Review: Cost-Effective Unmanned Aerial Vehicle (UAV) Platform for Field Plant Breeding Application
Abstract
:1. Introduction
2. Overview of Cost-Effective Commercial UAV Platforms
3. Proposed End-to-End Workflow of High Throughput Phenotyping Using Cost-Effective Commercial UAVs
4. Considerations before Phenotyping Operation
5. Sensors Mounted on UAVs
5.1. RGB Digital Cameras
5.2. Spectral Sensors
Index | Sensors | Formula | Features | Reference |
---|---|---|---|---|
Excess Green (ExG) | RGB | Vegetation classification | [83] | |
Excess Red (ExR) | RGB | Vegetation classification | [84] | |
Photochemical Reflectance Index (PRI) | RGB | Plant stress measure | [75] | |
Modified Green Red Vegetation Index (MGRVI) | RGB | Biomass and plant height prediction | [85] | |
Normalized Difference Vegetation Index (NDVI) | RGB and Infrared | Crop health status measurement | [83] | |
Green Normalized Difference Vegetation Index (GNDVI) | RGB and Infrared | Crop health status measurement related to chlorophyll concentration | [86] | |
Soil Adjusted Vegetation Index (SAVI) | RGB and Infrared | Soil influences on canopy spectra are minimized by the soil brightness correction factor | [87] | |
Modified Soil Adjusted Vegetation Index (MSAVI) | RGB and Infrared | Developed for the more reliable and simple calculation of a soil brightness correction factor than the SAVI | [88] | |
Transformed Chlorophyll Absorption in Reflectance Index/Optimized Soil-Adjusted Vegetation Index (TCARI/OSAVI) | RGB and Infrared | Chlorophyll content, water status prediction, and plant stress identification | [89] | |
Ratio Vegetation Index (RVI) | RGB and Infrared | High-density vegetation coverage and biomass | [90] | |
Difference Vegetation Index (DVI) | RGB and Infrared | Developed for the vegetation monitoring by distinguishing the soil and the vegetation, but do not include the effects of atmosphere or shadow | [91] | |
Perpendicular Vegetation Index (PVI) | RGB and Infrared | Leaf area index estimation, vegetation identification, and classification | [91] | |
Atmospherically Resistant Vegetation Index (ARVI) | RGB and Infrared | Vegetation status measurement with the elimination of the atmospheric effect | [92] | |
Normalized Difference Red Edge Index (NDREI) | RGB and Infrared | Estimation of green leaf area during senescence. | [93] | |
Enhanced Normalized Difference Vegetation Index (ENDVI) | RGB and Infrared | Produces better discrimination within the index than the NDVI by using green channel additionally | [94] | |
Renormalized Difference Vegetation Index (RDVI) | RGB and Infrared | Crop health status measurement with insensitivity to the effects of soil and sun | [95] | |
Green Chlorophyll Index (CLG) | RGB and Infrared | Chlorophyll content estimation | [96] | |
Chlorophyll Vegetation Index (CVI) | RGB and Infrared | Chlorophyll content estimation | [97] |
5.3. Thermal Sensors
Index | Formula | Feature | Reference |
---|---|---|---|
Crop water stress index (CWSI) | Value ranges from (0 to 1 which the values close to 1 are related to high levels of stress | [103] | |
Jones index (IG) | Positive correlation with the stomatal conductance | [100,104] | |
Jones index (I3) | Positively correlation with the stomatal resistance |
6. Pre-Processing of Acquired Images
7. Image Processing Software
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rasheed, A.; Hao, Y.; Xia, X.; Khan, A.; Xu, Y.; Varshney, R.K.; He, Z. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. Mol. Plant. 2017, 10, 1047–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef]
- Hardin, P.J.; Jensen, R.R. Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities. Gisci. Remote Sens. 2011, 48, 99–111. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Erena, M.; Montesinos, S.; Portillo, D.; Alvarez, J.; Marin, C.; Fernandez, L.; Henarejos, J.M.; Ruiz, L.A. Configuration and Specifications of an Unmanned Aerial Vehicle for Precision Agriculture. PLoS ONE 2013, 8, e58210. [Google Scholar]
- HrISToV, G.V.; ZAHArIEV, P.Z.; BELoEV, I.H. A review of the characteristics of modern unmanned aerial vehicles. Acta Technol. Agric. 2016, 19, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Muchiri, N.; Kimathi, S. A Review of Applications and Potential Applications of UAV. In Proceedings of the 2016 Annual Conference on Sustainable Research and Innovation, Nairobi, Kenya, 4–6 May 2016; pp. 280–283. [Google Scholar]
- Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.; Neely, H.L.; et al. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS ONE 2016, 11, e0159781. [Google Scholar] [CrossRef] [Green Version]
- Selecting a Drone Flight Controller. Available online: https://dojofordrones.com/drone-flight-controller/ (accessed on 31 March 2019).
- Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K. Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops using Small UAVs. Remote Sens. 2019, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Dedicated mounting PARROT SEQUOIA+ or RedEdge camera for Yuneec H520 Drone. Available online: https://aeromind.pl/product-eng-11195-Dedicated-mounting-PARROT-SEQUOIA-or-RedEdge-camera-for-Yuneec-H520-Drone.html/ (accessed on 25 February 2020).
- Chen, A.; Orlov-Levin, V.; Meron, M. Applying high-resolution visible-channel aerial scan of crop canopy to precision irrigation management. Agric. Water Manag. 2018, 2, 335. [Google Scholar] [CrossRef] [Green Version]
- Kolarik, N.E.; Ellis, G.; Gaughan, A.E.; Stevens, F.R. Describing seasonal differences in tree crown delineation using multispectral UAS data and structure from motion. Remote Sens. Lett. 2019, 10, 864–873. [Google Scholar] [CrossRef]
- Potena, C.; Khanna, R.; Nieto, J.; Siegwart, R.; Nardi, D.; Pretto, A. AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming. IEEE Robot Autom. Lett. 2019, 4, 1085–1092. [Google Scholar] [CrossRef] [Green Version]
- Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Yao, L.; Zhang, J.; Cao, W.; Zhu, Y.; Tai, X. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System. Sensors 2017, 17, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajayi, O.G.; Salubi, A.A.; Angbas, A.F.; Odigure, M.G. Generation of accurate digital elevation models from UAV acquired low percentage overlapping images. Int. J. Remote Sens. 2017, 38, 3113–3134. [Google Scholar] [CrossRef]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-Temporal Crop Surface Models Combined with the Rgb Vegetation Index from Uav-Based Images for Forage Monitoring in Grassland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 991–998. [Google Scholar] [CrossRef]
- Watanabe, T.; Raju, A.; Hiraga, Y.; Sugimura, K. Development of Geospatial Model for Preparing Distribution of Rare Plant Resources Using UAV/Drone. Indian J. Pharm. Educ. 2018, 52, S146–S150. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Li, R.; Zhong, X.; Jiang, M.; Jin, X.; Zhou, P.; Liu, S.; Sun, C.; Guo, W. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agric. Meteorol. 2018, 252, 144–154. [Google Scholar] [CrossRef]
- Fuldain González, J.; Varón Hernández, F. NDVI Identification and Survey of a Roman Road in the Northern Spanish Province of Álava. Remote Sens. 2019, 11, 725. [Google Scholar] [CrossRef] [Green Version]
- Marín, J.; Parra, L.; Rocher, J.; Sendra, S.; Lloret, J.; Mauri, P.V.; Masaguer, A. Urban Lawn Monitoring in Smart City Environments. J. Sens. 2018, 2018, 8743179. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Hawthorne, T.L.; Torres, H.; Feinman, M. Using Object-Oriented Classification for Coastal Management in the East Central Coast of Florida: A Quantitative Comparison between UAV, Satellite, and Aerial Data. Drones 2019, 3, 60. [Google Scholar] [CrossRef] [Green Version]
- Safonova, A.; Tabik, S.; Alcaraz-Segura, D.; Rubtsov, A.; Maglinets, Y.; Herrera, F. Detection of Fir Trees (Abies sibirica) Damaged by the Bark Beetle in Unmanned Aerial Vehicle Images with Deep Learning. Remote Sens. 2019, 11, 643. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.R.; Lulla, K. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Prentice Hall: Upper Saddle River, NI, USA, 1987. [Google Scholar]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2013, 6, 1–15. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.J.; Torres-Sánchez, J.; Clavero-Rumbao, I.; García-Ferrer, A.; Peña, J.M.; Borra-Serrano, I.; López-Granados, F. Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management. Remote Sens. 2015, 7, 12793–12814. [Google Scholar] [CrossRef] [Green Version]
- Mesas-Carrascosa, F.; Rumbao, I.; Berrocal, J.; Porras, A. Positional quality assessment of orthophotos obtained from sensors onboard multi-rotor UAV platforms. Sensors 2014, 14, 22394–22407. [Google Scholar] [CrossRef] [PubMed]
- DJI GS Pro Home Page. Available online: https://www.dji.com/ground-station-pro (accessed on 9 March 2020).
- DroneDeploy: Drone & UAV Mapping Platform Home Page. Available online: https://www.dronedeploy.com/ (accessed on 9 March 2020).
- Litchi for DJI Mavic/Phantom/Inspire/Spark Home Page. Available online: https://flylitchi.com/ (accessed on 9 March 2020).
- Pix4Dcapture: Free drone flight planning mobile app Home Page. Available online: https://www.pix4d.com/product/pix4dcapture (accessed on 9 March 2020).
- AeroPoints—Propeller Aero Home Page. Available online: https://www.propelleraero.com/aeropoints/ (accessed on 9 March 2020).
- Maps Made Easy Home Page. Available online: https://www.mapsmadeeasy.com/ (accessed on 9 March 2020).
- Freeman, K.W.; Girma, K.; Arnall, D.B.; Mullen, R.W.; Martin, K.L.; Teal, R.K.; Raun, W.R. By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron. J. 2007, 99, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Wang, X.; Meng, Z.; Zhao, C.; Yu, Z.; Chen, L. Study on diagnosing nitrogennutritionstatus of cornusing Greenseeker and SPADmeter. Plant Nutr. Fertil. Sci. 2018, 1, 43–47. [Google Scholar]
- Sheng, H.; Chao, H.; Coopmans, C.; Han, J.; McKee, M.; Chen, Y. Low-cost UAV-based thermal infrared remote sensing: Platform, calibration and applications. In Proceedings of the 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Qingdao, China, 16–17 July 2010; pp. 38–43. [Google Scholar]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G. Application of Thermal Imaging and Infrared Sensing in Plant Physiology and Ecophysiology. Adv. Bot. Res. 2004, 41, 107–163. [Google Scholar]
- Lin, Y. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Comput. Electron. Agr. 2015, 119, 61–73. [Google Scholar] [CrossRef]
- Vazquez-Arellano, M.; Griepentrog, H.W.; Reiser, D.; Paraforos, D.S. 3-D Imaging Systems for Agricultural Applications-A Review. Sensors 2016, 16, 618. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Fang, F.; Zhao, L.; Ding, Z.; Jian, X. Joint Transmission Scheduling and Power Allocation in Non-Orthogonal Multiple Access. IEEE Trans. Commun. 2019, 67, 8137–8150. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agric. Meteorol. 2010, 150, 1485–1490. [Google Scholar] [CrossRef]
- Chen, J.; Yi, S.; Qin, Y.; Wang, X. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau. Int. J. Remote Sens. 2016, 37, 1922–1936. [Google Scholar] [CrossRef]
- Córcoles, J.I.; Ortega, J.F.; Hernández, D.; Moreno, M.A. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosyst. Eng. 2013, 115, 31–42. [Google Scholar]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Onion biomass monitoring using UAV-based RGB imaging. Precis. Agric. 2018, 19, 840–857. [Google Scholar] [CrossRef]
- Kim, S.L.; Chung, Y.S.; Ji, H.; Lee, H.; Choi, I.; Kim, N.; Lee, E.; Oh, J.; Kang, D.-Y.; Baek, J.; et al. New Parameters for Seedling Vigor Developed via Phenomics. Appl. Sci. 2019, 9, 1752. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, T.; Kaneko, T.; Okamoto, H. Crop Growth Estimation System Using Machine Vision. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kobe, Japan, 20–24 July 2003; pp. b1079–b1083. [Google Scholar]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agr. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, B.W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. Eur. J. Agron. 2013, 48, 57–65. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar]
- Hassanein, M.; Lari, Z.; El-Sheimy, N. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms. Sensors 2018, 18, 1253. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.W.; Yun, H.; Jeong, S.J.; Kwon, Y.S.; Kim, S.G.; Lee, W.; Kim, H.J. Modeling and Testing of Growth Status for Chinese Cabbage and White Radish with UAV-Based RGB Imagery. Remote Sens. 2018, 10, 563. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Robert, S.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ribera, J.; Boomsma, C.; Delp, E.J. Plant leaf segmentation for estimating phenotypic traits. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 Sept 2017; pp. 3884–3888. [Google Scholar]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Poblete-Echeverría, C.; Olmedo, G.; Ingram, B.; Bardeen, M. Detection and Segmentation of Vine Canopy in Ultra-High Spatial Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV): A Case Study in a Commercial Vineyard. Remote Sens. 2017, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Kerkech, M.; Hafiane, A.; Canals, R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comput. Electron. Agr. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Madec, S.; Baret, F.; de Solan, B.; Thomas, S.; Dutartre, D.; Jezequel, S.; Hemmerle, M.; Colombeau, G.; Comar, A. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates. Front. Plant Sci. 2017, 8, 2002–2015. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Thomasson, J.A.; Bagnall, G.C.; Pugh, N.A.; Horne, D.W.; Rooney, W.L.; Jung, J.; Chang, A.; Malambo, L.; Popescu, S.C.; et al. Measurement and Calibration of Plant-Height from Fixed-Wing UAV Images. Sensors 2018, 18, 4092. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Bolten, A.; Bareth, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability. Photogramm. Fernerkun. 2013, 2013, 551–562. [Google Scholar] [CrossRef]
- Qiu, R.; Wei, S.; Zhang, M.; Li, H.; Sun, H.; Liu, G.; Li, M. Sensors for measuring plant phenotyping: A review. Int. J. Agric. Biol. Eng. 2018, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Guo, W.; Arai, K.; Takanashi, H.; Kajiya-Kanegae, H.; Kobayashi, M.; Yano, K.; Tokunaga, T.; Fujiwara, T.; Tsutsumi, N.; et al. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling. Front Plant Sci. 2017, 8, 421–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Bueren, S.K.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.P.; Yule, I.J. Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences 2015, 9, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Chapman, S.C.; Wang, X.; Potgieter, A.; Duan, T.; Jordan, D.; Guo, Y.; Zheng, B. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. Eur. J. Agron. 2018, 95, 24–32. [Google Scholar] [CrossRef]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.-H. Monitoring Agronomic Parameters of Winter Wheat Crops with Low-Cost UAV Imagery. Remote Sens. 2016, 8, 706. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. Isprs J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Lussem, U.; Bolten, A.; Gnyp, M.L.; Jasper, J.; Bareth, G. Evaluation of Rgb-Based Vegetation Indices from Uav Imagery to Estimate Forage Yield in Grassland. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2018, Beijing, China, 7–10 May 2018; pp. 1215–1219. [Google Scholar]
- Broge, N.H.; Mortensen, J.V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ. 2002, 81, 45–57. [Google Scholar] [CrossRef]
- Calderón, R.; Montes-Borrego, M.; Landa, B.B.; Navas-Cortés, J.A.; Zarco-Tejada, P.J. Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle. Precis. Agric. 2014, 15, 639–661. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Battiston, E.; Di Marco, S.; Facini, O.; Matese, A.; Nocentini, M.; Palliotti, A.; Mugnai, L. Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex. Phytopathol. Mediterr. 2016, 55, 262–275. [Google Scholar]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.H.; Das, B.; Craufurd, P.; et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gamon, J.; Penuelas, J.; Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Nackaerts, K.; Delauré, B.; Everaerts, J.; Michiels, B.; Holmlund, C.; Mäkynen, J.; Saari, H. Evaluation of a lightweigth UAS-prototype for hyperspectral imaging. In Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2010, Newcastle upon Tyen, UK, 21–24 June 2010; pp. 478–483. [Google Scholar]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- He, H.J.; Wu, D.; Sun, D.W. Potential of hyperspectral imaging combined with chemometric analysis for assessing and visualising tenderness distribution in raw farmed salmon fillets. J. Food Eng. 2014, 126, 156–164. [Google Scholar] [CrossRef]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suárez, L.; González-Dugo, V.; Fereres, E. Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 6–11. [Google Scholar]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Rouse Jr, J.W.; Haas, R.H.; Schell, J.; Deering, D. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In NASA/GSFC, Type III, Final Report; Texas A & M University: College Station, TX, USA, 1974; pp. 309–317. [Google Scholar]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huerte, A.; Kerr, Y.; Sorooshian, S. A modified soil adjusted vegetation index: Remote Sensing Environment. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sens. Environ. 1972, 8, 1357–1381. [Google Scholar]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. Ieee Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photoch. Photobio. B. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; Christensen, S. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 2016, 74, 75–92. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Alchanatis, V.; Cohen, Y.; Cohen, S.; Moller, M.; Sprinstin, M.; Meron, M.; Tsipris, J.; Saranga, Y.; Sela, E. Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging. Precis. Agric. 2010, 11, 27–41. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Agam, N.; Alchanatis, V.; Cohen, Y.; Yermiyahu, U.; Zipori, I.; Presnov, E.; Sprintsin, M.; Dag, A. Evaluating water stress in irrigated olives: Correlation of soil water status, tree water status, and thermal imagery. Irrig. Sci. 2009, 27, 367–376. [Google Scholar] [CrossRef]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Mesas-Carrascosa, F.J.; Pérez-Porras, F.; Meroño, L.J.; Mena, F.C.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P.; García-Ferrer, A. Drift correction of lightweight microbolometer thermal sensors on-board unmanned aerial vehicles. Remote Sens. 2018, 10, 615. [Google Scholar] [CrossRef] [Green Version]
- Idso, S.B.; Jackson, R.D.; Pinter Jr, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Leinonen, I.; Grant, O.M.; Tagliavia, C.P.P.; Chaves, M.M.; Jones, H.G. Estimating stomatal conductance with thermal imagery. Plant Cell Environ. 2006, 29, 1508–1518. [Google Scholar] [CrossRef]
- Kelcey, J.; Lucieer, A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Myint, S.W. A Simplified Empirical Line Method of Radiometric Calibration for Small Unmanned Aircraft Systems-Based Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1876–1885. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Di Gennaro, S.F.; Herrero-Langreo, A.; Miranda, C.; Royo, J.B.; Matese, A. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Xiang, H.; Tian, L. Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosyst. Eng. 2011, 108, 104–113. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Rizza, F.; Badeck, F.W.; Berton, A.; Delbono, S.; Gioli, B.; Toscano, P.; Zaldei, A.; Matese, A. UAV-based high-throughput phenotyping to discriminate barley vigour with visible and near-infrared vegetation indices. Int. J. Remote Sens 2017, 39, 5330–5344. [Google Scholar] [CrossRef]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111–1135. [Google Scholar] [CrossRef]
- Thenot, F.; Méthy, M.; Winkel, T. The Photochemical Reflectance Index (PRI) as a water-stress index. Int. J. Remote Sens. 2002, 23, 5135–5139. [Google Scholar] [CrossRef]
- Stanton, C.; Starek, M.J.; Elliott, N.; Brewer, M.; Maeda, M.M.; Chu, T. Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment. J. Appl. Remote Sens. 2017, 11, 026035. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Gago, J.; Douthe, C.; Coopman, R.; Gallego, P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Agisoft Metashape Home Page. Available online: https://www.agisoft.com/ (accessed on 9 March 2020).
- Pix4Dmapper: Professional Drone Mapping and Photogrammetry Software Home Page. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 9 March 2020).
- SimActive High-End Mapping Software Home Page. Available online: https://www.simactive.com/ (accessed on 9 March 2020).
- About ArcGIS Mapping & Analytics Platform–Esri Home Page. Available online: https://www.esri.com/en-us/arcgis/about-arcgis/overview (accessed on 9 March 2020).
- Welcome to the QGIS project! Home Page. Available online: https://www.qgis.org/en/site/ (accessed on 9 March 2020).
- ENVI-The Leading Geospatial Image Analysis Software Home page. Available online: https://www.harrisgeospatial.com/Software-Technology/ENVI (accessed on 9 March 2020).
- ERDAS IMAGINE Hexagon Geospatial Home Page. Available online: https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine (accessed on 9 March 2020).
Model | Price ($) | Price (€) | Flight Time (min) | Sensor (Spatial Resolution) | Application |
---|---|---|---|---|---|
DJI Mavic 2 pro | 1599.00 | 1499.00 | 29 | RGB camera (54723648) | [12,13,14] |
DJI Mavic 2 zoom | 1349.00 | 1249.00 | 29 | RGB camera (40003000) | |
DJI Mavic Air | 919.00 | 849.00 | 20 | RGB camera (40563040) RGB camera (40562282) | |
DJI Mavic Pro Platinum | 1149.00 | 999.00 | 30 | RGB camera (40003000) | |
Phantom 4 Pro V2.0 | 1599.00 | 1699.00 | 30 | RGB camera (54723648) RGB camera (48643648) RGB camera (54723078) | [10,12,15,16,17,18] |
Inspire 2 | 3299.00 | 3399.00 | 23 ~ 27 | RGB camera (24Mega) RGB camera (20.8Mega) | [19,20,21,22] |
Parrot ANAFI Work | 999.00 | 999.00 | 25 | RGB camera (53444016) RGB camera (40003000) | - |
Parrot ANAFI Thermal | 1900.00 | 1900.00 | 26 | RGB camera (53444016) RGB camera (46083456) Thermal camera (160120) | |
Parrot Bluegrass Fields | 4980.00 | 4510.59 | 25 | multispectral sensor (1280960) | - |
Yuneec Mantis G | 699.99 | 699.00 | 33 | RGB camera (41602340) RGB camera (41602340) | [23] |
Yuneec Mantis Q | 499.99 | 499.00 | 33 | RGB camera (41602340) RGB camera (41602340) | - |
Yuneec Typhoon H | 899.99 | 799.00 | 25 | RGB camera (4:3/12.4Mega) | [21,24] |
Yuneec Typhoon H520 | 1561.79 ~ 11,864.00 | 1382.93 ~ 10,505.00 | 25 | RGB camera (4:3/12 Mega) | |
Walkera Vitus | 739.00 | 654.76 | 28 | RGB camera (40003000) | |
Walkera Vitus Starlight | 899.00 | 796.53 | 22 | RGB camera (19201080) | - |
Walkera VOYAGER 5 | 17,999.00 | 15,947.37 | 20 | RGB camera (38402160) | - |
HolyStone HS720 GPS Drone with 2K Camera | 299.99 | 279.99 | 26 | RGB camera (20481152) | - |
HolyStone HS120D FPV Drone with GPS System | 159.99 | 139.99 | 16 | RGB camera (19201080) | - |
HolyStone HS100 FPV Drone with GPS | 169.99 | 159.99 | 12–15 | RGB camera (1280720) | - |
Manufacturer | Android _ Application | IOS _ Application |
---|---|---|
DJI | DJI GO, DJI GO 4 | DJI GO, DJI GO 4 |
Parrot | FreeFlight 6, FreeFlight Pro | FreeFlight 6, FreeFlight Pro |
Yuneec | Yuneec Pilot, CGO3 | Yuneec Pilot, CGO |
Application | Pros | Cons | Manufacturer |
---|---|---|---|
DJI GS Pro |
|
| DJI [29] |
DroneDeploy |
|
| DroneDeploy [30] |
LITCHI |
|
| VC Technology [31] |
Pix4D Capture |
|
| Pix4D [32] |
Propeller AeroPoints |
|
| Propeller Aerobotics [33] |
Maps Made Easy |
|
| Drones Made Easy [34] |
Model | Weight (g) | Spectral Band Name (Center Wavelength) | Spatial Resolution | Frame Rate |
---|---|---|---|---|
MAIA WV | 420 | PURPLE (422.5 nm), BLUE (487.5 nm), GREEN (550 nm), ORANGE (602.5 nm), RED (660 nm), RED EDGE (725 nm), NIR1 (785 nm), NIR2 (887.5 nm), RGB camera | 1280960 | 3 fps with 10 bits and 12 bits (6 fps with 8 bits |
MAIA S2 | 420 | VIOLET (443 nm), BLUE (490 nm), GREEN (560 nm), RED (665 nm), RED EDGE1 (705 nm), RED EDGE2 (740 nm), NIR1 (783 nm), NIR2 (842 nm), NIR3 (865 nm) | 1280960 | 3 fps with 10 bits and 12 bits (6 fps with 8 bits |
MAIA M2 | 70 | Select two bands among the following bands: (VIOLET (422.5 nm), NVIOLET (443 nm), BLUE (487.5 nm), SBLUE (490 nm), GREEN (550 nm), NGREEN (560 nm), YELLOW (602.5 nm), RED (660 nm), NRED (665 nm), H RED EDGE (705 nm), RED EDGE (725 nm), L RED EDGE (740 nm), H NNIR (783 nm), H NIR (785 nm), WNIR (842 nm), L NNIR (865 nm), L NIR (887.5 nm), RGB camera | 1280960 | 3 fps with 10 bits and 12 bits (6 fps with 8 bits |
Parrot Sequoia + | 72 | GREEN (550 nm), RED (660 nm), RED EDGE (735 nm), Near infrared (790 nm), RGB camera | 1280960 | 1 fps 10 bits |
MicaSense Rededge-MX | 231.9 | BLUE (475 nm), GREEN (560 nm), RED (668 nm), RED EDGE (717 nm), NIR (840 nm), RGB camera | 1280960 | 1 fps, 12 bits |
MicaSense ALTUM | 357 | BLUE (475 nm), GREEN (560 nm), RED (668 nm), RED EDGE (717 nm), NIR (840 nm) | 20641544 | 1 fps, 12 bits |
Sentera Double 4k Sensor | 80 | BLUE (446 nm), GREEN (548 nm), RED (650 nm), RED EDGE (720 nm), NIR (840 nm) | 1080720 | 30 fps |
Sentera AGX710 | 270 | BLUE (446 nm), GREEN (548 nm), RED (650 nm), RED EDGE (720 nm), NIR (840 nm) | 1080720 | 30 fps |
Sentera High Precision Single Sensor | 30 | For Normalized Difference Vegetation Index (NDVI); RED (625 nm), NIR (850 nm) (For Normalized Difference Red Edge Index (NDREI); RED EDGE (720 nm), NIR (840 nm) | 1248950 | 7 fps |
Sentera Quad Sensor | 170 | RED (655 nm), RED EDGE (725 nm), NIR (800 nm), (RGB camera | 1248950 | 7 fps, 12 bits |
Model | Weight (g) | Spectral Range (µm) | Spatial Resolution | Operating Temperature Range (°C) |
---|---|---|---|---|
FLIR Vue Pro R | 92–113 | 7.5–13.5 | 336256 | −20 ~ 50 |
FLIR Vue Pro | 92–113 | 7.5–13.5 | 336256 | −20 ~ 50 |
FLIR Duo Pro R | 325 | 7.5–13.5 | 336256 | −20 ~ 50 |
DJI Zenmuse XT | 270 | 7.5–13.5 | 640512 336256 | −40 ~ 550 |
Yuneec CGOET | 275 | 8–14 | 19201080 | −10 ~ 40 |
Yuneec E10T | 370 | 8–14 | 320256 640512 | −10 ~ 40 |
Traits | Recommended UAVs | Sensors | Image Processing Methods | Reference |
---|---|---|---|---|
Plant height | All | RGB | , MGRVI | [67] |
Vegetation coverage | All | RGB | ExG, ExR | [52,83,84,110] |
UAVs with enough payloads for the multispectral sensor | Multispectral | NDVI, RVI, DVI, PVI, ARVI, ENDVI, RDVI | [85,90,91,111] | |
Biomass | RGB | ExG, ExR, MGRVI | [85] | |
Multispectral | NDVI, ARVI, ENDVI | [92,94,111] | ||
Plant stress | Multispectral | PRI, NDVI, TCARI/OSAVI, ENDVI, NDREI | [75,83,89,93,94,112,113] | |
Chlorophyll content | Multispectral | TCARI/OSAVI, NDREI, PVI, CLG, CVI | [91,114] | |
Water status | Parrot ANAFI Thermal Yuneec H520 | Multispectral | PRI, NDVI, TCARI/OSAVI | [112,115] |
Thermal | CWSI, IG, I3 | [116] | ||
Canopy temperature | Parrot ANAFI Thermal Yuneec H520 | Thermal | - | |
Transpiration rate | Parrot ANAFI Thermal Yuneec H520 | Thermal | - |
Type | Software | Pros | Cons | Manufacturer |
---|---|---|---|---|
Photogrammetry and Mapping software | Agisoft Photoscan Pro (Metashape) |
|
| Agisoft [117] |
Maps Made Easy |
|
| Drones Made Easy [34] | |
Pix4D Mapper |
|
| Pix4D [118] | |
SimActive Correlator 3D |
|
| SimActive [119] | |
GIS Software | ArcGis |
|
| Esri [120] |
QGIS |
|
| QGIS Development Team [121] | |
ENVI |
|
| Harris Geospatial Solutions [122] | |
ERDAS Imagine |
|
| Hexagon Geospatial [123] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, G.; Kim, J.; Yu, J.-K.; Kim, H.-J.; Kim, Y.; Kim, D.-W.; Kim, K.-H.; Lee, C.W.; Chung, Y.S. Review: Cost-Effective Unmanned Aerial Vehicle (UAV) Platform for Field Plant Breeding Application. Remote Sens. 2020, 12, 998. https://doi.org/10.3390/rs12060998
Jang G, Kim J, Yu J-K, Kim H-J, Kim Y, Kim D-W, Kim K-H, Lee CW, Chung YS. Review: Cost-Effective Unmanned Aerial Vehicle (UAV) Platform for Field Plant Breeding Application. Remote Sensing. 2020; 12(6):998. https://doi.org/10.3390/rs12060998
Chicago/Turabian StyleJang, GyuJin, Jaeyoung Kim, Ju-Kyung Yu, Hak-Jin Kim, Yoonha Kim, Dong-Wook Kim, Kyung-Hwan Kim, Chang Woo Lee, and Yong Suk Chung. 2020. "Review: Cost-Effective Unmanned Aerial Vehicle (UAV) Platform for Field Plant Breeding Application" Remote Sensing 12, no. 6: 998. https://doi.org/10.3390/rs12060998
APA StyleJang, G., Kim, J., Yu, J.-K., Kim, H.-J., Kim, Y., Kim, D.-W., Kim, K.-H., Lee, C. W., & Chung, Y. S. (2020). Review: Cost-Effective Unmanned Aerial Vehicle (UAV) Platform for Field Plant Breeding Application. Remote Sensing, 12(6), 998. https://doi.org/10.3390/rs12060998