Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Methods
2.2.1. Reconstruction of High-quality NDPI Curves
2.2.2. Development of the PT-DTW Method
Classical DTW Algorithm
Logistic Time Penalty
PT-DTW
2.2.3. Determination of PT-DTW Parameters
2.2.3.1. Collection of Samples and Determination of the NDPI Reference Curve for Winter Wheat
2.2.3.2. Sample Set Expansion by Using an LSM Model
2.2.3.3. Parameter Optimization
2.2.4. Winter Wheat Mapping and Accuracy Assessment
3. Results
3.1. Sentinel 2-Derived Winter Wheat Map for 2017–2018 by PT-DTW Method
3.2. Quantitative Evaluation
3.3. Comparison of Spatial Details
4. Discussion
4.1. Superiority of NDPI
4.2. Benefits of the PT-DTW Method
4.3. Transferability of PT-DTW Method
4.4. Influence of Cloud Contamination
4.5. Limitations of the PT-DTW Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Jin, S. Wheat in China; China Agricultural Press: Beijing, China, 1996; pp. 2–5. [Google Scholar]
- Fan, L.; Liang, S.; Chen, H.; Hu, Y.; Zhang, X.; Liu, Z.; Wu, W.; Yang, P. Spatio-temporal analysis of the geographical centroids for three major crops in China from 1949 to 2014. J. Geogr. Sci. 2018, 28, 1672–1684. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, X.; Tan, M.; Xin, L. Remote sensing monitoring of changes in winter wheat area in North China Plain from 2001 to 2011. Trans. Chin. Soc. Agric. Eng. 2015, 31, 190–199. [Google Scholar]
- Jia, K.; Wu, B.; Li, Q. Crop classification using HJ satellite multispectral data in the North China Plain. J. Appl. Remote Sens. 2013, 7, 573–576. [Google Scholar] [CrossRef]
- Chu, L.; Liu, Q.-S.; Huang, C.; Liu, G.-H. Monitoring of winter wheat distribution and phenological phases based on MODIS time-series: A case study in the Yellow River Delta, China. J. Integr. Agric. 2016, 15, 2403–2416. [Google Scholar] [CrossRef]
- Liang, Y.; Wan, J. Application of HJ-1A/B-CCD Images in Extracting the Distribution of Winter Wheat and Rape in Hubei Province. Chin. J. Agrometeorol. 2012, 33, 573–578. [Google Scholar]
- Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sens. Environ. 2012, 119, 232–242. [Google Scholar] [CrossRef]
- Sun, H.; Xu, A.; Lin, H.; Zhang, L.; Mei, Y. Winter wheat mapping using temporal signatures of MODIS vegetation index data. Int. J. Remote Sens. 2012, 33, 5026–5042. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, F.; Qin, F. Identification and mapping of winter wheat by integrating temporal change information and Kullback–Leibler divergence. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 26–39. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Shuai, G.; Yu, Q. Winter wheat mapping by soft and hard land use/cover change detection. J. Remote. Sens. 2014, 18, 476–496. [Google Scholar]
- Li, L.; Zhang, J.-S.; Zhu, W.-Q.; Hu, T.-G.; Hou, D. Winter Wheat Area Estimation with MODIS-NDVI Time Series Based on Parcel. Guang Pu Xue Yu Guang Pu Fen Xi 2011, 31, 1379–1383. [Google Scholar]
- Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral–temporal profiles and phenological information. Comput. Electron. Agric. 2012, 89, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Luo, Y.; Tang, Z.; Chen, C.; Lu, D.; Huang, H.; Chen, Y.; Chen, N.; Xu, W. Winter wheat mapping combining variations before and after estimated heading dates. ISPRS-J. Photogramm. Remote Sens. 2017, 123, 35–46. [Google Scholar] [CrossRef]
- Siebert, S.; Ewert, F. Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agric. For. Meteorol. 2012, 152, 44–57. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Wardlow, B.; Egbert, S.; Kastens, J. Analysis of Time-Series MODIS 250 m Vegetation Index Data for Crop Classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, J.; Wu, J.; Tang, Y.; Shi, P.; Black, T.A.; Zhu, K. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 2017, 196, 1–12. [Google Scholar] [CrossRef]
- Tao, J.-b.; Wu, W.-b.; Zhou, Y.; Wang, Y.; Jiang, Y. Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data. J. Integr. Agric. 2017, 16, 348–359. [Google Scholar] [CrossRef]
- Zhou, Y.; Qiu, F. Fusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis. ISPRS-J. Photogramm. Remote Sens. 2015, 101, 221–232. [Google Scholar] [CrossRef]
- Sakoe, H.; Chiba, S. Dynamic-programming algorithm optimization for spoken word recognition. IEEE Trans. Signal Process. 1978, 26, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Costa, W.S.; Fonseca, L.M.G.; Körting, T.S.; Bendini, H.d.N.; Souza, R.C.M.d. Spatio-Temporal Segmentation Applied to Optical Remote Sensing Image Time Series. IEEE Geosci. Remote. Sens. Lett. 2018, 15, 1299–1303. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gancarski, P. Satellite Image Time Series Analysis under Time Warping. IEEE Trans. Geosci. Remote. Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Weber, J.; Petitjean, F.; Ganarski, P. Towards efficient satellite image time series analysis: Combination of dynamic time warping and quasi-flat zones. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4387–4390. [Google Scholar] [CrossRef]
- Xue, Z.; Du, P.; Feng, L. Phenology-Driven Land Cover Classification and Trend Analysis Based on Long-term Remote Sensing Image Series. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 1142–1156. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gancarski, P. Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5426–5429. [Google Scholar] [CrossRef]
- Maus, V.; Câmara, G.; Souza, R.; Sanchez, A.; Ramos, F.; Queiroz, G. A Time-Weighted Dynamic Time Warping Method for Land-Use and Land-Cover Mapping. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Guan, X.; Huang, C.; Liu, G.; Meng, X.; Liu, Q. Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance. Remote Sens. 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Maus, V.; Câmara, G.; Cartaxo, R.; Ramos, F.M.; Sanchez, A.; Ribeiro, G.Q. Open boundary dynamic time warping for satellite image time series classification. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3349–3352. [Google Scholar]
- Petitjean, F.; Puissant, A.; Gancarski, P. Monitoring urban sprawl from satellite image time series. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5963–5966. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Z.; Chen, J.; Yang, W.; Yao, Y.; Zhang, C.; Cui, X.; Cao, X. Replacing the Red Band with the Red-SWIR Band (0.74ρred+0.26ρswir) Can Reduce the Sensitivity of Vegetation Indices to Soil Background. Remote Sens. 2019, 11, 851. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Chen, Z.; Zhou, Q.; Tang, H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth. Obs. Geoinf. 2008, 10, 403–413. [Google Scholar] [CrossRef]
- Yu, Z.; Tian, Q.; Pan, Q.; Yue, S.; Wang, D.; Duan, Z.; Duan, L.; Wang, Z.; Niu, Y. Theory and Practice on Cultivation of Super High Yield of Winter Wheat in the Wheat Fields of Yellow River and Huaihe River Districts. Zuo Wu Xue Bao 2002, 28, 577–585. [Google Scholar]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Chen, J.; Yuan Zhang, M.; Wang, L.; Shimazaki, H.; Tamura, M. A new index for mapping lichen-dominated biological soil crusts in desert areas. Remote Sens. Environ. 2005, 96, 165–175. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, D.; Chen, J.; Cui, X. A new index for mapping the ‘blue steel tile’ roof dominated industrial zone from Landsat imagery. Remote Sens. Lett. 2018, 9, 578–586. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of forests using mid-nir reflectance—An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- The Implementation Plan of Agricultural Project for Comprehensive Management of Groundwater Overexploitation in Hebei Province; Department of Agriculture and Rural Affairs of Hebei Province: Shijiazhuang, China, 2016.
- The Implementation Plan of Hebei Province’s Seasonal Fallow System in 2016; Department of Agriculture and Rural Affairs of Hebei Province: Shijiazhuang, China, 2016.
- Song, Y.; Wang, J. Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using Sentinel-1 Backscatter Time Series. Remote Sens. 2019, 11, 449. [Google Scholar] [CrossRef] [Green Version]
Spatial Resolution (m) | Band Number | S2A | S2B | ||
---|---|---|---|---|---|
Central Wavelength (nm) | Bandwidth (nm) | Central Wavelength (nm) | Bandwidth (nm) | ||
10 | 4 | 664.6 | 31 | 664.9 | 31 |
10 | 8 | 832.8 | 106 | 832.9 | 106 |
20 | 11 | 1613.7 | 91 | 1610.4 | 94 |
Reference Samples | Sentinel 2 NDPI Classification | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PT-DTW | TWDTW | CBAH | KLD | |||||||||
Winter Wheat | Others | PA (%) | Winter Wheat | Others | PA (%) | Winter Wheat | Others | PA (%) | Winter Wheat | Others | PA(%) | |
Winter wheat | 25,066 | 2603 | 90.6 | 24,090 | 3579 | 87.1 | 25,103 | 2566 | 90.7 | 18,415 | 9254 | 66.6 |
Others | 3634 | 30,936 | 89.5 | 8547 | 26,023 | 75.3 | 4954 | 29,616 | 85.7 | 6520 | 28,050 | 81.1 |
UA (%) | 87.3 | 92.2 | 73.8 | 87.9 | 83.5 | 92.0 | 73.9 | 75.2 | ||||
OA (%) | 89.9 | 80.5 | 87.9 | 74.7 | ||||||||
Kappa | 0.798 | 0.612 | 0.757 | 0.482 |
Simulated Samples | Visually Interpreted Samples | |||||
---|---|---|---|---|---|---|
Euc-dist | TWDTW | PT-DTW | Euc-dist | TWDTW | PT-DTW | |
M | 0.7206 | 0.7908 | 1.1532 | 0.7131 | 0.7548 | 1.0251 |
|μw − μo| | 0.0867 | 0.0929 | 0.1515 | 0.0787 | 0.0722 | 0.1261 |
σw | 0.0437 | 0.0264 | 0.0266 | 0.0477 | 0.0251 | 0.0332 |
σo | 0.0766 | 0.0910 | 0.1048 | 0.0628 | 0.0705 | 0.0898 |
OA | 82.04% | 83.83% | 92.85% | 76.92% | 80.52% | 89.98% |
PT-DTW Detected | |||||||
---|---|---|---|---|---|---|---|
Unchanged Winter Wheat | Unchanged others | Winter Wheat Gain | Winter Wheat Loss | Total | UA | ||
Reference samples | Unchanged winter wheat | 817 | 0 | 53 | 3 | 873 | 93.58% |
Unchanged others | 0 | 946 | 0 | 0 | 946 | 100% | |
Winter wheat gain | 23 | 74 | 879 | 2 | 978 | 89.87% | |
Winter wheat loss | 0 | 85 | 0 | 904 | 989 | 91.40% | |
Total | 840 | 1,105 | 932 | 909 | 3,786 | ||
PA | 97.26% | 85.61% | 94.31% | 99.44% | |||
OA | 93.66% | ||||||
Kappa | 0.9154 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Q.; Chen, X.; Chen, J.; Zhang, C.; Liu, L.; Cao, X.; Zang, Y.; Zhu, X.; Cui, X. Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping. Remote Sens. 2020, 12, 1274. https://doi.org/10.3390/rs12081274
Dong Q, Chen X, Chen J, Zhang C, Liu L, Cao X, Zang Y, Zhu X, Cui X. Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping. Remote Sensing. 2020; 12(8):1274. https://doi.org/10.3390/rs12081274
Chicago/Turabian StyleDong, Qi, Xuehong Chen, Jin Chen, Chishan Zhang, Licong Liu, Xin Cao, Yunze Zang, Xiufang Zhu, and Xihong Cui. 2020. "Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping" Remote Sensing 12, no. 8: 1274. https://doi.org/10.3390/rs12081274
APA StyleDong, Q., Chen, X., Chen, J., Zhang, C., Liu, L., Cao, X., Zang, Y., Zhu, X., & Cui, X. (2020). Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping. Remote Sensing, 12(8), 1274. https://doi.org/10.3390/rs12081274