Crop Separability from Individual and Combined Airborne Imaging Spectroscopy and UAV Multispectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Feature Extraction
2.3.2. Creation of Feature Settings
2.3.3. Splitting of Feature Settings
2.3.4. Calculation of Feature Importance
2.3.5. Training of RF Model
2.3.6. Crop Separation
2.3.7. Accuracy Assessment
3. Results
3.1. Feature Selection
3.2. RF Model
3.3. Sensor Data Combination
4. Discussion
4.1. Feature Selection
4.2. RF Model
4.3. Comparison of Sensor Data Settings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azar, R.; Villa, P.; Stroppiana, D.; Crema, A.; Boschetti, M.; Brivio, P.A. Assessing in-season crop classification performance using satellite data: A test case in Northern Italy. Eur. J. Remote Sens. 2016, 49, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Ozdarici-Ok, A.; Ok, A.; Schindler, K. Mapping of Agricultural Crops from Single High-Resolution Multispectral Images–Data-Driven Smoothing vs. Parcel-Based Smoothing. Remote Sens. 2015, 7, 5611–5638. [Google Scholar] [CrossRef] [Green Version]
- Inglada, J.; Arias, M.; Tardy, B.; Morin, D.; Valero, S.; Hagolle, O.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P. Benchmarking of algorithms for crop type land-cover maps using Sentinel-2 image time series. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 3993–3996. [Google Scholar] [CrossRef]
- Waldhoff, G.; Lussem, U.; Bareth, G. Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 55–69. [Google Scholar] [CrossRef]
- Bundesrat, D.S. Verordnung über die Direktzahlungen an die Landwirtschaft; The Swiss Federal Council: Berne, Switzerland, 2017; Volume 2013, pp. 1–152. [Google Scholar]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.; Lobell, D.B. Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proc. Natl. Acad. Sci. USA 2017, 114, 2189–2194. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Ouzemou, J.-E.; El Harti, A.; Lhissou, R.; El Moujahid, A.; Bouch, N.; El Ouazzani, R.; Bachaoui, E.M.; El Ghmari, A. Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sens. Appl. Soc. Environ. 2018, 11, 94–103. [Google Scholar] [CrossRef]
- Vuolo, F.; Neugebauer, N.; Bolognesi, S.; Atzberger, C.; D’Urso, G. Estimation of Leaf Area Index Using DEIMOS-1 Data: Application and Transferability of a Semi-Empirical Relationship between two Agricultural Areas. Remote Sens. 2013, 5, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Whitcraft, A.K.; Becker-Reshef, I.; Killough, B.D.; Justice, C.O. Meeting earth observation requirements for global agricultural monitoring: An evaluation of the revisit capabilities of current and planned moderate resolution optical earth observing missions. Remote Sens. 2015, 7, 1482–1503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, Y.; Abbott, A.L.; Wynne, R.H.; Hu, Z.; Zou, Y.; Tian, S. Automated mapping of typical cropland strips in the North China Plain using small Unmanned Aircraft Systems (sUAS) photogrammetry. Remote Sens. 2019, 11, 2343. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Shi, Y.; Liu, B.; Hovis, C.; Duan, Y.; Shi, Z. Finer Classification of Crops by Fusing UAV Images and Sentinel-2A Data. Remote Sens. 2019, 11, 3012. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Deng, D.; Liu, L.; Zhu, Z. Application of UAV-Based Multi-Angle Hyperspectral Remote Sensing in Fine Vegetation Classification. Remote Sens. 2019, 11, 2753. [Google Scholar] [CrossRef] [Green Version]
- Aneece, I.; Thenkabail, P. Accuracies Achieved in Classifying Five Leading World Crop Types and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral Narrowbands on Google Earth Engine. Remote Sens. 2018, 10, 2027. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Mohammed, I.A. Hyperspectral remote sensing of vegetation and agricultural crops. Photogramm. Eng. Remote Sens. 2014, 80, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–330. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F. Selection of hyperspectral narrowbands (hnbs) and composition of hyperspectral twoband vegetation indices (HVIS) for biophysical characterization and discrimination of crop types using field reflectance and hyperion/EO-1 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Hank, T.B.; Berger, K.; Bach, H.; Clevers, J.G.P.W.; Gitelson, A.; Zarco-Tejada, P.; Mauser, W. Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. Surv. Geophys. 2019, 40, 515–551. [Google Scholar] [CrossRef] [Green Version]
- Diek, S.; Chabrillat, S.; Nocita, M.; Schaepman, M.E.; de Jong, R. Minimizing soil moisture variations in multi-temporal airborne imaging spectrometer data for digital soil mapping. Geoderma 2019, 337, 607–621. [Google Scholar] [CrossRef]
- Marshall, M.; Thenkabail, P. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS J. Photogramm. Remote Sens. 2015, 108, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Gamba, P.; Dell’Acqua, F. 18 Spectral Resolution in the Context of Very High Resolution Urban Remote Sensing. In Urban Remote Sensing; Weng, Q., Quattrochi, D., Gamba, P.E., Eds.; CRC Press: Boca Raton, FL, USA, 2018; p. 377. [Google Scholar]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; van den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants-history and publications-Das BBCH-System zur Codierung der phänologischen Entwicklungsstadien von Pflanzen-Geschichte und Veröffentlichungen. J. Für Kult. 2009, 61, 41–52. [Google Scholar] [CrossRef]
- Böhler, J.; Schaepman, M.; Kneubühler, M. Crop Classification in a Heterogeneous Arable Landscape Using Uncalibrated UAV Data. Remote Sens. 2018, 10, 1282. [Google Scholar] [CrossRef] [Green Version]
- Hueni, A.; Lenhard, K.; Baumgartner, A.; Schaepman, M.E. Airborne Prism Experiment Calibration Information System. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5169–5180. [Google Scholar] [CrossRef]
- Schaepman, M.E.; Jehle, M.; Hueni, A.; D’Odorico, P.; Damm, A.; Weyermann, J.J.; Schneider, F.D.; Laurent, V.; Popp, C.; Seidel, F.C.; et al. Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX). Remote Sens. Environ. 2015, 158, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Hueni, A.; Biesemans, J.; Meuleman, K.; Dell’Endice, F.; Schlapfer, D.; Odermatt, D.; Kneubuehler, M.; Adriaensen, S.; Kempenaers, S.; Nieke, J.; et al. Structure, Components, and Interfaces of the Airborne Prism Experiment (APEX) Processing and Archiving Facility. Geosci. Remote Sens. IEEE Trans. 2009, 47, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Laliberte, A.S.; Rango, A. Texture and Scale in Object-Based Analysis of Subdecimeter Resolution Unmanned Aerial Vehicle (UAV) Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Böhler, J.E.; Schaepman, M.E.; Kneubühler, M. Optimal Timing Assessment for Crop Separation Using Multispectral Unmanned Aerial Vehicle (UAV) Data and Textural Features. Remote Sens. 2019, 11, 1780. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Lee, R.-Y.; Chang, K.-C.; Ou, D.-Y.; Hsu, C.-H. Evaluation of crop mapping on fragmented and complex slope farmlands through random forest and object-oriented analysis using unmanned aerial vehicles. Geocarto Int. 2019, 1–18. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Hugenholtz, C.H.; Moorman, B.J.; Riddell, K.; Whitehead, K. Small unmanned aircraft systems for remote sensing and Earth science research. EOS Trans. Am. Geophys. Union 2012, 93, 236. [Google Scholar] [CrossRef]
- Whitehead, K.; Hugenholtz, C.H.; Myshak, S.; Brown, O.; LeClair, A.; Tamminga, A.; Barchyn, T.E.; Moorman, B.; Eaton, B. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 2: Scientific and commercial applications 1. J. Unmanned Veh. Syst. 2014, 2, 86–102. [Google Scholar] [CrossRef] [Green Version]
Setting | Model | Correlation Threshold (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ||
eBee | 500-trees | 44.1 | 57.1 | 58.2 | 68.9 | 69.9 | 66.4 | 68.7 | 75.5 | 79.6 | 80.9 | 79.9 |
eBee | fitted-trees | 44.1 | 57.1 | 58.2 | 68.9 | 69.9 | 66.5 | 68.7 | 75.5 | 79.7 | 80.8 | 80.0 |
APEX | 500-trees | 80.3 | 81.0 | 87.2 | 87.3 | 80.4 | 87.3 | 83.3 | 91.5 | 91.8 | 91.9 | 92.2 |
APEX | fitted-trees | 80.3 | 80.9 | 87.2 | 87.3 | 80.5 | 87.3 | 83.3 | 91.4 | 91.7 | 91.9 | 92.2 |
eBee & APEX | 500-trees | 82.6 | 83.6 | 90.8 | 90.6 | 89.3 | 91.2 | 90.6 | 92.0 | 91.8 | 91.8 | 92.8 |
eBee & APEX | fitted-trees | 82.6 | 83.7 | 90.7 | 90.5 | 89.2 | 91.1 | 90.5 | 91.9 | 91.8 | 91.6 | 92.7 |
Setting | Correlation Threshold (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
eBee | 4.6 | 6.5 | 7.7 | 9.4 | 12.7 | 16.2 | 19.0 | 24.5 | 30.1 | 56.3 | 116 |
APEX | 3.0 | 3.1 | 3.6 | 3.6 | 3.1 | 3.7 | 4.4 | 7.1 | 7.5 | 9.5 | 173 |
eBee & APEX | 4.1 | 7.5 | 9.9 | 12.0 | 16.5 | 19.5 | 23.9 | 31.3 | 38.1 | 65.9 | 289 |
Wavelength (nm) | Correlation Threshold (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | |
399 | 1 | 15 | 15 | |||||||
413 | 9 | 15 | ||||||||
427 | 15 | |||||||||
490 | 1 | 2 | ||||||||
509 | 2 | |||||||||
553 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |||
581 | 15 | |||||||||
594 | 5 | |||||||||
681 | 15 | 15 | 15 | 15 | 15 | 15 | ||||
684 | 9 | 15 | 15 | 15 | 15 | |||||
688 | 9 | 1 | 15 | 15 | 15 | |||||
785 | 1 | |||||||||
1051 | 15 | 15 | 15 | 15 | 2 | |||||
1261 | 1 | 15 | ||||||||
1521 | 1 | |||||||||
1549 | 1 | |||||||||
1567 | 1 | |||||||||
1666 | 15 | 15 | 15 | 15 | 15 | 9 | 2 | 15 | 15 | 15 |
2057 | 1 | 9 | 15 | 15 | ||||||
2356 | 15 | |||||||||
2388 | 15 | |||||||||
2419 | 15 | 15 | ||||||||
2432 | 2 |
Setting | Correlation Threshold (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
eBee | 776 | 893 | 749 | 886 | 824 | 754 | 794 | 791 | 732 | 490 | 785 |
APEX | 350 | 436 | 413 | 630 | 406 | 467 | 403 | 414 | 414 | 559 | 440 |
eBee & APEX | 578 | 334 | 502 | 654 | 545 | 466 | 625 | 494 | 529 | 500 | 567 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhler, J.E.; Schaepman, M.E.; Kneubühler, M. Crop Separability from Individual and Combined Airborne Imaging Spectroscopy and UAV Multispectral Data. Remote Sens. 2020, 12, 1256. https://doi.org/10.3390/rs12081256
Böhler JE, Schaepman ME, Kneubühler M. Crop Separability from Individual and Combined Airborne Imaging Spectroscopy and UAV Multispectral Data. Remote Sensing. 2020; 12(8):1256. https://doi.org/10.3390/rs12081256
Chicago/Turabian StyleBöhler, Jonas E., Michael E. Schaepman, and Mathias Kneubühler. 2020. "Crop Separability from Individual and Combined Airborne Imaging Spectroscopy and UAV Multispectral Data" Remote Sensing 12, no. 8: 1256. https://doi.org/10.3390/rs12081256
APA StyleBöhler, J. E., Schaepman, M. E., & Kneubühler, M. (2020). Crop Separability from Individual and Combined Airborne Imaging Spectroscopy and UAV Multispectral Data. Remote Sensing, 12(8), 1256. https://doi.org/10.3390/rs12081256