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Abstract: Conventional crop-monitoring methods are time-consuming and labor-intensive,
necessitating new techniques to provide faster measurements and higher sampling intensity.
This study reports on mathematical modeling and testing of growth status for Chinese cabbage and
white radish using unmanned aerial vehicle-red, green and blue (UAV-RGB) imagery for measurement
of their biophysical properties. Chinese cabbage seedlings and white radish seeds were planted at
7–10-day intervals to provide a wide range of growth rates. Remotely sensed digital imagery data
were collected for test fields at approximately one-week intervals using a UAV platform equipped
with an RGB digital camera flying at 2 m/s at 20 m above ground. Radiometric calibrations for
the RGB band sensors were performed on every UAV flight using standard calibration panels to
minimize the effect of ever-changing light conditions on the RGB images. Vegetation fractions (VFs)
of crops in each region of interest from the mosaicked ortho-images were calculated as the ratio of
pixels classified as crops segmented using the Otsu threshold method and a vegetation index of excess
green (ExG). Plant heights (PHs) were estimated using the structure from motion (SfM) algorithm to
create 3D surface models from crop canopy data. Multiple linear regression equations consisting of
three predictor variables (VF, PH, and VF × PH) and four different response variables (fresh weight,
leaf length, leaf width, and leaf count) provided good fits with coefficients of determination (R2)
ranging from 0.66 to 0.90. The validation results using a dataset of crop growth obtained in a different
year also showed strong linear relationships (R2 > 0.76) between the developed regression models
and standard methods, confirming that the models make it possible to use UAV-RGB images for
quantifying spatial and temporal variability in biophysical properties of Chinese cabbage and white
radish over the growing season.

Keywords: unmanned aerial vehicle; RGB; vegetation fraction; plant height; structure from motion;
crop surface model
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1. Introduction

On-site monitoring of crop growth throughout the growing season plays an important role in
assessing overall crop conditions, determining when to irrigate, and forecasting potential yields [1–4].
Particularly, periodic monitoring of various biophysical properties of crops grown in a field, such as
biomass, leaf area index, and plant height, can help growers to effectively optimize inputs such
as fertilizers and herbicides as well as to accurately estimate final yields [5–7]. Traditionally,
crop-monitoring studies have used in-field measurements or airborne/satellite data to effectively
cover wide areas. Field-based methods involving on-site sampling and laboratory analysis have
disadvantages in collection of data because they are often destructive, labor-intensive, costly, and time
consuming, thereby limiting the number of samples required for establishment of efficient crop growth
management [8,9].

Precision agriculture is a site-specific soil and crop management system that assesses variability in
soil properties (e.g., pH, organic matter, and soil nutrient levels) and field (e.g., slope and elevation) and
crop parameters (e.g., yield and biomass) using various tools including the global positioning system
(GPS), geographic information systems (GIS), and remote sensing (RS). To manage crops site -specifically,
it is necessary to collect information such as crop and soil conditions and weed distribution at different
locations in a field. Remote sensing of crops can be more attractive than traditional methods of crop
monitoring due to the ability to cover large areas rapidly and repeatedly. Remote sensing techniques
from manned airborne or satellite platforms have been widely adopted for crop monitoring [3,10] since
measurements are non-destructive and non-invasive and enable scalable implementation in space and
time [11]. A common use of remote sensing is evaluation of crop growth status based on canopy greenness
by quantifying the distribution of vegetation index (VI) in the crop field. Various vegetation indices,
including Normalized Difference Vegetation Index (NDVI) and Excess Green (ExG), have been defined as
representative reflectance values of the vegetation canopy [12].

In recent years, unmanned aerial vehicles (UAVs) have been commonly used for low-altitude and
high resolution-based remote sensing applications due to advantages such as versatility, light weight,
and low operational costs [2,13]. In addition, UAVs offer a customizable aerial platform from which a
variety of sensors can be mounted and flown to collect aerial imagery with much finer spatial and temporal
resolutions compared to piloted aircraft or satellite remote sensing systems despite several limitations,
such as relatively short flight time, lower payload, and the sensitivity to weather and terrain conditions.
Advancements in the accuracy, economic efficiency, and miniaturization of many technologies, including
GPS receivers and computer processors, have pushed UAV systems into a cost-effective, innovative
remote sensing platform [14]. Especially, multi rotor-based UAVs have been commonly used to assess the
vegetation status of crops and predict their yields because the flexibility of vertical takeoff and landing
platforms with various image sensors make it easy to fly over agricultural fields [15]. The acquired aerial
images can help farmers evaluate the status of crop growth such as canopy greenness, leaf area, water
stress estimation, and various geographic conditions including crop area, digital surface models (DSMs),
and depth contour lines [16,17].

Several review articles have highlighted the wide range of applications for UAVs and mounted
sensors. In the area of agriculture, based on optical diffuse reflectance sensing in the visible and
near-infrared (NIR) ranges studying the interaction between incident light and crop surface properties,
UAVs have been adopted for monitoring of water status and drought stresses in fruit trees using
NIR band data [18]; additionally, they have been used for collecting multispectral and hyperspectral
imagery for use in spectral indices [19] and even chlorophyll fluorescence [20]. Baluja et al. analyzed
the relationships between various indices derived from UAV imagery for assessing the water status
variability of a commercial vineyard [21]. RGB (red, green, and blue) data in the visible range were
also utilized by several researchers to investigate the relationships between biophysical parameters of
various crops and their UAV imagery. In a study by Torres-Sánchez et al., the visible spectral indices were
calculated for multi-temporal mapping of the vegetation fraction from UAV images, and an automatic
object-based method was proposed to detect vegetation in herbaceous crops [15,22]. Yun et al. conducted
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multi-temporal monitoring of soybean vegetation fraction to evaluate crop conditions using UAV-RGB
images [23]. Additionally, Bendig et al. estimated biomass of barley using crop height derived from
UAV imagery [24], while Anthony et al. presented a micro-UAV system mounted with a laser scanner to
measure crop heights [25]. Especially, Geipel et al. used both vegetation indices and crop height based on
UAV-RGB imagery for predicting corn yields [26].

Crop growth models require use of a wide range of biophysical parameters, including biomass,
leaf area index, and plant height, which are all closely related to future yield [27,28]. The biophysical
properties of a crop measured at different locations in a field may further deliver vital information about
specific disease situations, enabling field-specific decisions on plant protection [29]. In addition, yield
maps generated using crop growth models can provide information about the spatial and temporal
variability of yields in previous years [30]. However, these maps have limitations in explaining current
growing conditions. To address this issue, several studies have demonstrated the feasibility of using crop
growth models to predict yield using linear regression models built with additional information on crop
management [31] or weather and soil attributes [32–34].

Since plant height is a critical indicator of crop evapotranspiration [35], crop yield [36], crop
biomass [24], and crop health [25], 3D image-based plant phenotyping techniques have been utilized to
obtain the plant architecture, such as height, size and shape [14,37,38]. In particular, in combination with
a non-vegetation ground model, plant height can be obtained using crop surface models (CSMs) [39,40].
Bendig et al. [24,39] defined the CSM as the absolute height of crop canopies, and Geipel et al. [26] defined
the CSM as the difference between a digital terrain model (DTM) and a digital surface model (DSM).
Multi-temporal CSMs derived from 3D point clouds can deliver a high resolution to the centimeter
level [39,41]. Such CSMs have been applied to various crops such as sugar, beets, rice, and summer
barely [24,39–41]. Since light detection and ranging (LiDAR) sensors can allow users to determine
the distance from the sensor to target objects based on discrete return or continuous wave signals,
in spite of the relatively high cost of the LiDAR sensor, the LiDAR measurements have been successfully
used for constructing 3D canopy structure with satisfactory point densities [42–44]. The emergence of
structure from motion (SfM)-based software has enabled efficient creation of 3D point clouds and super
high detailed ortho-photos without LiDAR sensors [45,46]. The SfM photogrammetry is a computer
vision method that offers high resolution 3D topographic or structural reconstruction from overlapping
imagery [47]. In principle, SfM performs a bundle adjustment among UAV images based on matching
features between the overlapped images to estimate interior and exterior orientation of the onboard sensor.
The first step of SfM algorithms is to extract features in each image that can be matched to corresponding
features in other images for establishing relative location and parameters of the sensor. The key to SfM
methods is the ability to calculate camera position, orientation, and scene geometry purely from the
set of overlapping images provided, offering a simple processing workflow compared to alternative
photogrammetry techniques [48,49]. The workflow of SfM for generating 3D digital reconstructions of
landscapes or scenes makes it applicable in a variety of research fields including the modeling of urban
and vegetation features. However, the SfM approach with vegetation has proven more difficult than with
urban and other features because of the more complex and inconsistent structures resulting from leaf
gaps, repeating structures of the same color, and random geometrics. Nevertheless, satisfactory results
of vegetation modeling that estimates canopy height with SfM have been reported using colored field
markers and increasing the number of acquired photographs.

Chinese cabbage (Brassica rapa subsp. pekinensis) and white radish (Raphanus sativus) are commonly
cultivated in Korea because they are the main ingredients in Kimchi [50,51]. On-site monitoring of their
growth status in the field using UAVs with SfM can allow the identification of spatial variation in various
biophysical factors, such as canopy coverage, leaf area, and plant height, thereby helping to efficiently
regulate the application of fertilizers and water as well as accurately estimate yields prior to harvest.
Although previous studies have evaluated the effectiveness of the UAV system for agricultural purposes,
yield estimation of Chinese cabbage and white radish using a UAV with only an RGB camera has not yet
been studied.
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The overall goal of this study was to develop UAV-RGB imagery-based crop growth estimation models
that can quantify various biophysical parameters of Chinese cabbage and white radish over the entire
growing season, as a means of assessing growth status and estimating potential yields before harvest.
Specific objectives were (i) to develop regression models consisting of RGB-based vegetation index and
SfM-estimated plant height that can quantify four different biophysical parameters of Chinese cabbage and
white radish crops, i.e., leaf length, leaf count, leaf area, and fresh weight, and (ii) to investigate applicability
of the developed regression models to a separate dataset of UAV-RGB images obtained from a different year
for quantitative analysis of growth status of Chinese cabbage and white radish during the growing season.

2. Materials and Methods

2.1. Test Plots

A two-year field experiment was conducted during the 2015 and 2016 growing seasons (from
September to November each year) in four different vegetable fields (denoted Field W15, C15, W16,
and C16) of the Bioenergy Crop Research Institute (35◦03′N, 126◦22′E, altitude 12 m), located in Muan,
Jeollanam-do, Republic of Korea (Figure 1). The different areas in 2015 and 2016 were used for evaluating
whether regression data developed in the 2015 could be applied to data sets obtained at a different year
and in different fields or not. Three different sets of 21-day-old Chinese cabbage seedlings and white
radish seeds were planted at 7–10-day intervals (denoted A, B, and C) in each of two separate fields to
provide a wide range of growth rates under conventional tillage practices with a sprinkler irrigation
system. Chinese cabbage and white radish were first planted on 7 and 6 September 2015 and 5 and
2 September 2016, respectively. A split plot arrangement of treatments for each crop was used with
three replications (denoted 1, 2, and 3) in a randomized complete block design. Individual sub-plot
dimensions were 3 by 9 m, consisting of four 0.5 m rows. However, only three different sets of Chinse
cabbage data without replication were obtained in Field C16 since the growth quality of the other data
sets was inadequate for analysis due to damage resulting from inappropriate application of herbicide
prior to planting. Data obtained from Field C15 and W15 were used to build statistical models that could
quantify various biophysical parameters of the cabbage and radish crops. Testing was performed using
data obtained from Field C16 and W16 to investigate the predictive validity of the developed regression
models to estimate the growth status of Chinese cabbage and white radish grown in different fields.
Granular fertilizer was hand-applied in the furrow at planting. White plastic mulch films were used to
suppress weed growth before planting.

Figure 1. Test site: 2 years of Chinese cabbage and white radish experiments.
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2.2. Unmanned Aerial Vehicles Flight and Image Acquisition

The unmanned aerial vehicle (UAV) platform used in this study was a DJI F550 hexa-rotor
airframe (DJI Innovations, Shenzhen, China) equipped with a Canon Powershot S110 RGB digital
camera (Canon, Tokyo, Japan) and had a total weight of 1.8 kg including batteries and an additional
payload capability of up to 0.6 kg. The platform could be connected to a PC (personal computer)
ground station via a 433 MHz datalink to monitor the UAV’s flight status and send flight path mission
instructions. Details of the UAV platform specifications are described in Table 1. The UAV was set to
automatically fly over the experimental field using a Pixhawk automatic flight controller (3D Robotics,
Berkeley, USA) while tracking waypoints according to the pre-programmed flight path generated
using an Mission Planner open source program (Ardupilot Development Team and Community).
A sequence of overlapped images was collected on each flight mission to cover the entire experimental
field. The flight path was designed to ensure overlapping images of at least 70% side overlap and
85% forward overlap. The Pix4Dmapper Pro 3.0.17 (Pix4D SA, Lausanne, Switzerland), which allows
image mosaicking, was used to generate a complete crop map in the total study area.

Table 1. Specifications of the unmanned aerial vehicle (UAV) platform.

Items Specifications

UAV frame DJI F550 Hexa-rotor
Flight controller Pixhawk

Propeller DJI 9450
Battery 4S Li-Po 6000 mAh, 30 C
Motor KV: 920 rpm V−1

Electronic speed controller 30A OPTO, Signal Frequency: 30–450 Hz
Maximum takeoff weight 2400 g

Maximum flight time 15 min

The RGB camera used in this study acquired 12-megapixel images using a 1/1.7” CMOS sensor
and a 24–120 mm zoom lens. The field of views (FOVs) of the camera were 72.3◦ and 57.5◦ for horizontal
and vertical directions, respectively. The images were acquired based on a time-lapse function that
took one image every two seconds. From a preliminary test of determining appropriate parameters
of the camera to decrease blurriness in images, the shutter speed and F-stop (aperture) were set at
1/2000 s and 4.0, respectively, with the focus distance set at infinity. The internal camera parameters,
such as principal point and radial distortion, were auto-compensated by processing the bundle block
adjustment in Pix4Dmapper Pro 3.0.17. As shown in Table 2, in 2015, remotely-sensed digital imagery
data were collected for the test field on several dates at an approximately one-week interval during
both growing seasons, beginning in late September and ending in early November, flying the UAV at
2 m/s at 20 m above ground level (AGL). To obtain ground-truth data on biophysical properties of each
crop, plants located along a randomly chosen row were removed from the field within two days after
every UAV flight. In the laboratory, fresh weights of plant samples were measured with an electronic
balance, and leaf length and widths were measured using a 1 m ruler. In Field C15 and W15, plants
sampled in each field were used for building regression models that relate their biophysical properties
to the corresponding UAV-RGB images. In Field C16 and W16, a total of 62 Chinese cabbages and
42 white radishes were used to validate the regression models developed using the data in Field
C15 and W15. Plant growth stages were determined according to the 10 principal growth stages and
10 secondary growth stages of the “Biologische Bundesanstalt, Bundessortenamt und CHemische
Industrie” (BBCH) scale [52].

For geo-referencing UAV-images, similar to that reported in a previous study [53], a set of ground
control points (GCPs) consisting of five 15 by 25 cm paper sheets were placed in the corners and
center of research plot for each of the 4 fields, i.e., Field W15, W16, C15, and C16 (Figure 1). The GCP
locations were measured with a Novatel OEM 615 virtual reference station (VRS)-based real-time
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kinematic-global positioning system (RTK-GPS) to provide sub-decimeter positioning accuracy within
2 and 5 cm in the horizontal and vertical directions, respectively.

Table 2. UAV imaging details and Biologische Bundesanstalt, Bundessortenamt und CHemische
Industrie (BBCH) codes of Chinese cabbage and white radish used in 2015 and 2016 field experiments.

Dates
(dd/mm/yyyy)

BBCH Code Flight
Altitude

(m)

The
Number of

Images

Ground
Resolution

(cm pixel−1)
Flight Time Illumination

Wind
(m s−1)Chinese

Cabbage
White
Radish

25/09/2015 19 19 20 213 0.64 10–11 a.m. Cloudy 2.2
03/10/2015 41 42 20 222 0.64 11–12 a.m. Cloudy 1.4
09/10/2015 42 43 20 211 0.64 12–1 p.m. Cloudy 1.8
17/10/2015 45 45 20 214 0.64 11–12 a.m. Clear sky 1.9
23/10/2015 46 46 20 227 0.64 10–11 a.m. Cloudy 1.7
04/11/2015 48 48 20 218 0.64 11–12 a.m. Cloudy 1.3
23/09/2016 19 19 20 244 0.64 1–2 p.m. Cloudy 1.8
07/10/2016 41 42 20 248 0.64 12–1 p.m. Clear sky 4.2
14/10/2016 42 44 20 246 0.64 11–12 a.m. Cloudy 1.2
21/10/2016 44 45 20 231 0.64 11–12 a.m. Cloudy 1.1
27/10/2016 46 47 20 252 0.64 12–1 p.m. Cloudy 1.4
09/11/2016 48 48 20 251 0.64 11–12 a.m. Cloudy 3.2

2.3. Image Processing

Figure 2 shows the flow chart of the image processing and analysis steps, including image
acquisition, image preprocessing, calculation of vegetation fraction and plant height, and data analysis.
Basically, the Pix4Dmapper Pro 3.0.17 performed both image alignment and 3D reconstruction for
imagery. To accurately geo-reference the UAV image, the GCPs measured with the RTK-GPS were
imported to the Pix4D program, thereby producing the geo-referencing images with a real-world
coordinate system [14], which corresponded to both geometric calibration of image sensor and lens
distortion correction [54]. As mentioned by An et al. [38], since it was important to evaluate the
generation of the mosaicked images reconstructed from 3D meshes, the geo-referencing accuracy was
assessed by root mean square errors (RMSEs) of horizontal (X and Y) and vertical (Z) coordinates at GCP
locations using the five GCPs, which were installed in each of the four fields (W15, W16, C15, and C16).
After the geo-referencing process, converting the individual images into an image orthomosaic and
generating digital surface model (DSM) and digital terrain model (DTM) were performed through the
SfM processing built in the Pix4Dmapper. Before image analysis for calculating vegetation fraction,
radiometric calibration was conducted into the orthomosaic images. ExG index was then selected as a
vegetation index, and the Otsu method was used to extract crop images [12,55]. Once the ExG-based
crop images were segmented, vegetation fractions (VFs) were calculated to represent the area of
vegetation [15]. The DSM and DTM were generated by performing a bundle adjustment based on
matching features between the images, thereby calculating plant heights (PHs) [24]. Finally, crop
growth estimation models were built using the two predictor variables, VF and PH.
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Figure 2. Flow chart of image processing and crop growth modeling procedures for building regression
models based on vegetation fraction and plant height.

2.4. Radiometric Calibration and Region of Interest

To minimize the effects of ever-changing light and atmospheric conditions on UAV images taken
at different times, imagery radiometric calibration was conducted on every flight by placing 1.2 by
1.2 m Group 8 Technology Type 822 ground calibration panels for airborne sensors with seven gray
scales (3%, 5%, 11%, 22%, 33%, 44%, and 55%) in a location within the flight path of the UAV platform
(Figure 3a). The mean reflectance values of the calibration targets for each of the R, G, and B bands in
the RGB camera were determined using Equation (1). For this, as shown in Figure 3b, the standard
reference reflectance spectrum of the calibration targets in the 400–800 nm range was measured with
an ASD Fieldspec4 (Analytical Spectral Devices, Inc., Longmont, USA). The spectral response of the
RGB camera was obtained from the sensor specification provided by the manufacturer (Figure 3c).

rx,k =

∫ 800
400 Rx(λ)Ck(λ)dλ∫ 800

400 Ck(λ)dλ
(1)

where rx,k represents the calculated mean reflectance values of the calibration targets, Rx(λ) represents
the standard reflectance spectrum of the targets measured with the field spectrometer, Ck(λ) represents
the spectral response of the image sensor, x is the calibration target, and k is one of R, G, and B bands.

Assuming that the reflectance values of calibration targets were exponentially proportional to RGB
band digital numbers (DNs) based on the empirical line method [23,56], the coefficients of Equation (2)
were derived by fitting the DNs of the images to the reflectance spectra of the calibration targets for
each of the R, G, and B bands. As a result, to combine all the UAV images obtained at different dates,
the DNs of each of the RGB bands measured with the RGB camera on every UAV flight were converted
into normalized reflectance values.

rk = AkeBk DN (2)

where rk represents the reflectance values of the acquired images, DN represents the digital numbers
of the images, and Ak and Bk are the coefficients of the exponential relationship.
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Figure 3. (a) View of the calibration targets placed in the test field; (b) standard reflectance spectrum of
the calibration targets measured with the field spectrometer; (c) spectral response of the red, green and
blue (RGB) camera.

To effectively perform a bivariate analysis between the aerial images and ground truth data
for Chinese cabbage and white radish crops having different biophysical characteristics, as shown
in Figure 4, different regions of interest (ROIs) that represent the area of each grid were used, i.e.,
60 × 60 cm and 80 × 150 cm for Chinese cabbage and white radish, respectively. The dimensions of
the ROIs were determined based on geometric characteristics of the two crops, such as maximum
size and inter-row spacing. As shown in Figure 4, it was possible to extract images of individual
Chinese cabbage due to its growth pattern to independently stand with a constant spacing of 50 cm,
thereby providing an individual crop grid along the transplanting rows. The growth pattern of white
radish plants, mixed up with each other at a planting spacing of 30 cm, did not allow the extraction of
individual crop grid, but a bulk extraction was possible using an average of image values for 10 plants
of two crop rows to represent the ROI.

Figure 4. Views of regions of interest (ROIs) selected for extracting the plants of (a) Chinese cabbage
and (b) white radish.
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2.5. Quantification of Vegetation Fraction and Plant Height

A vegetation index of ExG was used for quantifying the vegetation fractions of Chinese cabbage
and white radish in each ROI because it was reported that the ExG values could effectively assess
canopy variation in green crop biomass based on RGB ortho-images [15]. The ExG (Equation (3)) was
calculated using the radiometrically calibrated RGB reflectance values, instead of the RGB digital
numbers [12].

ExG = 2g − r − b (3)

where r is R
R+G+B , g is G

R+G+B , b is B
R+G+B , and R, G, and B represent the reflectance values of the R, G,

and B bands in the original images, respectively.
Crop segmentation, a process for extracting only crops from a background that includes a mixture

of soil and other interfering objects in an image, is an important step performed prior to the calculation
of vegetation fractions in each ROI. In this study, since plastic mulch was used to suppress weed
growth along with herbicide application to soil prior to crop planting, main interfering objects were
soil and plastic mulch. As shown in Figure 5, in a histogram analysis of UAV-RGB images in terms
of ExG, it was possible to effectively separate the images of the cabbage and radish plants from the
background using the Otsu method, which automatically calculates optimal threshold values, thereby
minimizing inter-class variance and maximizing intra-class variance [57]. The ExG-based RGB images
segmented based on the Otsu method were converted to binary images, i.e., 1 or 0, classified into
two different groups. That is, if the ExG value was equal to or higher than the threshold, it was
recognized as a vegetation pixel of 1; on the other hand, a pixel with a value of 0 was considered
non-vegetation. The basic principle used in the study was an assumption that dense green vegetation
produces a high value, while soil has a low value, thus producing a contrast between vegetation and
soil. Finally, the vegetation fractions (VF) in each ROI were calculated as the ratio of the number of
pixels segmented as a crop to the number of total pixels following Equation (4) [15]. Accuracy of the
Otsu method-based crop segmentation applied in the study was assessed by comparing with manually
identified actual crop images.

Vegetation Fraction =
Number of pixels determined to be 1 in an ROI

Number of total pixels in an ROI
(4)

where ROI represents a region of interest.

Figure 5. Excess green (ExG) histogram for vegetation classification with the Otsu threshold value.

As described in previous studies [58,59], plant height in this study was defined as the shortest
distance between the upper boundary of the main photosynthetic tissues on a plant and ground level.
In this study, the 3D points of the DTM and the DSM were created for calculating plant height using
the Pix4Dmapper Pro 3.0.17 (Figure 6). That is, the DTM was defined as a model of the underlying
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field topography without crop features, which is corresponding to the state of no crop grown on the
ground, and the DSM was defined as a combined model of the underlying topography and field
features such as crops, corresponding to the state of crop grown [60]. The DTM was acquired on the
first UAV flight when the crops were not germinated on the ground within 7 days after sowing and the
DSMs were acquired on each of the UAV flight dates as shown in Table 2. Finally, as shown in Figure 6,
the plant height, defined as a model of field features only, was then calculated by subtracting the DSM
from the DTM (Equation (5)):

Plant Height = DSM − DTM (5)

where DSM represents the model of the underlying topography with crops, and DTM represents the
underlying field topography without crops.

Figure 6. Schematic of calculating plant height based on the subtraction of digital terrain model (DTM)
from digital surface model (DSM).

2.6. Statistical Analysis

Multiple linear regression models were developed to quantify the growth status of Chinese
cabbage and white radish from UAV-based imagery using VF and PH as predictor variables and
biophysical data as response variables. Since highly significant interaction effects between VF and PH
were found from a preliminary correlation analysis, an interaction term of VF × PH was added to the
predictor variables as shown in the following equation (Equation (6)):

Y = A × XVF + B × XPH + C × XVF × XPH + D (6)

where Y represents biophysical parameters, i.e., leaf length, leaf width, leaf number, and fresh weight,
and XVF represents the variable of VF, XPH represents the variable of PH, and A, B, C, and D represent
the estimates of each of the predictor variable terms.

The SAS 9.4 Software (SAS, Cary, NC, USA) was used to determine the four estimates for
Equation (6) by fitting the image data acquired from the UAV in terms of VF and PH to the equation.
Validation of the developed regression models was conducted through comparison of UAV-measured
biophysical values and actual 2016 data measured with standard methods. Finally, to investigate the
ability of the UAV-RGB system to estimate spatial variations in biophysical parameters of vegetables
in a field, fresh weight maps of Chinese cabbage and white radish were generated using the ArcGIS
10.1 (Esri, Redlands, CA, USA) software.

3. Results

3.1. Geo-Referencing, Radiometric Calibration and Crop Segmentation

Table 3 shows RMSEs of the GCP coordinates in all the four fields. Horizontal (X and Y coordinates)
RMSEs ranged from 0.10 to 0.20 m, whereas vertical (Z coordinates) RMSEs ranged from 0.025 to
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0.034 m, indicating that the geo-referencing data obtained in this study provided the sub-decimeter
positioning accuracy within 2 and 5 cm in the horizontal and vertical directions.

Table 3. Resulting root mean square error (RMSE) at ground control point (GCP) locations for
GCP-based geo-referenced imagery for all fields (W15, W16, C15, and C16 in Figure 1).

Field RMSE in
X Coordinates (m)

RMSE in
Y Coordinates (m)

RMSE in
Z Coordinates (m)

W15 0.019 0.017 0.032
C15 0.020 0.019 0.034
W16 0.014 0.010 0.025
C16 0.013 0.013 0.027

Figure 7 shows an example of calibration curves that relate the digital numbers (DNs) obtained
with each of the three individual RGB bands to the corresponding reflectance values calculated using
Equation (2) from a flight on 7 October 2016. Table 4 shows coefficients derived by fitting the DNs
of the images to the reflectance spectra of the calibration targets for each of the R, G, and B bands
obtained at all flight dates. The results indicate that the DNs could be successfully converted into
reflectance spectra, showing strong exponential relationships with coefficient of determination (R2)
ranging from 0.93 to 0.99, and their reflectance data could be normalized to minimize the effect of
varying sunlight conditions on UAV-RGB images.

Figure 7. Sample calibration curves of the red, green and blue (RGB) band sensors mounted on the
unmanned aerial vehicle (UAV) (data were obtained from a flight performed on 7 October 2016).

Table 4. Coefficients of calibration curves of the red, green and blue (RGB) sensors obtained on all
flight dates: Ak and Bk are the coefficients of the exponential relationship described in Equation (2).

Dates Band Ak Bk R2 Dates Band Ak Bk R2

25/09/2015
R 0.021 0.018 0.95

23/09/2016
R 0.020 0.019 0.96

G 0.022 0.017 0.94 G 0.019 0.018 0.97
B 0.023 0.016 0.96 B 0.021 0.017 0.98

03/10/2015
R 0.020 0.018 0.95

07/10/2016
R 0.017 0.018 0.96

G 0.020 0.016 0.94 G 0.016 0.018 0.97
B 0.022 0.017 0.95 B 0.018 0.017 0.98

09/10/2015
R 0.020 0.017 0.95

14/10/2016
R 0.016 0.017 0.98

G 0.020 0.016 0.93 G 0.014 0.017 0.99
B 0.021 0.015 0.94 B 0.012 0.017 0.99
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Table 4. Cont.

Dates Band Ak Bk R2 Dates Band Ak Bk R2

17/10/2015
R 0.022 0.018 0.94

21/10/2016
R 0.020 0.020 0.97

G 0.021 0.017 0.95 G 0.019 0.018 0.98
B 0.021 0.016 0.96 B 0.021 0.017 0.98

23/10/2015
R 0.020 0.018 0.93

27/10/2016
R 0.016 0.022 0.97

G 0.021 0.017 0.94 G 0.016 0.020 0.97
B 0.021 0.016 0.94 B 0.019 0.018 0.97

04/11/2015
R 0.021 0.017 0.94

09/11/2016
R 0.018 0.018 0.96

G 0.021 0.016 0.93 G 0.023 0.016 0.95
B 0.020 0.015 0.94 B 0.017 0.016 0.98

Figure 8 shows the visual steps of the crop segmentation that uses the Otsu method based
on a vegetation index of ExG to calculate the vegetation fractions of Chinese cabbage and white
radish. Original RGB images (Figure 8a,e) extracted as each ROI used were converted into ExG-based
images (Figure 8b,f). Binary images (Figure 8c,g) were then automatically segmented based on the
Otsu threshold method, indicating that the white pixels are classified as crop with a value of 1 or
background objects with a value of 0. Figure 8d,h shows crop images in red, manually segmented as
Chinese cabbage and white radish, respectively, using the ENVI 5.4 software, which could be compared
with the images automatically segmented (Figure 8c,g).

Figure 8. Crop Segmentation Steps: Original red, green and blue (RGB) images of (a) Chinese cabbage
and (e) white radish; Excess green (ExG)-converted images of (b) Chinese cabbage and (f) white radish;
Segmented binary images obtained using the Otsu threshold based on ExG of (c) Chinese cabbage and
(g) white radish; Manually segmented images of (d) Chinese cabbage and (h) white radish.

The Otsu method-based segmented images were compared with the manually cropped images
based on the crop area calculated using the number of pixels. As shown in Table 5, which reports the
results of 10 samples for each of the two different crops randomly selected from the early stage of
growth to the late stage of growth, the errors of segmentation performance for Chinese cabbage ranged
from −8.72% to 6.01%, whereas those for white radish were in the range of −14.9% to 17.1%. However,
in the early growth stage of white radish, relatively higher errors were found because the boundary
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area between white radish and background was blurred because of the growth characteristics of white
radish, which had overlapping leaves (Figure 8g).

Table 5. Results of crop segmentation performance obtained using the Otsu threshold and excess green
(ExG) vegetation index.

Crop Sample Dates Number of Pixels
Manually Segmented

Number of Pixels
Automatically Estimated

Error
(%)

Chinese
cabbage

Sample 1 06/10/2016 309 320 3.56
Sample 2 06/10/2016 1,371 1,359 −0.88
Sample 3 14/10/2016 1,489 1,526 2.48
Sample 4 06/10/2016 2,471 2,364 −4.33
Sample 5 20/10/2016 3,034 2,875 −5.24
Sample 6 14/10/2016 3,656 3,876 6.01
Sample 7 14/10/2016 5,026 4,944 −1.63
Sample 8 20/10/2016 6,722 6,332 5.8
Sample 9 27/10/2016 8,490 7,750 −8.72

Sample 10 27/10/2016 11,925 11,601 −2.71

White radish

Sample 1 06/10/2016 1,885 2,207 17.08
Sample 2 06/10/2016 4,554 5,321 16.84
Sample 3 14/10/2016 12,849 15,031 16.98
Sample 4 06/10/2016 13,563 11,534 −14.96
Sample 5 27/10/2016 21,897 25,063 14.46
Sample 6 14/10/2016 30,477 26,402 −13.37
Sample 7 27/10/2016 33,799 38,089 12.69
Sample 8 20/10/2016 40,805 43,842 7.44
Sample 9 27/10/2016 48,152 51,215 6.36

Sample 10 27/10/2016 57,758 60,026 3.93

3.2. Validation of Plant Height Estimation Based on the SfM Algorithm

In this study, accuracy in 3D measurement was evaluated to validate plant height estimation based
on our 3D extraction method. Figure 9 shows examples of the DSMs of Chinese cabbage (Figure 9a)
and white radish (Figure 9b) and the DTM (Figure 9c) created using the SfM algorithm, implying that it
was possible to obtain 3D images similar to the actual shapes. Similar to a previous study of validation
of the SfM method based on subtraction of DTM from DSM [61], as ground truth data, the maximum
standing heights of the five plants in each ROI were manually measured using a 1 m ruler and then
averaged for each ROI. As shown in Figure 10, which compares plant heights of Chinese cabbage and
white radish estimated using the SfM method with the ground truth data, there were significantly
linear relationships between the two methods, with R2 > 0.9 and regression slopes near unity, implying
that use of the SfM method would be effective in estimating the heights of Chinese cabbage and white
radish in the range of 10 to 48 cm and 10 to 60 cm, respectively. However, the height estimates retained
offsets of −6.59 and −1.86 cm for Chinese cabbage and white radish between estimated and actual
heights, respectively.

Figure 9. Cont.
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Figure 9. 3D views of digital surface models (DSMs) of (a) Chinese cabbage; (b) white radish and (c) a
digital terrain model (DTM) created using structure from motion (SfM) processing.

Figure 10. Relationships between the heights of Chinese cabbage and white radish determined by the
structure from motion (SfM) method and by use of a 1 m ruler.

3.3. Temporal Variability in Vegetation Fraction and Plant Height

Figure 11 shows changes in ExG-based VF and SfM-estimated plant heights (PH) of Chinese
cabbage (Figure 11a,b) and white radish (Figure 11c,d), obtained during the growing period ranging
from 18 to 58 days and from 19 to 59 days after transplanting (DAT) and sowing (DAS), respectively.
As expected, both VFs and PHs were linearly proportional to DAT and DAS, due to increases in canopy
greenness over time. Especially, until 46 DAT and 47 DAS for Chinese cabbage and white radish,
respectively, it was observed that the change rates of VF and PH with respect to time were almost
constant, while there were significant differences in VF and PH between the UAV images obtained at
different dates. In addition, since it was found that the biophysical parameters of Chinese cabbage and
white radish, i.e., fresh weight, leaf length, leaf area and leaf count, were highly correlated with the
VF and PH (Table 6), it seemed plausible that the VF and PH could be used as predictor variables in
linear modeling to quantify the growth status of the two crops. However, their growths were observed
to stop after approximately 46 DAT and 47 DAS for Chinese cabbage and white radish, respectively,
showing no significant differences in VF and PH between the UAV images. Since this was related to the
saturation phenomena of the VF and PH, the UAV data measured at 58 DAT for Chinese cabbage and
59 DAS for white radish were not included in building multiple linear regression models in this study.
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Figure 11. Temporal changes in growth status of (a,b) Chinese cabbage and (c,d) white radish in terms
of (a,c) escess green (ExG)-based vegetation fraction and (b,d) structure from motion (SfM)-estimated
plant height. For ease of visualization, data are presented in boxplot format. Mean vegetation fractions
and plant heights followed by the same letter within days after transplanting (DAT) or days after
seeding (DAS) are not significantly different at the 5% level, based on the F-test.

Table 6. Results of correlation analysis among biophysical parameters and vegetation fraction (VF) and
plant height (PH) for Chinese cabbage (top) and white radish (bottom).

Chinese Cabbage VF PH Leaf Length Leaf Width Leaf Count Fresh Weight

VF 1.00
PH 0.87 1.00

Leaf Length 0.96 0.88 1.00
Leaf Width 0.90 0.75 0.90 1.00

Leaf Number 0.89 0.82 0.89 0.80 1.00
Fresh Weight 0.89 0.81 0.89 0.78 0.95 1.00

White Radish VF PH Leaf Length Leaf Width Leaf Count Fresh Weight

VF 1.00
PH 0.76 1.00

Leaf Length 0.90 0.70 1.00
Leaf Width 0.77 0.63 0.79 1.00

Leaf Number 0.88 0.69 0.88 0.65 1.00
Fresh Weight 0.83 0.65 0.85 0.53 0.94 1.00

3.4. Biophysical Parameter Modeling

Results of SAS regression (REG) analysis to model the growth status of the two crops based on
UAV-RGB images are shown in Table 7. All of the multiple regression equations for Chinese cabbage
and white radish, when using three predictor variables (VF, PH, and VF × PH) and four different
response variables (fresh weight, leaf length, leaf width, and leaf count), provided good fits with
coefficients of determination (R2 > 0.8), whereas relatively low estimations in leaf width and count
for white radish were obtained (R2 = 0.68 and 0.76, respectively). In particular, it was expected that
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use of the developed models would make it possible to measure the fresh weights of Chinese cabbage
and white radish with an acceptable level of performance and could be used as a method to predict
the potential yields of the two vegetables prior to harvesting. In addition, for predicting the root
weights of white radish, since a correlation between root weight and above-ground weight exists [24],
the estimation of above-ground fresh weight would be feasible in predicting the potential yield of
white radish during the growing season.

Table 7. Results of multiple linear regression equations to estimate the biophysical parameters of
Chinese cabbage and white radish using their vegetation fractions (VFs) and plant heights (PHs)
obtained from unmanned aerial vehicle-red, green and blue (UAV-RGB) images: Y = Biophysical
parameters; XVF = Vegetation fraction value; XPH = Plant height value; n = Number of samples;
R2 = Coefficient of determination; SE = Standard error.

Crop Biophysical Parameter Multiple Regression Models n R2 SE

Chinese
cabbage

Leaf length (cm) Y = 23.66 × XVF + 11.38 × XPH + 2.48
× XVF × XPH + 18.14 36 0.94 2.27

Leaf width (cm) Y = 26.17 × XVF + 0.85 × XPH − 11.27
× XVF × XPH + 11.17 36 0.83 2.79

Leaf count Y = 19.01 × XVF − 76.15 × XPH +
100.78 × XVF × XPH + 23.66 36 0.90 6.18

Fresh weight (g) Y = 701.70 × XVF − 6280.40 × XPH +
7528.03 × XVF × XPH + 508.40 36 0.94 273.75

White radish

Leaf length (cm) Y = 11.48 × XVF − 8.48 × XPH + 21.95
× XVF × XPH + 26.21 36 0.82 2.56

Leaf width (cm) Y = 13.14 × XVF + 8.64 × XPH − 17.29
× XVF × XPH + 7.45 36 0.66 1.10

Leaf count Y = 15.80 × XVF − 5.50 × XPH + 18.24
× XVF × XPH + 11.02 36 0.78 3.32

Above-ground fresh
weight (g)

Y = 117.5 × XVF − 355.6 × XPH +
869.2 × XVF × XPH + 77.04 36 0.85 53.77

3.5. Validation of Biophysical Parameter Estimation Models

Validation of the developed growth estimation models for Chinese cabbage and white radish was
conducted using a dataset of UAV images with known biophysical data obtained from the second-year
experiment conducted from September and November 2016. A total of 62 and 42 ROIs of Chinese
cabbage and white radish, respectively, were used to quantify their biophysical properties during
the growing season by converting the RGB images into two indices of VF and PHs used as predictor
variables of the developed regression models. Figures 12 and 13 compare the biophysical values of
Chinese cabbage and white radish, respectively, grown in the test field determined by the developed
UAV image-based prediction models with those obtained by standard methods of simple linear
regression analysis.

As shown in Figure 12a–c, the developed models performed well in measuring leaf length, leaf
width, and fresh weight of Chinese cabbage, showing strong linear relationships between slopes of
0.89 to 1.12 and coefficients of determination >0.76, even though their estimates retained offsets of
3.55 to 4.54 cm and a fresh weight of 178.88 g. However, leaf counts of Chinese cabbage were highly
underestimated (57%) when using the UAV image-based estimation model. As shown in Figure 13
that quantifies the growth status of white radish, all estimates obtained with the developed regression
models were lower than those measured with standard methods, showing slopes of 0.44 to 0.85.
In particular, the UAV method measured 29% less fresh weight than did the standard method, which
uses an electronic balance.
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Figure 12. Relationships of biophysical properties ((a) leaf length; (b) leaf width; (c) leaf count;
and (d) fresh weight) of Chinese cabbage determined by the derived unmanned aerial vehicle
(UAV)-estimated models and by standard methods.

Figure 13. Relationships of biophysical properties ((a) leaf length; (b) leaf width; (c) leaf count;
and (d) above-ground fresh weight of white radish determined by the derived unmanned aerial vehicle
(UAV)-estimated models and by standard methods.
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3.6. Application to Spatial Mapping of Potential Yield

To investigate the feasibility of using the UAV method for potential yield mapping of Chinese
cabbage and white radish during the growing season, the UAV-RGB images (Figures 14a and 15a)
collected on 27 October 2016 were converted into fresh weight maps (Figures 14b and 15b) estimated
with the developed regression models. As shown in Figures 14a and 15a, it appeared that there was
high variation in vegetation fraction of both crops in the two test fields from the UAV-RGB images,
implying that different fresh weights would be predicted depending on location.

Georeferenced data on individual Chinese cabbages and a portion of white radishes extracted
from each ROI were collected by sequentially locating the center points of each 60 cm × 60 cm and
80 cm × 150 cm plot, respectively, along the transplanting and planting rows on the two orthomosaic
UAV-RGB images (Figures 14a and 15a) using the ArcGIS 10.1. As a result, almost 2700 and 160
center points corresponding to each of the ROIs with coordinate information were determined in
order to calculate the VFs and PHs for use as predictor variables for determining the fresh weights
of Chinese cabbage and white radish in each ROI, respectively. Finally, maps of each crop were
generated in ArcGIS 10.1 to visually show spatial variability in fresh weight representative of each ROI,
ranging from 0 to 12,000 g/m2 and 0 to 4500 g/m2 for Chinese cabbage and white radish, respectively.
This reveals that the fresh weight maps generated using the UAV-RGB images in conjunction with use
of the developed prediction models could be used for evaluating the potential yields of the two crops
prior to harvesting.

Figure 14. (a) Unmanned aerial vehicle-red, green and blue (UAV-RGB) orthomosaic image of Chinese
cabbage collected on 27 October 2016 and (b) fresh weight map of Chinese cabbage generated using the
developed regression models applied to the UAV-RGB image. The capital letters A, B, and C represent
the subplots showing the growth of Chinese cabbage transplanted on different dates.
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Figure 15. (a) Unmanned aerial vehicle-red, green and blue (UAV-RGB) orthomosaic image of white
radish collected on 27 October 2016 and (b) above-ground fresh weight map of white radish generated
using the developed regression models applied to the UAV-RGB image. The capital letters A, B, and C
represent the subplots showing the growth of white radish planted on three different dates.

4. Discussion

In analyzing multi-temporal UAV images, radiometric calibration is required to minimize the
effects of ever-changing light and atmospheric conditions on UAV images taken at different times.
Yun et al. conducted radiometric calibration based on the empirical line method [56] using color-scale
calibration targets [23]. The results showed linear relationships between DNs and reflectance spectra
with R2 ranging from 0.85 to 0.99. However, in general, since the linear relationship might not be
suitable when high saturation effects at high DN values are observed. In this study, it was found that
the RGB band DNs were exponentially proportional to reflectance values obtained with gray-scale
calibration targets, showing significant relationships with R2 ranging from 0.93 to 0.99 (Table 4).
Therefore, their reflectance data could be normalized to minimize the effect of varying sunlight
conditions on UAV-RGB images.

Excess green (ExG) is an efficient vegetation index that can separate crops from a background
that includes a mixture of soil and other interfering objects in images with only RGB band. In a
study by Torres-Sánchez et al., ExG was used for multi-temporal mapping of the vegetation fraction
from UAV images [15]. In our study, the ExG was applied to automatic crop segmentation with
Otsu threshold (Figure 8). The segmentation results obtained using 10 samples taken from each of
randomly selected Chinese cabbage and white radish showed errors ranging from −8.72% to 6.01%
for Chinese cabbage and from −14.9% to 17.1% for white radish (Table 5). This indicates that use of
the Otsu threshold method based on the ExG would be satisfactory in segmenting crop images from a
background consisting of soil and plastic mulch with accuracies >80%. As mentioned earlier, relatively
higher errors were found in the early growth stage of white radish because the boundary area between
white radish and background was blurred because of the growth characteristics of white radish, which
had overlapping leaves (Figure 8g). This requires the use of a robust image processing method to
improve the segmentation performance for up to 30-day-old white radishes with overlapping leaves.

Plant height can be obtained using CSMs [39,40]. In the previous studies, the CSMs have been
applied to various crops such as sugar, beets, rice, and summer barely [24,39–41]. At the same time,
the emergence of SfM-based software has enabled efficient creation of 3D point clouds and super high
detailed ortho-photos [45,46]. In this study, the SfM algorithm estimated plant heights of Chinese
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cabbage and white radish, with approximately 1:1 relationships and coefficients of determination
(R2) >0.9 between the heights determined by both the SfM method and manually using a 1 m ruler
(Figure 10). However, the height estimates retained offsets of −6.59 and −1.86 cm for Chinese cabbage
and white radish crops between estimated and actual heights. As mentioned in previous studies by
Bendig et al. [24,39] and Ruiz et al. [62], this might be related to an inherent error in vertical locations
measured with the RTK-GPS that affects the accuracy of GCPs used to correct georeferenced data
on UAV images. Another reason responsible for the height measurement error might be the use of
a ruler to measure the maximum heights of the crops. Nevertheless, the overall results showed an
improvement in accuracy compared to similar studies [24,39,61,63].

Several studies have applied UAV images to modeling crop growth over the growing season.
Bendig et al. applied crop surface models and various vegetation indices to estimate biomass of
barely [64]. Brocks and Bareth also conducted biomass estimation of barley using plant height with
crop surface models showing R2 between 0.55 and 0.79 for dry biomass [65]. Although many studies
have been conducted, yield estimation of Chinese cabbage and white radish using a UAV with an RGB
camera has not yet been studied. In this study, prior to building growth estimation models for Chinese
cabbage and white radish based on UAV images, time-series analysis of the VF and PH was conducted
to characterize their changes with respect to time (Figure 11). As expected from the results of some
previous studies [15,23,61], both VF and PH were linearly proportional to DAT and DAS due to an
increase in canopy greenness over time. Saturation phenomena for both the VF and PH were observed,
however, beginning from 46 DAT for Chinese cabbage and 47 DAS for white radish, which are similar
to the general growth patterns of crops [66]. Therefore, the saturated VF and PH data were not used
to build multiple linear regression models in this study. As shown in Table 5, it was found that on
average, relatively high correlation coefficients existed between the biophysical parameters and the
VF compared to the PH data. A possible cause might be explained by the growth characteristics of
Chinese cabbage and white radish with a narrower PH range of lower than 60 cm as compared to those
obtained with other crops, such as maize and sorghum growing higher than 1 m, whereas Chinese
cabbage and white radish grow relatively fast, producing a higher change in VF in almost 2 months.

Multiple regression equations for Chinese cabbage and white radish developed from this study,
using three predictor variables (VF, PH, and VF × PH) and four different response variables (fresh
weight, leaf length, leaf width, and leaf count), provided good fits (R2 > 0.8) except for relatively
decreased estimations in leaf width and count for white radish (R2 = 0.68 and 0.76, respectively).
The results of validation testing showed that strong linear relationships (R2 > 0.76) existing between
the developed models and standard methods would make it possible to use UAV-RGB images for
predicting biophysical properties of the two crops in a quantitative manner. However, on average,
the prediction accuracies for white radish were worse than those for Chinese cabbage. Likely causes
for the lower estimates of white radish growth status might be related to the higher irregularity and
narrower leaves of white radish, thereby reducing the performance of the image segmentation due
to a difficulty in extracting white radish from the background (Table 5). An improvement in image
segmentation would enhance the ability of the UAV system to estimate the biophysical parameters of
white radish.

In addition, there was an issue to address slopes of non-unity and offsets of non-zero in the
validation testing. For example, leaf count of Chinese cabbage and other biophysical parameters
of white radish were highly underestimated when using the UAV image-based estimation model
(Figures 14 and 15). Possible causes responsible for the lower estimates of leaf count with the UAV
system are difficult to explain. However, it might be related to limited spatial resolutions of the RGB
images obtained with the UAV flying at 20 m that could not separate their individual leaves with an
acceptable level of accuracy. The slopes and offsets can be adjusted using a two-point normalization
method. The two-point normalization method is an algorithm to compensate for differences in slope
and offset between model estimates and actual values prior to analysis using two known samples of
different values [67]. When using the two-point normalization, it is necessary to select two known
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samples having the highest difference in growth status if possible to maximize the effect of the
two-point normalization using a wide range of data. The slope is directly compensated by comparing
the actual value obtained based on destructive sampling and the predicted value obtained with the
UAV-RGB system. As shown in Figure 16, it is apparent that the estimated leaf count can be adjusted,
improving the slope and offset from 0.43 to 0.93 and from 17.56 to 5.05, respectively, after two-point
normalization. In addition, when the accuracy was assessed using a RMSE [68], the RMSE of leaf
count was decreased from 13.31 to 7.23 by use of the two-point normalization. Future studies include
the application of the developed UAV-estimated models in conjunction with use of the two-point
normalization method to commercial fields growing Chinese cabbage and white radish.

Figure 16. Examples of improving the relationships between the actual and estimated leaf count of
Chinese cabbage (a) before and (b) after two-point normalization.

5. Conclusions

In this study, crop growth estimation models based on UAV-RGB imagery were developed
and validated for quantifying various biophysical parameters of field-grown Chinese cabbage and
white radish. This study differs from previous studies in respect of (i) using the combination of
RGB-based vegetation index (VI) and SfM-estimated PH to build their growth estimation models and
(ii) conducting a different-year field experiment to investigate applicability of the developed regression
models to a separate dataset of UAV-RGB images. Analysis of the modeling and validating results
indicates that the two physical parameters (VI and PH) obtained using the UAV-RGB camera can be
used as viable predictor variables in quantifying the growth status of Korean Chinese cabbage and
white radish, due to strong linear relationships between UAV-RGB and standard methods for fresh
weight, leaf length, leaf width, and leaf count. Additionally, since the use of a UAV-RGB system will
make it possible to obtain measurements at a closer spatial resolution than is feasible with sample
collection and laboratory analysis, we believe this approach will be able to map crop growth status
with greater accuracy than current methods. However, one drawback to this UAV-RGB system is slopes
of non-unity and offsets of non-zero found in the validation testing. To address this issue, a two-point
normalization method, consisting of a sensitivity compensation followed by an offset adjustment
using two known samples of different values, will be necessary to implement in the UAV-RGB system.
Future studies include the application of the developed UAV-estimated models in conjunction with
use of the two-point normalization method to commercial fields growing Chinese cabbage and white
radish to confirm their suitability for estimating in-season biophysical properties.

Acknowledgments: This research was supported by Korea Institute of Planning and Evaluation for Technology
in Food, Agriculture, Forestry, and Fisheries (Project number: 315011-03-3-SB010), Korea.

Author Contributions: H.S.Y. and H.-J.K. conceived and designed the experiments; D.-W.K. and H.S.Y. performed
the experiments; D.-W.K. and S.-J.J. analyzed the data; Y.-S.K. and S.-G.K. contributed materials; W.S.L. and H.-J.K.
provided feedback; D.-W.K. and H.-J.K. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2018, 10, 563 22 of 25

References

1. Cloutis, E.; Connery, D.; Major, D.; Dover, F. Airborne multi-spectral monitoring of agricultural crop status:
Effect of time of year, crop type and crop condition parameter. Remote Sens. 1996, 17, 2579–2601. [CrossRef]

2. Hunt, E.R.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.; McCarty, G.W. Acquisition of
NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010,
2, 290–305. [CrossRef]

3. Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining
knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [CrossRef]

4. Poenaru, V.; Badea, A.; Cimpeanu, S.M.; Irimescu, A. Multi-temporal multi-spectral and radar remote sensing
for agricultural monitoring in the braila plain. Agric. Agric. Sci. Procedia 2015, 6, 506–516. [CrossRef]

5. Borchard, N.; Schirrmann, M.; von Hebel, C.; Schmidt, M.; Baatz, R.; Firbank, L.; Vereecken, H.; Herbst, M.
Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in germany.
Agric. Ecosyst. Environ. 2015, 211, 84–93. [CrossRef]

6. Dammer, K.-H.; Thöle, H.; Volk, T.; Hau, B. Variable-rate fungicide spraying in real time by combining a
plant cover sensor and a decision support system. Precis. Agric. 2009, 10, 431–442. [CrossRef]

7. Thorp, K.; Wang, G.; West, A.; Moran, M.; Bronson, K.; White, J.; Mon, J. Estimating crop biophysical
properties from remote sensing data by inverting linked radiative transfer and ecophysiological models.
Remote Sens. Environ. 2012, 124, 224–233. [CrossRef]

8. Chang, A.; Eo, Y.; Kim, S.; Kim, Y.; Kim, Y. Canopy-cover thematic-map generation for military map products
using remote sensing data in inaccessible areas. Landsc. Ecol. Eng. 2011, 7, 263–274. [CrossRef]

9. Hollinger, S.E. Field monitoring of crop photosynthesis and respiration. Better Crops Plant Food 1997,
81, 23–24.

10. Migdall, S.; Bach, H.; Bobert, J.; Wehrhan, M.; Mauser, W. Inversion of a canopy reflectance model using
hyperspectral imagery for monitoring wheat growth and estimating yield. Precis. Agric. 2009, 10, 508–524.
[CrossRef]

11. Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci.
2014, 19, 52–61. [CrossRef] [PubMed]

12. Woebbecke, D.; Meyer, G.; Von Bargen, K.; Mortensen, D. Color indices for weed identification under various
soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [CrossRef]

13. Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial
imaging platforms for identification of huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013,
91, 106–115. [CrossRef]

14. Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High throughput field
phenotyping of wheat plant height and growth rate in field plot trials using uav based remote sensing.
Remote Sens. 2016, 8, 1031. [CrossRef]

15. Torres-Sánchez, J.; Peña, J.; De Castro, A.; López-Granados, F. Multi-temporal mapping of the vegetation
fraction in early-season wheat fields using images from uav. Comput. Electron. Agric. 2014, 103, 104–113.
[CrossRef]

16. Salamí, E.; Barrado, C.; Pastor, E. Uav flight experiments applied to the remote sensing of vegetated areas.
Remote Sens. 2014, 6, 11051–11081. [CrossRef]

17. Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review.
Precis. Agric. 2012, 13, 693–712. [CrossRef]

18. Berni, J.; Zarco-Tejada, P.; González-Dugo, V.; Fereres, E. Remote Sensing of Thermal Water Stress Indicators
in Peach. In Proceedings of the 7th International Peach Symposium 962, Lleida, Spain, 8–11 June 2009;
Girona, J., Marsal, J., Eds.; ISHS: Leuven, Belgium, 2009; pp. 325–331.

19. Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of vegetation indices for agricultural crop yield prediction
using neural network techniques. Remote Sens. 2010, 2, 673–696. [CrossRef]

20. Zarco-Tejada, P.J.; Suárez, L.; González-Dugo, V. Spatial resolution effects on chlorophyll fluorescence
retrieval in a heterogeneous canopy using hyperspectral imagery and radiative transfer simulation.
IEEE Geosci. Remote Sens. Lett. 2013, 10, 937–941. [CrossRef]

http://dx.doi.org/10.1080/01431169608949094
http://dx.doi.org/10.3390/rs2010290
http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009
http://dx.doi.org/10.1016/j.aaspro.2015.08.134
http://dx.doi.org/10.1016/j.agee.2015.05.008
http://dx.doi.org/10.1007/s11119-008-9088-7
http://dx.doi.org/10.1016/j.rse.2012.05.013
http://dx.doi.org/10.1007/s11355-010-0132-1
http://dx.doi.org/10.1007/s11119-009-9104-6
http://dx.doi.org/10.1016/j.tplants.2013.09.008
http://www.ncbi.nlm.nih.gov/pubmed/24139902
http://dx.doi.org/10.13031/2013.27838
http://dx.doi.org/10.1016/j.compag.2012.12.002
http://dx.doi.org/10.3390/rs8121031
http://dx.doi.org/10.1016/j.compag.2014.02.009
http://dx.doi.org/10.3390/rs61111051
http://dx.doi.org/10.1007/s11119-012-9274-5
http://dx.doi.org/10.3390/rs2030673
http://dx.doi.org/10.1109/LGRS.2013.2252877


Remote Sens. 2018, 10, 563 23 of 25

21. Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard
water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV).
Irrig. Sci. 2012, 30, 511–522. [CrossRef]

22. Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An automatic object-based method for
optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops.
Comput. Electron. Agric. 2015, 114, 43–52. [CrossRef]

23. Yun, H.S.; Park, S.H.; Kim, H.-J.; Lee, W.D.; Do Lee, K.; Hong, S.Y.; Jung, G.H. Use of unmanned aerial
vehicle for multi-temporal monitoring of soybean vegetation fraction. J. Biosyst. Eng. 2016, 41, 126–137.
[CrossRef]

24. Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating biomass of barley using
crop surface models (CSMS) derived from UAV-based rgb imaging. Remote Sens. 2014, 6, 10395–10412.
[CrossRef]

25. Anthony, D.; Elbaum, S.; Lorenz, A.; Detweiler, C. On crop height estimation with uavs. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September
2014; pp. 4805–4812.

26. Geipel, J.; Link, J.; Claupein, W. Combined spectral and spatial modeling of corn yield based on aerial images
and crop surface models acquired with an unmanned aircraft system. Remote Sens. 2014, 6, 10335–10355.
[CrossRef]

27. Ewert, F.; van Ittersum, M.K.; Heckelei, T.; Therond, O.; Bezlepkina, I.; Andersen, E. Scale changes and
model linking methods for integrated assessment of agri-environmental systems. Agric. Ecosyst. Environ.
2011, 142, 6–17. [CrossRef]

28. Mirschel, W.; Schultz, A.; Wenkel, K.; Wieland, R.; Poluektov, R. Crop growth modelling on different spatial
scales—A wide spectrum of approaches. Arch. Agron. Soil Sci. 2004, 50, 329–343. [CrossRef]

29. Newe, M.; Meier, H.; Johnen, A.; Volk, T. Proplant expert.com—An online consultation system on crop
protection in cereals, rape, potatoes and sugarbeet. EPPO Bull. 2003, 33, 443–449. [CrossRef]

30. Blackmore, S. The interpretation of trends from multiple yield maps. Comput. Electron. Agric. 2000, 26, 37–51.
[CrossRef]

31. Mourtzinis, S.; Arriaga, F.J.; Balkcom, K.S.; Ortiz, B.V. Corn grain and stover yield prediction at R1 growth
stage. Agron. J. 2013, 105, 1045–1050. [CrossRef]

32. Batchelor, W.D.; Basso, B.; Paz, J.O. Examples of strategies to analyze spatial and temporal yield variability
using crop models. Eur. J. Agron. 2002, 18, 141–158. [CrossRef]

33. Rodrigues, M.S.; Corá, J.E.; Castrignanò, A.; Mueller, T.G.; Rienzi, E. A spatial and temporal prediction
model of corn grain yield as a function of soil attributes. Agron. J. 2013, 105, 1878–1887. [CrossRef]

34. Thorp, K.R.; DeJonge, K.C.; Kaleita, A.L.; Batchelor, W.D.; Paz, J.O. Methodology for the use of dssat models
for precision agriculture decision support. Comput. Electron. Agric. 2008, 64, 276–285. [CrossRef]

35. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water
requirements-FAO irrigation and drainage paper 56. FAO Rome 1998, 300, D05109.

36. Lazcano, C.; Domínguez, J. The use of vermicompost in sustainable agriculture: Impact on plant growth and
soil fertility. Soil Nutr. 2011, 10, 1–23.

37. Li, D.; Xu, L.; Tang, X.-S.; Sun, S.; Cai, X.; Zhang, P. 3D imaging of greenhouse plants with an inexpensive
binocular stereo vision system. Remote Sens. 2017, 9, 508. [CrossRef]

38. An, N.; Welch, S.M.; Markelz, R.C.; Baker, R.L.; Palmer, C.M.; Ta, J.; Maloof, J.N.; Weinig, C. Quantifying
time-series of leaf morphology using 2D and 3D photogrammetry methods for high-throughput plant
phenotyping. Comput. Electron. Agric. 2017, 135, 222–232. [CrossRef]

39. Bendig, J.; Bolten, A.; Bareth, G. Uav-based imaging for multi-temporal, very high resolution crop surface
models to monitor crop growth variability. J. Photogramm., Remote Sens. Geoinf. Process. 2013, 2013, 551–562.

40. Hoffmeister, D.; Bolten, A.; Curdt, C.; Waldhoff, G.; Bareth, G. High-resolution crop surface models
(CSM) and crop volume models (CVM) on field level by terrestrial laser scanning. In Proceedings of
the 6th International Symposium on Digital Earth: Models, Algorithms, and Virtual Reality, Beijing, China,
9–12 September 2009; Proc. SPIE: Bellingham, WA, USA, 2010; p. 78400E.

41. Tilly, N.; Hoffmeister, D.; Cao, Q.; Huang, S.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Multitemporal crop
surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning
in paddy rice. J. Appl. Remote Sens. 2014, 8, 083671. [CrossRef]

http://dx.doi.org/10.1007/s00271-012-0382-9
http://dx.doi.org/10.1016/j.compag.2015.03.019
http://dx.doi.org/10.5307/JBE.2016.41.2.126
http://dx.doi.org/10.3390/rs61110395
http://dx.doi.org/10.3390/rs61110335
http://dx.doi.org/10.1016/j.agee.2011.05.016
http://dx.doi.org/10.1080/03650340310001634353
http://dx.doi.org/10.1111/j.1365-2338.2003.00678.x
http://dx.doi.org/10.1016/S0168-1699(99)00075-7
http://dx.doi.org/10.2134/agronj2012.0393
http://dx.doi.org/10.1016/S1161-0301(02)00101-6
http://dx.doi.org/10.2134/agronj2012.0456
http://dx.doi.org/10.1016/j.compag.2008.05.022
http://dx.doi.org/10.3390/rs9050508
http://dx.doi.org/10.1016/j.compag.2017.02.001
http://dx.doi.org/10.1117/1.JRS.8.083671


Remote Sens. 2018, 10, 563 24 of 25

42. Hyyppä, J.; Yu, X.; Hyyppä, H.; Vastaranta, M.; Holopainen, M.; Kukko, A.; Kaartinen, H.; Jaakkola, A.;
Vaaja, M.; Koskinen, J. Advances in forest inventory using airborne laser scanning. Remote Sens. 2012,
4, 1190–1207. [CrossRef]

43. Kane, V.R.; McGaughey, R.J.; Bakker, J.D.; Gersonde, R.F.; Lutz, J.A.; Franklin, J.F. Comparisons between
field-and lidar-based measures of stand structural complexity. Can. J. For. Res. 2010, 40, 761–773. [CrossRef]

44. Wulder, M.A.; Coops, N.C.; Hudak, A.T.; Morsdorf, F.; Nelson, R.; Newnham, G.; Vastaranta, M. Status and
prospects for lidar remote sensing of forested ecosystems. Can. J. Remote Sens. 2013, 39, S1–S5. [CrossRef]

45. Dandois, J.P.; Ellis, E.C. Remote sensing of vegetation structure using computer vision. Remote Sens. 2010,
2, 1157–1176. [CrossRef]

46. Verhoeven, G. Taking computer vision aloft–archaeological three-dimensional reconstructions from aerial
photographs with photoscan. Archaeol. Prospect. 2011, 18, 67–73. [CrossRef]

47. Westoby, M.; Brasington, J.; Glasser, N.; Hambrey, M.; Reynolds, J. ‘Structure-from-motion’photogrammetry:
A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [CrossRef]

48. James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from uav and
ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [CrossRef]

49. Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [CrossRef]
50. Qiu, N.; Liu, Q.; Li, J.; Zhang, Y.; Wang, F.; Gao, J. Physiological and transcriptomic responses of Chinese

Cabbage (Brassica rapa L. ssp. Pekinensis) to salt stress. Int. J. Mol. Sci. 2017, 18, 1953. [CrossRef] [PubMed]
51. Zhang, G.; Wang, F.; Li, J.; Ding, Q.; Zhang, Y.; Li, H.; Zhang, J.; Gao, J. Genome-wide identification and

analysis of the vq motif-containing protein family in chinese cabbage (Brassica rapa L. ssp. Pekinensis). Int. J.
Mol. Sci. 2015, 16, 28683–28704. [CrossRef] [PubMed]

52. Lancashire, P.D.; Bleiholder, H.; Boom, T.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform
decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [CrossRef]

53. Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from
ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SFM) point
clouds. Remote Sens. 2012, 4, 1392–1410. [CrossRef]

54. An, N.; Palmer, C.M.; Baker, R.L.; Markelz, R.C.; Ta, J.; Covington, M.F.; Maloof, J.N.; Welch, S.M.; Weinig, C.
Plant high-throughput phenotyping using photogrammetry and imaging techniques to measure leaf length
and rosette area. Comput. Electron. Agric. 2016, 127, 376–394. [CrossRef]

55. Meyer, G.; Mehta, T.; Kocher, M.; Mortensen, D.; Samal, A. Textural imaging and discriminant analysis for
distinguishingweeds for spot spraying. Trans. ASAE 1998, 41, 1189–1197. [CrossRef]

56. Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance.
Int. J. Remote Sens. 1999, 20, 2653–2662. [CrossRef]

57. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. Syst. 1979,
9, 62–66. [CrossRef]

58. Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Steege, H.T.;
Morgan, H.D.; van der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy
measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [CrossRef]

59. Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.;
Cornwell, W.K.; Craine, J.M.; Gurvich, D.E. New handbook for standardised measurement of plant functional
traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [CrossRef]

60. Granshaw, S.I. Photogrammetric terminology. Photogramm. Rec. 2016, 31, 210–252. [CrossRef]
61. Chang, A.; Jung, J.; Maeda, M.M.; Landivar, J. Crop height monitoring with digital imagery from unmanned

aerial system (UAS). Comput. Electron. Agric. 2017, 141, 232–237. [CrossRef]
62. Ruiz, J.; Diaz-Mas, L.; Perez, F.; Viguria, A. Evaluating the accuracy of dem generation algorithms from uav

imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2013, 40, 333–337. [CrossRef]
63. Bareth, G.; Bendig, J.; Tilly, N.; Hoffmeister, D.; Aasen, H.; Bolten, A. A comparison of UAV-and TLS-derived

plant height for crop monitoring: Using polygon grids for the analysis of crop surface models (CSMS).
J. Photogramm. Remote Sens. Geoinf. Process. 2016, 2016, 85–94. [CrossRef]

64. Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining
UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass
monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [CrossRef]

http://dx.doi.org/10.3390/rs4051190
http://dx.doi.org/10.1139/X10-024
http://dx.doi.org/10.5589/m13-051
http://dx.doi.org/10.3390/rs2041157
http://dx.doi.org/10.1002/arp.399
http://dx.doi.org/10.1016/j.geomorph.2012.08.021
http://dx.doi.org/10.1002/esp.3609
http://dx.doi.org/10.1007/s12518-013-0120-x
http://dx.doi.org/10.3390/ijms18091953
http://www.ncbi.nlm.nih.gov/pubmed/28895882
http://dx.doi.org/10.3390/ijms161226127
http://www.ncbi.nlm.nih.gov/pubmed/26633387
http://dx.doi.org/10.1111/j.1744-7348.1991.tb04895.x
http://dx.doi.org/10.3390/rs4051392
http://dx.doi.org/10.1016/j.compag.2016.04.002
http://dx.doi.org/10.13031/2013.17244
http://dx.doi.org/10.1080/014311699211994
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1071/BT02124
http://dx.doi.org/10.1071/BT12225
http://dx.doi.org/10.1111/phor.12146
http://dx.doi.org/10.1016/j.compag.2017.07.008
http://dx.doi.org/10.5194/isprsarchives-XL-1-W2-333-2013
http://dx.doi.org/10.1127/pfg/2016/0289
http://dx.doi.org/10.1016/j.jag.2015.02.012


Remote Sens. 2018, 10, 563 25 of 25

65. Brocks, S.; Bareth, G. Estimating barley biomass with crop surface models from oblique rgb imagery.
Remote Sens. 2018, 10, 268. [CrossRef]

66. Dimokas, G.; Tchamitchian, M.; Kittas, C. Calibration and validation of a biological model to simulate the
development and production of tomatoes in mediterranean greenhouses during winter period. Biosyst. Eng.
2009, 103, 217–227. [CrossRef]

67. Kim, H.-J.; Hummel, J.W.; Sudduth, K.A.; Motavalli, P.P. Simultaneous analysis of soil macronutrients using
ion-selective electrodes. Soil Sci. Soc. Am. J. 2007, 71, 1867–1877. [CrossRef]

68. Kim, H.; Sudduth, K.; Hummel, J.W.; Drummond, S. Validation testing of a soil macronutrient sensing
system. Trans. ASABE 2013, 56, 23–31. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs10020268
http://dx.doi.org/10.1016/j.biosystemseng.2009.01.004
http://dx.doi.org/10.2136/sssaj2007.0002
http://dx.doi.org/10.13031/2013.42582
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Test Plots 
	Unmanned Aerial Vehicles Flight and Image Acquisition 
	Image Processing 
	Radiometric Calibration and Region of Interest 
	Quantification of Vegetation Fraction and Plant Height 
	Statistical Analysis 

	Results 
	Geo-Referencing, Radiometric Calibration and Crop Segmentation 
	Validation of Plant Height Estimation Based on the SfM Algorithm 
	Temporal Variability in Vegetation Fraction and Plant Height 
	Biophysical Parameter Modeling 
	Validation of Biophysical Parameter Estimation Models 
	Application to Spatial Mapping of Potential Yield 

	Discussion 
	Conclusions 
	References

