechanisms at the termination of the Priestley Fault, northern Victoria Land, Antarctica. Tectonophysics 2001, 341, 141–161. [Google Scholar] [CrossRef]
- Pertusati, P.C.; Ricci, C.A.; Tessensohn, F. German-Italian Geological Antarctic Map Programme—The Italian Contribution. Introd. Notes Map Case. Terra Antart. Rep 2016, 15, 1–15. [Google Scholar]
- The Scientific Committee on Antarctic Research (SCAR), Geological Mapping Update of Antarctica (GEOMAP). Available online: https://www.scar.org/science/geomap/ (accessed on 26 September 2019).
- Yamaguchi, Y.I.; Fujisada, H.; Kahle, A.B.; Tsu, H.; Kato, M.; Watanabe, H.; Sato, I.; Kudoh, M. ASTER instrument performance, operation status, and application to Earth sciences. IEEE Trans. Geosci. Remote Sens. 2001, 3, 1215–1216. [Google Scholar]
- Fujisada, H. Design and performance of ASTER instrument. Proc. SpeiInt. Soc. Opt. Eng. 1995, 2583, 16–25. [Google Scholar]
- U.S. Geological Survey Earth Resources Observation and Science Center (EROS). Available online: https://glovis.usgs.gov/ (accessed on 2 September 2017).
- Iwasaki, A.; Tonooka, H. Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2747–2751. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. Proceedings of the Geoscience and Remote Sensing Symposium. IEEE Int. 2002, 3, 1414–1418. [Google Scholar]
- Kruse, F.A. Comparison of ATREM, ACORN, and FLAASH Atmospheric Corrections using Low-Altitude AVIRIS Data of Boulder, Colorado. In Proceedings of the Summaries of 13th JPL Airborne Geoscience Workshop, Jet Propulsion Lab, Pasadena, CA, USA, 7 May 2004. [Google Scholar]
- Research Systems, Inc. 2008 ENVI Tutorials; Research Systems, Inc.: Boulder, CO, USA, 2008. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–1194. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.P.; Haritashya, U.K.; Singh, P. Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery. Remote Sens. Environ. 2005, 97, 458–469. [Google Scholar] [CrossRef]
- Boardman, J.W. Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: Mixture tuned matched filtering. Summ. Seventh JPL Airborne Geosci. Workshop JPL Publ. 1998, 97, 55–56. [Google Scholar]
- Chang, C.I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification; Springer Science & Business Media: Berlin, Germany, 2003; p. 1. [Google Scholar]
- Boardman, J.W.; Kruse, F.A. Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4138–4152. [Google Scholar] [CrossRef] [Green Version]
- Kruse, F.A.; Perry, S.L. Regional mineral mapping by extending hyperspectral signatures using multispectral data. IEEE Trans. Geosci. Remote Sens. 2007, 4, 1–14. [Google Scholar]
- Kruse, F.A.; Bordman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef] [Green Version]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Boardman, J.W.; Kruse, F.A. Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada. In Proceedings of the Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, USA, 9–12 May 1994; pp. I-407–I-418. [Google Scholar]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data. Fifth JPL Airborne Earth Sci. Workshop JPL Publ. 1995, 23–26. [Google Scholar]
- Boardman, J.W. Automated spectral unmixing of AVIRIS data using convex geometry concepts. Fourth JPL Airborne Geosci. Workshop JPL Publ. 1993, 11–14. [Google Scholar]
- Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. Man. Remote Sens. 1999, 3, 3–58. [Google Scholar]
- Milliken, R.E.; Mustard, J.F. Estimating the water content of hydrated minerals using reflectance spectroscopy I. Effects of darkening agents and low-albedo materials. Icarus 2007, 189, 550–573. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Klein, A.J. USGS Spectral Library Version 7 (No. 1035); US Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote Sens. Environ. 2019, 230, 1–8. [Google Scholar] [CrossRef]
- Harsanyi, J.C. Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Sequences. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 1993. [Google Scholar]
- Chang, C.I.; Heinz, D.C. Constrained subpixel target detection for remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1144–1159. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.I.; Liu, J.M.; Chieu, B.C.; Ren, H.; Wang, C.M.; Lo, C.S.; Chung, P.C.; Yang, C.W.; Ma, D.J. Generalized constrained energy minimization approach to subpixel target detection for multispectral imagery. Opt. Eng. 2000, 39, 1275–1281. [Google Scholar]
- Jiao, X.; Chang, C.I. Kernel-based constrained energy minimization (K-CEM). In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, Orlando, FL, USA, 16–20 March 2008; Volume 6966, p. 69661S, International Society for Optics and Photonics. [Google Scholar]
- Harsanyi, J.C.; Farrand, W.H.; Chang, C.I. Detection of subpixel signatures in hyperspectral image sequences. In Proceedings of the American Society for Photogrammetry and Remote Sensing (ASPRS) Annual Meeting, Reno, NV, USA, 14 October 1994; pp. 236–247. [Google Scholar]
- Johnson, S. Constrained energy minimization and the target-constrained interference-minimized filter. Opt. Eng. 2003, 42, 1850–1854. [Google Scholar] [CrossRef]
- Hunt, G.R.; Evarts, R.C. The use of near-infrared spectroscopy to determine the degree of serpentinization of ultramafic rocks. Geophysics 1980, 46, 316–321. [Google Scholar] [CrossRef]
- King, T.V.V.; Clark, R.N. Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. J. Geophys. Res. 1989, 94, 13997–14008. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonate volcano, Afghanistan. Geosphere 2011, 7, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Michalski, J.R.; Kraft, M.D.; Sharp, T.G.; Williams, L.B.; Christensen, P.R. Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data. J. Geophys. Res. 2006, 111, E03004. [Google Scholar] [CrossRef]
- Meneghel, M.; Bondesan, A.; Salvatore, M.; Orombelli, G. A model of the glacial retreat of upper Rennick Glacier, Victoria Land, Antarctica. Ann. Glaciol. 1999, 29, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Estrada, S. Amphibolites in the Priestley Formation, northern Victoria Land, Antarctica. Geol. Jahrb. 2003, 95, 153–181. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Rocchi, S.; Di Vincenzo, G.; Ghezzo, C. The Terra Nova Intrusive Complex (Victoria Land, Antarctica). Terra Antart. Rep. 2004, 10, 1–49. [Google Scholar]
- Elliot, D.H. The geological and tectonic evolution of the Transantarctic Mountains: A review. Geol. Soc. Lond. Spec. Publ. 2013, 381, 7–35. [Google Scholar] [CrossRef]
- Schöner, R.; John, N. Sedimentological field investigations on the Takrouna Formation (Permian, Beacon Supergroup) in northern Victoria Land, Antarctica. Polarforschung 2014, 84, 49–58. [Google Scholar]
- John, N. Sedimentology and Composition of the Takrouna Formation, Northern Victoria Land, Antarctica. Provenance, and Depositional Evolution of a Permian Gondwana Basin. Ph.D. Thesis, University of Jena, Jena, Germany, 2014. [Google Scholar]
- Bomfleur, B.; Mörs, T.; Unverfährt, J.; Läufer, A.; Castillo, P.; Oh, C.; Park, T.-Y.S.; Woo, J.; Liu, F.; Crispini, L. New Permian-Jurassic deposits in the far north of Victoria Land, East Antarctica. J. Geol. Soc. 2020. [Google Scholar] [CrossRef]
- Viereck-Goette, L.; Schöner, R.; Bomfleur, B.; Schneider, J. Multiple shallow level sill intrusions coupled with hydromagmatic explosive eruptions marked the initial phase of Ferrar Magmatism in northern Victoria Land, Antarctica. In Antarctica: A Keystone in a Changing World–Online Proceedings of the 10th ISAES; Cooper, A.K., Raymond, C.R., Eds.; USGS Open-File Report; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Wörner, G.; Viereck, L.; Hertogen, J.; Niephaus, H. The Mt. Melboune Volcanic Field (Victoria Land, Antarctica)—II. Geochemistry and magma genesis. Geol. Jahrb. 1989, E38, 395–433. [Google Scholar]
- Porrenga, D.H. Non-marine glauconitic illite in the lower Oligocene of Aardeburg, Belgium. Clay Miner. 1968, 7, 421–430. [Google Scholar] [CrossRef]
- Meunier, A.; El Albani, A. The glauconite-Fe-illite-Fe-smectite problem: A critical review. Terra Nova 2007, 19, 95–104. [Google Scholar] [CrossRef]
- Priestas, A.M.; Wise, S.W. Distribution and origin of authigenic smectite clays in Cape Roberts Project Core 3, Victoria Land Basin, Antarctica. In Proceedings of the 10th International Symposium on Antarctic Earth Sciences, University of California, Santa Barbara, USA, 26 August–1 September 2007. [Google Scholar]
- Stoops, G.; Mees, F. Groundmass Composition and Fabric. In Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 5; pp. 73–125. [Google Scholar] [CrossRef] [Green Version]
- Sparks, D.L. Inorganic Soil Components. In Environmental Soil Chemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; Chapter 2; pp. 43–73. [Google Scholar] [CrossRef]
ASTER Subsystem | Band Number | Spectral Range (μm) | Ground Resolution (m) | Swath Width (km) |
---|---|---|---|---|
VNIR | 1 | 0.52–0.60 | 15 | 60 |
2 | 0.63–0.69 | |||
3N * | 0.78–0.86 | |||
3B * | 0.78–0.86 | |||
SWIR | 4 | 1.600–1.700 | 30 | |
5 | 2.145–2.185 | |||
6 | 2.185–2.225 | |||
7 | 2.235–2.285 | |||
8 | 2.295–2.365 | |||
9 | 2.360–2.430 | |||
TIR | 10 | 8.125–8.475 | 90 | |
11 | 8.475–8.825 | |||
12 | 8.925–9.275 | |||
13 | 10.25–10.95 | |||
14 | 10.95–11.65 |
Granule ID | Date and Time of Acquisitions | Path/Row | Cloud Coverage | Sun Azimuth | Sun Elevation |
---|---|---|---|---|---|
AST_L1T_00312282003214527 | 28 December 2003, 21:45:27 | 65/112 | 6% | 58.348 | 33.033 |
AST_L1T_00301162006215508 | 16 January 2006, 21:55:08 | 64/112 | 4% | 57.069 | 30.462 |
AST_L1T_00301162006215517 | 16 January 2006, 21:55:17 | 64/113 | 5% | 57.653 | 29.882 |
AST_L1T_00312022004211850 | 2 December 2004, 21:18:50 | 63/113 | 5% | 60.569 | 30.616 |
High MF Score Pixels (MTMF) | High Fractional Abundance Pixels (CEM) | |||||
---|---|---|---|---|---|---|
Al-Rich Phyllosilicates | Fe3+-Rich Phyllosilicate | Fe2+-Rich Phyllosilicate | Mg-Rich Phyllosilicate | Totals | User’s Accuracy | |
Al-rich phyllosilicates | 78 | 7 | 3 | 6 | 94 | 83% |
Fe3+-rich phyllosilicate | 8 | 47 | 24 | 17 | 96 | 49% |
Fe2+-rich phyllosilicate | 3 | 21 | 54 | 12 | 90 | 60% |
Mg-rich phyllosilicate | 11 | 25 | 19 | 65 | 120 | 54% |
Totals | 100 | 100 | 100 | 100 | 400 | |
Producer’s Accuracy | 78% | 47% | 54% | 65% | ||
Overall accuracy = 61% | Kappa Coefficient = 0.48 |
High MF Score Pixels (MTMF) | High Fractional Abundance Pixels (CEM) | |||||
---|---|---|---|---|---|---|
Al-Rich Phyllosilicates | Fe3+-Rich Phyllosilicate | Fe2+-Rich Phyllosilicate | Mg-Rich Phyllosilicate | Totals | User’s Accuracy | |
Al-rich phyllosilicates | 86 | 6 | 1 | 2 | 95 | 91% |
Fe3+-rich phyllosilicate | 9 | 66 | 21 | 23 | 119 | 55% |
Fe2+-rich phyllosilicate | 2 | 16 | 54 | 25 | 97 | 56% |
Mg-rich phyllosilicate | 3 | 12 | 24 | 50 | 89 | 56% |
Totals | 100 | 100 | 100 | 100 | 400 | |
Producer’s Accuracy | 86% | 66% | 54% | 50% | ||
Overall accuracy = 64% | Kappa Coefficient = 0.52 |
Coordinate | Location | Mineralogy | |
---|---|---|---|
Lat | Lon | (Formation/Lithology) | (XRD Analysis) |
74°18′00′′ | 162°22′00′′ | O’Kane Canyon (Priestley Schist/Garnet-mica-schist) | Quartz, mica, feldspar, chlorite |
74°21′14′′ | 162°31′31′′ | Eisenhower Range (Priestley Formation/Biotite-rich quartzitic schist) | Biotite, quartz with minor tourmaline, graphite and with mica |
74°37′00′′ | 164°10′00′′ | Gondwana Station Area (Snowy Point Gneiss Complex/Amphibolite) | Mica, hornblende, feldspar, stilbite, chlorite |
74°10′00′′ | 163°04′00′′ | SW Mt. Levick (Priestley Schist/Amphibolite) | Hornblende, feldspar, ±chlorite, quartz, ±mica |
74°22′00′′ | 163°25′00′′ | Lowry Bluff (Priestley Schist/Sillimanite-cordierite schist) | Quartz, hornblende, mica, feldspar |
74°26′42′′ | 162°32′23′′ | Mt. Baxter, Eisenhower Range (Granite Harbour Intrusives/Granite-Granodiorite) | Biotite, quartz, plagioclase, minor k-feldspar, opaques |
74°03′00′′ | 162°00′00′′ | SE Foolsmate Glacier (Priestley Formation/Calcareous quartzitic schist) | Quartz, feldspar, calcite, mica |
74°22′00′′ | 163°25′00′′ | Lowry Bluff (Priestley Schist/Amphibolite) | Hornblende, ±augite, quartz, feldspar, ±chlorite |
74°23′00′′ | 164°05′59′′ | Mt. Dickason, Deep Freeze Range (Migmatite Gneiss/Banded biotite-gneiss, migmatitic) | Quartz, plagioclase, k-feldspar (saussuritic), biotite, opaques (ilmenite-magnetite) |
74°10′00′′ | 163°01′00′′ | SW Mt. Levick (Priestley Schist/Amphibolite) | Hornblende, feldspar, quartz, mica, ± chlorite |
74°18′00′′ | 162°22′00′′ | O’Kane Canyon (Priestley Schist/Quartzite) | Quartz, feldspar, ±mica, ±chlorite |
74°06′57′′ | 162°55′39′′ | Mt. Levick, Deep Freeze Range (Beacon Supergroup/Subarkosic) | Quartz, feldspar, mica, chlorite, lithic grains, opaques, smectite (secondary) |
74°29′00′′ | 164°00′00′′ | Pt. 1300 m, N Mt. Keinath (Priestley Schist/Andalusite schist) | Quartz, mica, feldspar |
74°09′00′′ | 163°03′00′′ | SW Mt. Levick (Priestley Schist/Quartzitic garnet-mica-schist) | Quartz, mica, feldspar, ±chlorite |
74°03′00′′ | 162°00′00′′ | SE Foolsmate Glacier (Priestley Formation/Sericite-Chlorite-Schist) | Quartz, feldspar, mica, chlorite |
74°41′57′′ | 164°05′48′′ | Mario Zucchelli Station (McMurdo Igneous Complex/Mafic dyke) | Feldspar, biotite, quartz, chlorite, talc, Ti-augite, Ti-amphibole, ±olivine, jarosite? |
74°09′00′′ | 163°03′00′′ | SW Mt. Levick (Priestley Schist /Dolomite) | Dolomite, chlorite, calcite, hornblende, mica |
74°18′00′′ | 162°22′00′′ | O’Kane Canyon (Priestley Schist/Mica-schist) | Quartz, mica, ±feldspar, chlorite |
73°22′41′′ | 162°50′46′′ | Mesa Range (Ferrar Supergroup/Tuffaceous siltstone) | Plagioclase, lithic fragments, oxide, altered glass |
74°09′00′′ | 163°03′00′′ | SW Mt. Levick (Priestley Schist/Biotite schist, garnet-biotite schist) | Quartz, mica, feldspar, ±hornblende, ±chlorite |
74°29′00′′ | 164°00′00′′ | Pt. 1300 m, N Mt. Keinath (Priestley Schist/Andalusite-sillimanite schist) | Quartz, mica, feldspar |
74°09′00′′ | 163°03′00′′ | SW Mt. Levick (Priestley Schist/Amphibolite, garnet amphibolite) | Hornblende, feldspar, quartz, ±chlorite, ±calcite, ±mica, ±augite |
74°26′43′′ | 162°35′39′′ | Priestley Glacier, Eisenhower Range (Granite Harbour Intrusives/Granite) | Quartz, k-feldspar, chlorite, minor epidote |
74°22′00′′ | 163°25′00′′ | Lowry Bluff (Priestley Schist/Sillimanite-cordierite schist) | Quartz, hornblende, mica, feldspar |
74°24′59′′ | 162°52′28′′ | Boomerang Glacier, Deep Freeze Range (Priestley Schist/Quartzitic biotite schist) | Quartz, biotite, amphibole with minor k-feldspar, plagioclase, white mica, graphite, secondary calcite |
74°03′00′′ | 162°00′00′′ | SE Foolsmate Glacier (Priestley Formation/Sericite-Chlorite-Biotite-Schist) | Quartz, chlorite, feldspar, mica |
74°37′00′′ | 164°10′00′′ | Gondwana Station area (Snowy Point Gneiss Complex/Biotite-gneiss) | Quartz, mica, feldspar |
74°10′00′′ | 163°04′00′′ | SW Mt. Levick (Priestley Schist/Garnet-biotite schist) | Mica, feldspar, quartz, chlorite |
74°18′00′′ | 162°22′00′′ | O’Kane Canyon (Priestley Schist/Calcareous quartzitic schist) | Quartz, mica, calcite, feldspar |
74°03′00′′ | 162°00′00′′ | SE Foolsmate Glacier (Priestley Formation/Quartzitic schist) | Quartz, feldspar, chlorite, mica |
Remote Sensing Mineral Map | GPS Survey | |||||
---|---|---|---|---|---|---|
Al-Rich Phyllosilicates | Fe3+-Rich Phyllosilicate | Fe2+-Rich Phyllosilicate | Mg-Rich Phyllosilicate | Totals | User’s Accuracy | |
Al-rich phyllosilicates | 26 | 1 | 1 | 0 | 30 | 86.66% |
Fe3+-rich phyllosilicate | 2 | 22 | 4 | 2 | 32 | 68.75% |
Fe2+-rich phyllosilicate | 2 | 4 | 22 | 4 | 30 | 73.33% |
Mg-rich phyllosilicate | 0 | 3 | 3 | 24 | 28 | 85.71% |
Totals | 30 | 30 | 30 | 30 | 120 | |
Producer’s Accuracy | 86.66% | 73.33% | 73.33% | 80% | ||
Overall accuracy = 78.33% | Kappa Coefficient = 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pour, A.B.; Sekandari, M.; Rahmani, O.; Crispini, L.; Läufer, A.; Park, Y.; Hong, J.K.; Pradhan, B.; Hashim, M.; Hossain, M.S.; et al. Identification of Phyllosilicates in the Antarctic Environment Using ASTER Satellite Data: Case Study from the Mesa Range, Campbell and Priestley Glaciers, Northern Victoria Land. Remote Sens. 2021, 13, 38. https://doi.org/10.3390/rs13010038
Pour AB, Sekandari M, Rahmani O, Crispini L, Läufer A, Park Y, Hong JK, Pradhan B, Hashim M, Hossain MS, et al. Identification of Phyllosilicates in the Antarctic Environment Using ASTER Satellite Data: Case Study from the Mesa Range, Campbell and Priestley Glaciers, Northern Victoria Land. Remote Sensing. 2021; 13(1):38. https://doi.org/10.3390/rs13010038
Chicago/Turabian StylePour, Amin Beiranvand, Milad Sekandari, Omeid Rahmani, Laura Crispini, Andreas Läufer, Yongcheol Park, Jong Kuk Hong, Biswajeet Pradhan, Mazlan Hashim, Mohammad Shawkat Hossain, and et al. 2021. "Identification of Phyllosilicates in the Antarctic Environment Using ASTER Satellite Data: Case Study from the Mesa Range, Campbell and Priestley Glaciers, Northern Victoria Land" Remote Sensing 13, no. 1: 38. https://doi.org/10.3390/rs13010038
APA StylePour, A. B., Sekandari, M., Rahmani, O., Crispini, L., Läufer, A., Park, Y., Hong, J. K., Pradhan, B., Hashim, M., Hossain, M. S., Muslim, A. M., & Mehranzamir, K. (2021). Identification of Phyllosilicates in the Antarctic Environment Using ASTER Satellite Data: Case Study from the Mesa Range, Campbell and Priestley Glaciers, Northern Victoria Land. Remote Sensing, 13(1), 38. https://doi.org/10.3390/rs13010038