Analysis of the Occurrence Frequency of Seedable Clouds on the Korean Peninsula for Precipitation Enhancement Experiments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–1535. [Google Scholar]
- WMO. Peer Review Report on Global Precipitation Enhancement Activities; WWRP 2018-1; WMO: Geneva, Switzerland, 2018; pp. 1–129. [Google Scholar]
- Kyoung, M.S.; Kim, H.S.; Sivakumar, B.; Singh, V.P.; Ahn, K.S. Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change. Stoch. Environ. Res. Risk Assess. 2011, 25, 613–625. [Google Scholar] [CrossRef]
- Choi, K.S.; Kim, D.W.; Byun, H.R. Possible impact of spring sea ice anomaly in the North Pacific on the Korean summer drought. Asia-Pac. J. Atmos. Sci. 2009, 45, 331–346. [Google Scholar]
- Barlow, M.; Cullen, H.; Lyon, B. Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Clim. 2002, 15, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.B.; Giarolla, E.; Kayano, M.T.; Franchito, S.H. Is the recent increasing trend of rainfall over northeast Brazil related to sub-Saharan drought? J. Clim. 2006, 19, 4448–4453. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Chang, K.H.; Jung, J.W.; Cha, J.W.; Choi, Y.J.; Kim, K. Strategy for the meteorological and environmental airborne observations over the Korean Peninsula. Asia-Pac. J. Atmos. Sci. 2011, 47, 91–96. [Google Scholar] [CrossRef]
- Baik, J.; Choi, M. Spatio-temporal variability of remotely sensed precipitation data from COMS and TRMM: Case study of Korean peninsula in East Asia. Adv. Space Res. 2015, 56, 1125–1138. [Google Scholar] [CrossRef]
- Bruintjes, R.T. A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Am. Meteorol. Soc. 1999, 80, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Korneev, V.P.; Potapov, E.I.; Shchukin, G.G. Environmental aspects of cloud seeding. Russ. Meteorol. Hydrol. 2017, 42, 477–483. [Google Scholar] [CrossRef]
- Silverman, B.A. A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement. Bull. Am. Meteorol. Soc. 2001, 82, 903–924. [Google Scholar] [CrossRef]
- Griffith, D.A.; Solak, M.E. Economic feasibility assessment of winter cloud seeding in the Boise River drainage, Idaho. J. Weather Modif. 2018, 34, 39–46. [Google Scholar]
- Griffith, D.A.; Solak, M.E.; Yorty, D.P.; Brinkman, B. A level II weather modification feasibility study for winter snowpack augmentation in the Salt River and Wyoming ranges in Wyoming. J. Weather Modif. 2007, 39, 76–83. [Google Scholar]
- Bangsund, D.; Leistritz, F.L. Economic Impacts of Cloud Seeding on Agricultural Crops in North Dakota; Report for North Dakota Atmospheric Resource Board; NDSU: Bismarck, ND, USA, 2009; pp. 1–37. [Google Scholar]
- Ma, J.; Guo, X.; Zhao, C.; Zhang, Y.; Hu, Z. Recent progress in cloud physics research in China. Adv. Atmos. Sci. 2007, 24, 1121–1137. [Google Scholar] [CrossRef]
- Morrison, A.E.; Siems, S.T.; Manton, M.J.; Nazarov, A. On the analysis of a cloud seeding dataset over Tasmania. J. Appl. Meteorol. Climatol. 2009, 48, 1267–1280. [Google Scholar] [CrossRef]
- Manton, M.J.; Warren, L.; Kenyon, S.L.; Peace, A.D.; Bilish, S.P.; Kemsley, K. A confirmatory snowfall enhancement project in the snowy mountains of Australia. Part I: Project design and response variables. J. Appl. Meteorol. Climatol. 2011, 50, 1432–1447. [Google Scholar] [CrossRef]
- Manton, M.J.; Warren, L. A confirmatory snowfall enhancement project in the Snowy Mountains of Australia. Part II: Primary and associated analyses. J. Appl. Meteorol. Climatol. 2011, 50, 1448–1458. [Google Scholar] [CrossRef]
- Colorado Water Conservation Board (CWCB). Inventory and Assessment of Colorado Weather Modification Programs: A Summary of Current Programs and Opportunities for Enhancements; CWCB Reports; Colorado Water Conservation Board: Denver, CO, USA, 2015; pp. 1–300.
- Lee, C.; Chang, K.H.; Cha, J.W.; Jung, J.W.; Jeong, J.Y.; Yang, H.Y.; Seo, S.K.; Bae, J.Y.; Kang, S.Y.; Choi, Y.J.; et al. Estimation for the economic benefit of weather modification (Precipitation enhancement and fog dissipation). Atmosphere 2010, 20, 187–194, (In Korean with English abstract). [Google Scholar]
- Cha, J.W.; Jung, W.; Chae, S.; Ko, A.R.; Ro, Y.; Chang, K.H.; Seo, S.; Ha, J.C.; Park, D.; Hwang, H.J.; et al. Analysis of results and techniques about precipitation enhancement by aircraft seeding in Korea. Atmosphere 2019, 29, 481–499, (In Korean with English abstract). [Google Scholar]
- Guo, X.L.; Fu, D.H.; Li, X.Y.; Hu, Z.X.; Lei, H.C.; Xiao, H.; Hong, Y.C. Advances in cloud physics and weather modification in China. Adv. Atmos. Sci. 2015, 32, 230–249. [Google Scholar] [CrossRef]
- Seto, J.; Tomine, K.; Wakimizu, K.; Nishiyama, K. Artificial cloud seeding using liquid carbon dioxide: Comparisons of experimental data and numerical analyses. J. Appl. Meteorol. Climatol. 2011, 50, 1417–1431. [Google Scholar] [CrossRef]
- Chae, S.; Chang, K.H.; Seo, S.; Jeong, J.Y.; Kim, B.J.; Kim, C.K.; Yum, S.S.; Kim, J. Numerical Simulations of airborne glaciogenic cloud seeding using the WRF model with the modified morrison scheme over the Pyeongchang Region in the winter of 2016. Adv. Meteorol. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Yu, X.; Dai, J. Satellite-retrieved microstructure of AgI seeding tracks in supercooled layer clouds. J. Appl. Meteorol. 2005, 44, 760–767. [Google Scholar] [CrossRef]
- Geerts, B.; Pokharel, B.; Kristovich, D.A. Blowing snow as a natural glaciogenic cloud seeding mechanism. Mon. Weather Rev. 2015, 143, 5017–5033. [Google Scholar] [CrossRef]
- Tessendorf, S.A.; French, J.R.; Friedrich, K.; Geerts, B.; Rauber, R.M.; Rasmussen, R.M.; Xue, L.; Ikeda, K.; Blestrud, D.R.; Kunker, M.L.; et al. A transformational approach to winter orographic weather modification research: The SNOWIE Project. Bull. Am. Meteorol. Soc. 2019, 100, 71–92. [Google Scholar] [CrossRef]
- Koshida, T.; Murakami, M.; Yoshida, K.; Fujibe, F.; Takahashi, K. Assessment of clouds suitable for summertime precipitation augmentation over Shikoku Island. SOLA 2012, 8, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Morrison, A.E.; Siems, S.T.; Manton, M.J. On a natural environment for glaciogenic cloud seeding. J. Appl. Meteorol. Climatol. 2013, 52, 1097–1104. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). WMO Weather Modification Statement and Guidelines (updated in the ET meeting in Abu Dhabi. 22–24 March 2010). Available online: https://www.wmo.int/pages/prog/arep/wwrp/new/documents/WMR_documents.final_27_April_1.FINAL.pdf (accessed on 10 March 2020).
- Choi, Y.S.; Ho, C.H.; Ahn, M.H.; Kim, Y.M. An exploratory study of cloud remote sensing capabilities of the Communication, Ocean and Meteorological Satellite (COMS) Imagery. Int. J. Remote Sens. 2007, 28, 4715–4732. [Google Scholar] [CrossRef]
- Kim, H.D.; Kang, G.S.; Lee, D.K.; Jin, K.W.; Seo, S.B.; Oh, H.J.; Ryu, J.H.; Lambert, H.; Laine, I.; Meyer, P.; et al. COMS, the new eyes in the sky for geostationary remote sensing. Remote Sens.–Adv. Tech. Platf. 2012, 235–268. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.Y.; Lee, K.T. Radiation Component Calculation and Energy Budget Analysis for the Korean Peninsula Region. Remote Sens. 2018, 10, 1147. [Google Scholar] [CrossRef] [Green Version]
- National Meteorology Satellite Center (NMSC). Algorithm Theoretical Basis Document for Cloud Amount; NMSC/SCI/ATBD/CA Issue 1, Rev. 4; National Meteorology Satellite Center: Beijing, China, 2012; pp. 1–22. [Google Scholar]
- Heidinger, A.K.; Evan, A.T.; Foster, M.J.; Walther, A. A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteorol. Climatol. 2012, 51, 1129–1144. [Google Scholar] [CrossRef]
- NIMS. Advanced Research on Applied Meteorology (II); No. 11-1360000-001128-10; Korea Meteorological Agency: Seoul, Korea, 2014; pp. 1–223, (In Korean with English abstract).
- Young, K.C. Microphysical Processes in Clouds; Oxford University Press: Oxford, UK, 1993; pp. 1–427. [Google Scholar]
- Guo, X.; Zheng, G. Advances in weather modification from 1997 to 2007 in China. Adv. Atmos. Sci. 2009, 26, 240–252. [Google Scholar] [CrossRef]
- Orville, H.D. A review of cloud modeling in weather modification. Bull. Am. Meteorol. Soc. 1996, 77, 1535–1556. [Google Scholar] [CrossRef] [Green Version]
- Woodley, W.L.; Rosenfeld, D.; Silverman, B.A. Results of on-top glaciogenic cloud seeding in Thailand. Part I: The demonstration experiment. J. Appl. Meteorol. 2003, 42, 920–938. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Axisa, D.; Woodley, W.L.; Lahav, R. A quest for effective hygroscopic cloud seeding. J. Appl. Meteorol. Climatol. 2010, 49, 1548–1562. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. ISCCP cloud data products. Bull. Am. Meteorol. Soc. 1991, 72, 2–20. [Google Scholar] [CrossRef]
- National Meteorology Satellite Center (NMSC). Cloud Detection (CLD) Algorithm Theoretical Basis Document; NMSC/SCI/ATBD/CLD, Issue 1, Rev. 0; National Meteorology Satellite Center: Beijing, China, 2012; pp. 1–28. [Google Scholar]
- National Meteorology Satellite Center (NMSC). CP Algorithm Theoretical Basis Document; NMSC/SCI/ATBD/CP, Issue 1, Rev. 4; National Meteorology Satellite Center: Beijing, China, 2012; pp. 1–22. [Google Scholar]
- National Meteorology Satellite Center (NMSC). COT Algorithm Theoretical Basis Document; NMSC/SCI/ATBD/COT, Issue 1, Rev. 4; National Meteorology Satellite Center: Beijing, China, 2012; pp. 1–43. [Google Scholar]
- National Meteorology Satellite Center (NMSC). CTTP Algorithm Theoretical Basis Document; NMSC/SCI/ATBD/CTTP, Issue 1, Rev. 5; National Meteorology Satellite Center: Beijing, China, 2012; pp. 1–40. [Google Scholar]
- National Meteorology Satellite Center (NMSC). Rainfall Intensity (RI) Basis Document; NMSC/SCI/ATBD/RI, Issue 1, Rev. 0; National Meteorology Satellite Center: Beijing, China, 2012; pp. 1–22. [Google Scholar]
- Kim, B.Y.; Lee, K.T.; Jee, J.B.; Zo, I.S. Retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI data. Remote Sens. Environ. 2018, 204, 498–508. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, B.Y.; Lee, K.T.; Zo, I.S.; Jung, H.S.; Rim, S.H. Retrieval of reflected shortwave radiation at the top of the atmosphere using Himawari-8/AHI data. Remote Sens. 2018, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.Y.; Lee, K.T. Using the himawari-8 ahi multi-channel to improve the calculation accuracy of outgoing longwave radiation at the top of the atmosphere. Remote Sens. 2019, 11, 589. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Vasilkov, A.; Bhartia, P.K.; Wind, G.; Platnick, S.; Menzel, W.P. Detection of multilayer and vertically extended clouds using the A-Train sensors. Atmos. Meas. Tech. 2010, 3, 233–247. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.K.; Yum, S.S.; Park, Y.S. A numerical study of winter orographic seeding experiments in Korea using the Weather Research and Forecasting model. Meteorol. Atmos. Phys. 2016, 128, 23–38. [Google Scholar] [CrossRef]
- Ito, J.; Niino, H. Atmospheric Kármán Vortex Shedding from Jeju Island, East China Sea: A Numerical Study. Mon. Weather Rev. 2016, 144, 139–148. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, 1–47. [Google Scholar] [CrossRef]
- Watson, C.D.; Lane, T.P. Further sensitivities of orographic precipitation to terrain geometry in idealized simulations. J. Atmos. Sci. 2014, 71, 3068–3089. [Google Scholar] [CrossRef]
- Geerts, B.; Yang, Y.; Rasmussen, R.; Haimov, S.; Pokharel, B. Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual Doppler radar data. Mon. Weather Rev. 2015, 143, 644–665. [Google Scholar] [CrossRef] [Green Version]
- French, J.R.; Friedrich, K.; Tessendorf, S.A.; Rauber, R.M.; Geerts, B.; Rasmussen, R.M.; Xue, L.; Kunkel, M.L.; Blestrud, D.R. Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA 2018, 115, 1168–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Rossow, W.B. Detection of cirrus overlapping low-level clouds. J. Geophys. Res. Atmos. 1997, 102, 1727–1737. [Google Scholar] [CrossRef]
- Cotton, W.D.; Pielke, R.A. Human Impacts on Weather and Climate, 2nd ed.; Cambridge University Press: Cambridge, UK, 2007; pp. 1–330. [Google Scholar]
- Yoshida, Y.; Murakami, M.; Kurumisawa, Y.; Kato, T.; Hashimoto, A.; Yamazaki, T.; Haneda, N. Evaluation of snow augmentation by cloud seeding for drought mitigation. J. Jpn. Soc. Hydrol. Water Resour. 2009, 22, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Manton, M.J.; Peace, A.D.; Kemsley, K.; Kenyon, S.; Speirs, J.C.; Warren, L.; Denholm, J. Further analysis of a snowfall enhancement project in the snowy mountains of Australia. Atmos. Res. 2017, 193, 192–203. [Google Scholar] [CrossRef]
- Rasmussen, R.M.; Tessendorf, S.A.; Xue, L.; Weeks, C.; Ikeda, K.; Landolt, S.; Breed, D.; Deshler, T.; Lawrence, B. Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling. J. Appl. Meteorol. Climatol. 2018, 57, 2639–2660. [Google Scholar] [CrossRef] [Green Version]
- Mulyana, E.; Bahri, S. Recent progress in precipitation enhancement research. In Proceedings of the International Symposium on Weather Modification, Tsukuba, Japan, 3–4 March 2011. [Google Scholar]
Ac | As | Ns | Cu | Sc | St | N | ||
---|---|---|---|---|---|---|---|---|
Winter | Freq. | 5.04 | 15.04 | 0.03 | 17.44 | 62.39 | 0.07 | 2,037,643 |
CTH | 3.36 | 3.13 | 3.35 | 2.40 | 2.25 | 2.37 | ||
CTT | −11.48 | −7.89 | −6.67 | −7.72 | −7.33 | −6.05 | ||
Spring | Freq. | 8.83 | 18.93 | 0.03 | 13.43 | 58.78 | <0.01 | 2,496,801 |
CTH | 3.53 | 3.25 | 3.33 | 2.61 | 2.37 | 2.48 | ||
CTT | −7.89 | −5.15 | −2.32 | −5.01 | −1.48 | −0.50 | ||
Summer | Freq. | 4.84 | 11.48 | <0.01 | 13.36 | 70.32 | <0.01 | 2,270,728 |
CTH | 3.55 | 3.24 | 2.74 | 2.48 | 2.31 | 2.36 | ||
CTT | 5.56 | 6.15 | 10.97 | 10.78 | 11.29 | 14.74 | ||
Fall | Freq. | 8.28 | 12.98 | 0.02 | 18.95 | 59.75 | 0.02 | 1,743,879 |
CTH | 3.52 | 3.19 | 3.06 | 2.50 | 2.27 | 2.64 | ||
CTT | −1.69 | −0.20 | −0.99 | 2.65 | 3.50 | −1.03 |
Water Phase | Ice Phase | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ac | As | Ns | Cu | Sc | St | N | Ac | As | Ns | Cu | Sc | St | N | ||
Winter | Freq. | 0.47 | 12.85 | 0.03 | 13.23 | 73.33 | 0.09 | 1,386,094 | 14.75 | 19.69 | 0.03 | 26.39 | 39.12 | 0.03 | 651,549 |
CTH | 3.26 | 3.07 | 3.20 | 2.06 | 2.14 | 2.42 | 3.45 | 3.39 | 3.67 | 2.71 | 2.48 | 1.84 | |||
CTT | −2.72 | −2.45 | −2.88 | −1.61 | −1.86 | −2.15 | −12.13 | −10.40 | −7.77 | −11.14 | −11.30 | −9.46 | |||
Spring | Freq. | 2.84 | 16.99 | 0.04 | 10.13 | 70.01 | <0.01 | 1,792,845 | 24.08 | 23.87 | 0.01 | 21.86 | 30.18 | <0.01 | 703,956 |
CTH | 3.54 | 3.22 | 3.33 | 2.29 | 2.26 | 2.47 | 3.58 | 3.49 | 3.63 | 2.94 | 2.76 | 3.19 | |||
CTT | −2.22 | 0.25 | −1.46 | 0.84 | 2.95 | 3.94 | −10.31 | −11.29 | −8.88 | −10.22 | −11.26 | −6.28 | |||
Summer | Freq. | 1.65 | 11.23 | <0.01 | 10.65 | 76.47 | <0.01 | 2,056,296 | 35.39 | 13.85 | - | 39.44 | 11.31 | - | 214,432 |
CTH | 3.53 | 3.22 | 2.71 | 2.32 | 2.28 | 2.36 | 3.62 | 3.64 | - | 2.89 | 2.93 | - | |||
CTT | 3.98 | 6.14 | 11.21 | 11.23 | 11.41 | 14.74 | −5.74 | −5.57 | - | −5.78 | −6.02 | - | |||
Fall | Freq. | 4.32 | 12.13 | 0.02 | 16.43 | 67.09 | 0.02 | 1,497,370 | 32.31 | 18.18 | 0.02 | 34.27 | 15.20 | 0.03 | 246,509 |
CTH | 3.51 | 3.15 | 3.04 | 2.36 | 2.22 | 2.58 | 3.63 | 3.58 | 3.56 | 2.84 | 2.85 | 3.07 | |||
CTT | −0.05 | 2.62 | 2.83 | 3.75 | 5.31 | 3.40 | −7.91 | −8.65 | −11.73 | −8.30 | −9.54 | −9.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-Y.; Cha, J.W.; Ko, A.-R.; Jung, W.; Ha, J.-C. Analysis of the Occurrence Frequency of Seedable Clouds on the Korean Peninsula for Precipitation Enhancement Experiments. Remote Sens. 2020, 12, 1487. https://doi.org/10.3390/rs12091487
Kim B-Y, Cha JW, Ko A-R, Jung W, Ha J-C. Analysis of the Occurrence Frequency of Seedable Clouds on the Korean Peninsula for Precipitation Enhancement Experiments. Remote Sensing. 2020; 12(9):1487. https://doi.org/10.3390/rs12091487
Chicago/Turabian StyleKim, Bu-Yo, Joo Wan Cha, A-Reum Ko, Woonseon Jung, and Jong-Chul Ha. 2020. "Analysis of the Occurrence Frequency of Seedable Clouds on the Korean Peninsula for Precipitation Enhancement Experiments" Remote Sensing 12, no. 9: 1487. https://doi.org/10.3390/rs12091487
APA StyleKim, B.-Y., Cha, J. W., Ko, A.-R., Jung, W., & Ha, J.-C. (2020). Analysis of the Occurrence Frequency of Seedable Clouds on the Korean Peninsula for Precipitation Enhancement Experiments. Remote Sensing, 12(9), 1487. https://doi.org/10.3390/rs12091487