The role of Interferometric Synthetic Aperture Radar in Detecting, Mapping, Monitoring, and Modelling the Volcanic Activity of Piton de la Fournaise, La Réunion: A Review
Abstract
:1. Introduction
2. SAR Data and SAR Data Archives
3. Characteristic Deformation and Associated Physical Processes at Piton de la Fournaise volcano
3.1. Displacements of the Central Volcanic Cone
3.2. Short-Term Rapid Variations and Typical Deformation Patterns Associated with Eruptions
3.2.1. Co-Eruptive Displacements
3.2.2. Post-Eruptive Displacements
3.3. Fractures and Local Instabilities
3.4. Lava Flow Cooling and Compaction
3.5. Flank Sliding and Slip
3.6. Cumulative Displacements
4. Discussion and Conclusion: Lessons Learned and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peltier, A.; Bachèlery, P.; Staudacher, T. Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: A review of geophysical and geochemical data. J. Volcanol. Geotherm. Res. 2009, 184, 93–108. [Google Scholar] [CrossRef]
- Michon, L.; Di Muro, A.; Villeneuve, N.; Saint-Marc, C.; Fadda, P.; Manta, F. Explosive activity of the summit cone of Piton de la Fournaise volcano (La Réunion island): A historical and geological review. J. Volcanol. Geotherm. Res. 2013, 264, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Peltier, A.; Poland, M.P.; Staudacher, T. Are Piton de la Fournaise (La Réunion) and Kīlauea (Hawai‘i) really “analog volcanoes”. Hawaii Volcanoes Source Surf. Geophys. Monogr. Ser. 2015, 208, 507–531. [Google Scholar] [CrossRef]
- Michon, L.; Lénat, J.F.; Bachèlery, P.; Di Muro, A. Geology and morphostructural evolution of Piton de la Fournaise. In Active Volcanoes of the Southwest Indian Ocean; Springer: Berlin/Heidelberg, Germany, 2016; pp. 45–59. [Google Scholar] [CrossRef] [Green Version]
- Bachèlery, P. Le Piton de la Fournaise (Ile de la Réunion). Etude volcanologique, structurale et pétrologique. Ph.D. Thesis, University Clermont-Ferrand II, Clermont-Ferrand, France, 1981; p. 215. [Google Scholar]
- Chevallier, L.; Bachèlery, P. Evolution structurale du volcan actif du Piton de la Fournaise, Ile de la Réunion - Océan indien occidental. Bull. Volcanol. 1981, 44, 723–741. [Google Scholar] [CrossRef]
- Duffield, W.A.; Stieltjes, L.; Varet, J. Huge landslide blocks in the growth of Piton de la Fournaise, La Reunion, and Kilauea Volcano, Hawaii. J. Volcanol. Geoth. Res. 1982, 12, 147–160. [Google Scholar] [CrossRef]
- Lénat, J.F.; Vincent, P.M.; Bachèlery, P. The off-shore continuation of an active basaltic volcano: Piton de la Fournaise (Réunion Island, Indian Ocean); structural and geomorphological interpretation from sea beam mapping. J. Volcanol. Geoth. Res. 1989, 36, 1–36. [Google Scholar] [CrossRef]
- Labazuy, P. Recurrent landslides events on the submarine flank of Piton de la Fournaise volcano (Réunion Island). Geol. Soc. Spec. Publ. 1996, 110, 293–306. [Google Scholar] [CrossRef]
- Merle, O.; Lénat, J. Hybrid collapse mechanism at Piton de la Fournaise volcano, Reunion Island, Indian Ocean. J. Geophys. Res.-Solid Earth 2003, 108, 2166. [Google Scholar] [CrossRef]
- Oehler, J.F.; Labazuy, P.; Lénat, J.F. Recurrence of major flank landslides during the last 2-Ma-history of Reunion Island. Bull. Volcanol. 2004, 66, 585–598. [Google Scholar] [CrossRef]
- Oehler, J.F.; Lénat, J.F.; Labazuy, P. Growth and collapse of the Reunion Island volcanoes. Bull. Volcanol. 2008, 70, 717–742. [Google Scholar] [CrossRef]
- Michon, L.; Saint-Ange, F. Morphology of Piton de la Fournaise basaltic shield volcano (La Réunion Island): Characterization and implication in the volcano evolution. J. Geophys. Res.-Solid Earth 2008, 113, B03203. [Google Scholar] [CrossRef] [Green Version]
- Staudacher, T.; Ferrazzini, V.; Peltier, A.; Kowalski, P.; Boissier, P.; Catherine, P.; Lauret, F.; Massin, F. The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise. J. Volcanol. Geotherm. Res. 2009, 184, 126–137. [Google Scholar] [CrossRef]
- Lenat, J.-F.; Bachelery, P.; Peltier, A. The interplay between collapse structures, hydrothermal systems, and magma intrusions: The case of the central area of Piton de la Fournaise volcano. Bull. Volcanol. 2012, 74, 407–421. [Google Scholar] [CrossRef]
- Battaglia, J.; Ferrazzini, V.; Staudacher, T.; Aki, K.; Cheminée, J.L. Pre-eruptive migration of earthquakes at the Piton de La Fournaise volcano (Réunion Island). Geophys. J. Int. 2005, 161, 549–558. [Google Scholar] [CrossRef]
- Battaglia, J.; Breunguier, F.; Roult, G. Seismic monitoring at Piton de la Fournaise. In Active Volcanoes of the Southwest Indian Ocean; Springer: Berlin/Heidelberg, Germany, 2016; pp. 223–242. [Google Scholar] [CrossRef]
- Froger, J.L.; Famin, V.; Cayol, V.; Augier, A.; Michon, L.; Lénat, J.F. Time-dependent displacements during and after the April 2007 eruption of Piton de la Fournaise, revealed by interferometric data. J. Volcanol. Geotherm. Res. 2015, 296, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, K.; Froger, J.-L.; Tan, K.; Remy, D.; Darrozes, J.; Peltier, A.; Feng, X.; Li, H.; Villeneuve, N. Long-Term Subsidence in Lava Fields at Piton de la Fournaise Volcano Measured by InSAR: New Insights for Interpretation of the Eastern Flank Motion. Remote Sens. 2018, 10, 597. [Google Scholar] [CrossRef] [Green Version]
- Global Volcanism Program. Report on Piton de la Fournaise (France). Available online: https://volcano.si.edu/showreport.cfm?doi=10.5479/si.GVP.BGVN199803-233020 (accessed on 21 March 2020).
- Peltier, A.; Villeneuve, N.; Ferrazzini, V.; Testud, S.; Hassen Ali, T.; Boissier, P.; Catherine, P. Changes in the Long-Term Geophysical Eruptive Precursors at Piton de la Fournaise: Implications for the Response Management. Front. Earth Sci. 2018, 6, 104. [Google Scholar] [CrossRef]
- Staudacher, T.; Peltier, A. Ground deformation at Piton de la Fournaise, a review from 20 years of GNSS monitoring. In Active Volcanoes of the Southwest Indian Ocean; Springer: Berlin/Heidelberg, Germany, 2016; pp. 251–269. [Google Scholar] [CrossRef]
- Sigmundsson, F.; Durand, P.; Massonnet, D. Opening of an eruptive fissure and sea- ward displacement at Piton de la Fournaise volcano measured by RADARSAT satellite radar interferometry. Geophys. Res. Lett. 1999, 26, 533–536. [Google Scholar] [CrossRef]
- CASOAR. Available online: https://wwwobs.univ-bpclermont.fr/casoar/resources/php/Accounts/login.php (accessed on 5 March 2020).
- Peltier, A.; Froger, J.-L.; Villeneuve, N.; Catry, T. Assessing the reliability and consistency of InSAR and GNSS data for retrieving 3D displacement rapid changes, the example of the 2015 Piton de la Fournaise eruptions. J. Volcanol. Geotherm. Res. 2017, 344, 106–120. [Google Scholar] [CrossRef]
- Borgia, A.; Delaney, P.T.; Denlinger, R.P. Spreading volcanoes. Annu. Rev. Earth Planet. Sci. 2000, 28, 539–570. [Google Scholar] [CrossRef]
- González, P.J.; Tiampo, K.F.; Camacho, A.G.; Fernández, J. Shallow flank deformation at Cumbre Vieja volcano (Canary Islands): Implications on the stability of steep-sided volcano flanks at oceanic islands. Earth Planet. Sci. Lett. 2010, 297, 545–557. [Google Scholar] [CrossRef]
- Dietterich, H.R.; Poland, M.P.; Schmidt, D.A.; Cashman, K.V.; Sherrod, D.R.; Espinosa, A.T. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence. Geochem. Geophys. Geosys. 2012, 13, 1–17. [Google Scholar] [CrossRef]
- Wittmann, W.; Sigmundsson, F.; Dumont, S.; Lavallée, Y. Post-emplacement cooling and contraction of lava flows: InSAR observations and a thermal model for lava fields at Hekla volcano, Iceland. J. Geophys. Res. Solid Earth 2017, 122, 946–965. [Google Scholar] [CrossRef] [Green Version]
- Hrysiewicz, A.; Froger, J.-L.; Villeneuve, N.; Menand, T.; Aaron, C.; Peltier, A. InSAR characterization of lava flows at Piton de la Fournaise. In Proceedings of the 19th General Assembly of Wegener on Earth Deformation and the Study of Earthquakes Using Geodesy and Geodynamics, Grenoble, France, 10–13 September 2018. [Google Scholar]
- Peltier, A.; Famin, V.; Bachèlery, P.; Cayol, V.; Fukushima, Y.; Staudacher, T. Cyclic magma storages and transfers at Piton de la Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data. Earth Planet. Sci. Lett. 2008, 270, 180–188. [Google Scholar] [CrossRef]
- Peltier, A. Suivi, Modélisation et Evolution des processus d’injections magmatiques au Piton de la Fournaise. Ph.D. Thesis, Université de La Réunion, Réunion, France, 2007. [Google Scholar]
- Peltier, A.; Staudacher, T.; Bachèlery, P. Constraints on magma transfers and structures involved in the 2003 activity at Piton de la Fournaise from displacement data. J. Geophys. Res. 2007, 112, B03207. [Google Scholar] [CrossRef] [Green Version]
- Tinard, P. Caractérisation et modélisation des déplacements du sol associés à l’activité volcanique du Piton de la Fournaise, île de La Réunion, à partir de données interférométriques. Ph.D. Thesis, Université de Clermont Ferrand, Clermont-Ferrand, France, 2007. [Google Scholar]
- Webley, P.; Wadge, G.; James, I.N. Determining radio wave delay by nonhydrostatic atmospheric modelling of water vapour over mountains. Phys. Chem. Earth 2004, 29, 139–148. [Google Scholar] [CrossRef]
- Pavez, A.; Remy, D.; Bonvalot, S.; Diament, M.; Gabalda, G.; Froger, J.-L.; Julien, P.; Lengrand, D.; Moisset, D. Insight into ground deformations at Lascar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: Implications on volcano dynamics and future space monitoring. Remote Sens. Environ. 2006, 100, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Ebmeier, S.K.; Biggs, J.; Mather, T.A.; Amelung, F. Applicability of InSAR to tropical volcanoes: Insights from Central America. Geol. Soc. Lond. Spec. Publ. 2013, 380, 15–37. [Google Scholar] [CrossRef] [Green Version]
- Staudacher, T.; Peltier, A.; Ferrazzini, V.; Di Muro, A.; Boissier, P.; Catherine, P.; Kowalski, P.; Laurent, F.; Lebreton, J. Fifteen years of intense eruptive activity (1998–2013) at Piton de La Fournaise volcano: A review. In Active Volcanoes of the Southwest Indian Ocean; Springer: Berlin/Heidelberg, Germany, 2016; pp. 139–170. [Google Scholar] [CrossRef]
- Fukushima, Y.; Cayol, V.; Durand, P. Finding realistic dike models from interferometric synthetic aperture radar data: The February 2000 eruption at Piton de la Fournaise. J. Geophys. Res. Solid Earth 2005, 110, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, Y.; Cayol, V.; Durand, D.; Massonnet, D. Evolution of magma conduits during the 1998–2000 eruptions of Piton de la Fournaise volcano, Réunion Island. J. Geophys. Res. 2010, 115, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Froger, J.-L.; Fukushima, Y.; Briole, P.; Staudacher, T.; Souriot, T.; Villeneuve, N. The deformation field of the August 2003 eruption at Piton de la Fournaise, Reunion Island, mapped by ASAR interferometry. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Augier, A. Etude de l’éruption d’avril 2007 du Piton de la Fournaise (île de la Réunion) à partir de données d’interférométrie RADAR et GPS, développement et application de procédure de modélisation. Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand, France, 2011. [Google Scholar]
- Smittarello, D.; Cayol, V.; Pinel, V.; Peltier, A.; Froger, J.-L.; Ferrazzini, V. Magma Propagation at Piton de la Fournaise from joint inversion of InSAR and GNSS. J. Geophys. Res. Solid Earth 2019, 124, 1361–1387. [Google Scholar] [CrossRef]
- Got, J.-L.; Peltier, A.; Staudacher, T.; Kowalski, P.; Boissier, P. Edifice strength and magma transfer modulation at Piton de la Fournaise volcano. J. Geophys. Res. Solid Earth 2013, 118, 1–18. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Derrien, A.; Villeneuve, N.; Peltier, A.; Michon, L. Multi-temporal airborne structure-from-motion on caldera rim: Hazard, visitor exposure and origins of instabilities at Piton de la Fournaise. Progress Phys. Geogr. Earth Environ. 2019, 43, 193–214. [Google Scholar] [CrossRef]
- Richter, N.; Poland, M.P.; Lundgren, P.R. TerraSAR-X interferometry reveals small-scale deformation associated with the summit eruption of Kīlauea Volcano, Hawai‘i. Geophys. Res. Lett. 2013, 40, 1279–1283. [Google Scholar] [CrossRef]
- Richter, N.; Favalli, M.; de Zeeuw-van Dalfsen, E.; Fornaciai, A.; da Silva Fernandes, R.M.; Pérez, N.M.; Levy, J.; Silva Victória, S.; Walter, T.R. Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014-2015 eruption. Nat. Hazards Earth Syst. Sci. 2016, 16, 1925–1951. [Google Scholar] [CrossRef] [Green Version]
- Hrysiewicz, A. Caractérisation des déplacements liés aux coulees de lave au Piton de la Fournaise à partir de données InSAR. Ph.D. Thesis, Université Clermont Auvergne, Clermont-Ferrand, France, 2019. [Google Scholar]
- Zebker, H.A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P.J. Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR-C radar correlation measurements. Geology 1996, 24, 495–498. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.J.L.; Chevrel, O.M.; Coppola, D.; Ramsey, M.S.; Hrysiewicz, A.; Thivet, S.; Villeneuve, N.; Favalli, M.; Peltier, A.; Kowalski, P.; et al. Validation of an integrated satellite-data-driven response to an effusive crisis: The April–May 2018 eruption of Piton de la Fournaise. Available online: https://www.annalsofgeophysics.eu/index.php/annals/article/view/7972 (accessed on 20 March 2020).
- Bato, M.G.; Froger, J.-L.; Harris, A.J.L.; Villeneuve, N. Monitoring Effusive Eruptions at Piton de la Fournaise through synergy of Space-based Radar and Thermal Data: Insights into the October 2010 Eruption and its Lava Flows. In Detecting, Modelling and Responding to Effusive Eruptions; Harris, A.J.L., De Groeve, T., Garel, F., Carn, S.A., Eds.; Geological Society of London: London, UK, 2016. [Google Scholar] [CrossRef]
- Lenat, J.-F.; Bachelery, P.; Bonneville, A.; Galdeano, A.; Labazuy, P.; Rousset, D.; Vincent, P. Structure and morphology of the submarine flank of an active basaltic volcano: Piton de La Fournaise (Reunion Island, Indian Ocean). Oceanol. Acta 1990, 10, 211–223. [Google Scholar]
- Oehler, J.F.; van Wyk de Vries, B.; Labazuy, P. Landslides and spreading of oceanic hotspot and arc shield volcanoes on Low Strength Layers (LSLs): An analogue modelling approach. J. Volcanol. Geotherm. Res. 2005, 144, 169–189. [Google Scholar] [CrossRef]
- Augier, A.; Froger, J.-L.; Cayol, V.; Fukushima, Y.; Tinard, P.; Souriot, T.; Mora, O.; Staudacher, T.; Durand, P.; Fruneau, B.; et al. The April 2007 eruption at Piton de la Fournaise, Reunion Island, imaged with ENVISAT-ASAR and ALOS-PALSAR data. Proceedings the of USEReST Workshop, Napoli, Italy, 2008; Available online: https://www.researchgate.net/publication/267426899_The_April_2007_eruption_at_Piton_de_la_Fournaise_Reunion_Island_imaged_with_ENVISAT-ASAR_and_ALOS-PALSAR_data (accessed on 20 March 2020).
- Clarke, D.; Brenguier, F.; Froger, J.-L.; Shapiro, N.M.; Peltier, A.; Staudacher, T. Timing of a large volcanic flank movement at Piton de la Fournaise volcano using noise-based seismic monitoring and ground deformation measurements. Geophys. J. Int. 2013, 195, 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Smittarello, D.; Cayol, V.; Pinel, V.; Froger, J.-L.; Peltier, A.; Dumont, Q. Combining InSAR and GNSS to Track Magma Transport at Basaltic Volcanoes. Remote Sens. 2019, 11, 2236. [Google Scholar] [CrossRef] [Green Version]
- Tridon, M.; Cayol, V.; Froger, J.-L.; Augier, A.; Bachèlery, P. Inversion of coeval shear and normal stress of Piton de la Fournaise flank displacement. J. Geophys. Res. Solid Earth 2016, 121, 7846–7866. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Remy, D.; Froger, J.-L.; Peltier, A.; Villeneuve, N.; Darrozes, J.; Perfettini, H.; Bonvalot, S. Long-term ground displacement observations using InSAR and GNSS at Piton de la Fournaise volcano between 2009 and 2014. Remote Sens. Environ. 2017, 194, 230–247. [Google Scholar] [CrossRef]
- Cayol, V.; Catry, T.; Michon, L.; Chaput, M.; Famin, V.; Bodart, O.; Froger, J.-L.; Romagnoli, C. Sheared sheet intrusions as mechanism for lateral flank displacement on basaltic volcanoes: Applications to Réunion Island volcanoes. J. Geophys. Res. Solid Earth 2014, 119, 7607–7635. [Google Scholar] [CrossRef] [Green Version]
- Chaput, M.; Pinel, V.; Famin, V.; Michon, L.; Froger, J.-L. Cointrusive shear displacement by sill intrusion in a detachment: A numerical approach. Geophys. Res. Lett. 2014, 41, 1937–1943. [Google Scholar] [CrossRef] [Green Version]
Satellite a | Band | Acq. Mode b | Pol. | Resolution R/A c (m) | Image Size RxA c (km) | Scene Center Coordinate | Swath /Track /Beam d | Pass LD e | Look Angle (°) f | First Image Date yyyy/mm/dd | Last Image Date yyyy/mm/dd | No. Scenes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ALOS1 | L | SM | HH/HV | 9.37/3.20 | 43.5 × 59.0 | 21.36°S 55.98°E | 539 | AR | 37.3 | 2007/09/04 | 2010/07/28 | 4 |
ALOS1 | L | SM | HH | 4.68/3.20 | 43.7 × 59.0 | 21.37°S 55.96°E | 539 | AR | 37.3 | 2007/03/04 | 2011/01/28 | 8 |
ALOS1 | L | SM | HH | 4.68/3.19 | 43.7 × 59.0 | 21.29°S 55.93°E | 191 | DR | 39.8 | 2007/08/07 | 2008/08/09 | 2 |
ALOS1 | L | SM | HH | 4.68/3.60 | 51.4 × 66.4 | 21.00°S 55.83°E | 542 | AR | 46.4 | 2006/07/22 | 2006/10/22 | 2 |
ALOS1 | L | SM | HH/HV | 9.37/4.08 | 52.5 × 75.4 | 21.36°S 55.81°E | 541 | AR | 43.6 | 2006/10/05 | 2007/05/23 | 3 |
ALOS1 | L | SM | HH/HV | 9.37/3.20 | 43.5 × 59.0 | 21.36°S 55.72°E | 540 | AR | 40.5 | 2007/08/06 | 2010/08/14 | 5 |
ALOS1 | L | SM | HH | 4.68/3.20 | 43.7 × 59.0 | 21.36°S 55.42°E | 540 | AR | 40.5 | 2007/02/03 | 2010/03/29 | 9 |
ENVISAT | C | SM | VV | 7.80/3.25 | 40.1 × 107.2 | 21.19°S 55.78°E | IS7 005 | DR | 43.8 | 2003/08/12 | 2010/09/14 | 35 |
ENVISAT | C | SM | VV | 7.80/3.24 | 40.1 × 107.3 | 21.18°S 55.94°E | IS7 170 | AR | 42.7 | 2007/04/14 | 2010/09/25 | 22 |
ENVISAT | C | SM | VV | 7.80/3.98 | 47.2 × 108.5 | 20.98°S 55.65°E | IS6 277 | DR | 40.1 | 2003/07/27 | 2010/08/29 | 45 |
ENVISAT | C | SM | VV | 7.80/3.23 | 40.1 × 100.2 | 21.24°S 55.46°E | IS5 399 | AR | 38.8 | 2003/09/08 | 2009/03/30 | 39 |
ENVISAT | C | SM | VV | 7.80/3.23 | 40.1 × 107.5 | 20.99°S 55.56°E | IS5 048 | DR | 36.2 | 2003/11/28 | 2010/09/17 | 38 |
ENVISAT | C | SM | VV | 7.80/3.96 | 49.1 × 102.1 | 21.14°S 55.48°E | IS4 127 | AR | 34.8 | 2010/02/24 | 2010/08/18 | 2 |
ENVISAT | C | SM | HH | 7.80/3.96 | 49.1 × 102.1 | 21.14°S 55.48°E | IS4 127 | AR | 34.8 | 2004/08/04 | 2015/12/07 | 4 |
ENVISAT | C | SM | VV | 7.80/4.02 | 48.7 × 110.9 | 21.09°S 55.48°E | IS4 320 | DR | 31.8 | 2009/06/03 | 2010/09/01 | 7 |
ENVISAT | C | SM | HH | 7.80/4.02 | 48.7 × 110.9 | 21.09°S 55.48°E | IS4 320 | DR | 31.8 | 2003/12/17 | 2005/12/21 | 5 |
ENVISAT | C | SM | VV | 7.80/3.18 | 39.9 × 109.9 | 21.12°S 55.54°E | IS3 091 | DR | 27.1 | 2003/08/18 | 2010/09/20 | 44 |
ENVISAT | C | SM | VV | 7.80/3.18 | 40.0 × 108.1 | 21.15°S 55.39°E | IS3 356 | AR | 30.3 | 2003/08/01 | 2010/09/03 | 42 |
ENVISAT | C | SM | VV | 7.80/4.06 | 40.5 × 109.2 | 21.05°S 55.97°E | IS2 313 | AR | 20.2 | 2003/04/15 | 2010/05/18 | 49 |
ENVISAT | C | SM | VV | 7.80/4.06 | 40.5 × 98.3 | 21.23°S 55.28°E | IS2 084 | AR | 25.4 | 2003/08/17 | 2010/09/19 | 33 |
ENVISAT | C | SM | VV | 7.80/4.06 | 40.5 × 109.6 | 21.10°S 55.69°E | IS2 363 | DR | 21.9 | 2003/08/02 | 2010/09/04 | 53 |
RSAT1 | C | SM | HH | 4.63/5.17 | 27.7 × 58.3 | 21.18°S 55.75°E | F5 | DR | 47.5 | 2000/09/05 | 2002/03/11 | 4 |
RSAT1 | C | SM | HH | 4.63/5.05 | 26.3 × 59.4 | 21.19°S 55.66°E | F4 | AR | 46.1 | 2000/09/27 | 2002/04/26 | 8 |
RSAT1 | C | SM | HH | 4.63/5.36 | 27.8 × 60.9 | 21.19°S 55.67°E | F2 | AR | 40.9 | 2001/11/16 | 2002/04/09 | 2 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 23.4 × 26.2 | 21.25°S 55.71°E | 55 | DR | 69.2 | 2015/01/04 | 2019/10/20 | 11 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 22.6 × 26.2 | 21.25°S 55.71°E | 56 | DR | 64.8 | 2014/12/12 | 2019/10/11 | 9 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 21.5 × 26.2 | 21.25°S 55.71°E | 57 | DR | 59.3 | 2017/07/12 | 2019/10/16 | 16 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 19.8 × 26.2 | 21.25°S 55.71°E | 58 | DR | 52.4 | 2014/10/27 | 2019/12/31 | 13 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 17.2 × 26.3 | 21.25°S 55.71°E | 59 | DR | 43.5 | 2014/12/13 | 2019/10/12 | 8 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 13.2 × 26.3 | 21.25°S 55.71°E | 60 | DR | 31.8 | 2015/01/01 | 2019/10/17 | 8 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 13.1 × 26.2 | 21.25°S 55.71°E | 64 | DL | 31.7 | 2014/08/20 | 2019/07/31 | 11 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 17.2 × 26.2 | 21.25°S 55.71°E | 65 | DL | 43.3 | 2019/07/08 | 2019/08/05 | 2 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 19.8 × 26.1 | 21.25°S 55.71°E | 66 | DL | 52.5 | 2015/01/31 | 2015/10/24 | 5 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 21.5 × 26.0 | 21.25°S 55.71°E | 67 | DL | 59.6 | 2014/08/21 | 2019/07/04 | 12 |
ALOS2 | L | SPT | HH | 1.43/0.98 | 22.7 × 26.0 | 21.25°S 55.71°E | 68 | DL | 65.1 | 2014/12/16 | 2019/10/15 | 11 |
ALOS2 | L | SPT | HH | 1.43/0.98 | 23.2 × 26.0 | 21.25°S 55.71°E | 157 | AL | 68.4 | 2014/10/04 | 2019/12/07 | 27 |
ALOS2 | L | SPT | HH | 1.43/0.98 | 22.4 × 26.0 | 21.25°S 55.71°E | 158 | AL | 63.6 | 2014/08/28 | 2019/11/28 | 24 |
ALOS2 | L | SPT | HH | 1.43/0.98 | 21.1 × 26.0 | 21.25°S 55.71°E | 159 | AL | 57.7 | 2014/08/19 | 2019/12/03 | 35 |
ALOS2 | L | SPT | HH | 1.43/0.98 | 19.2 × 26.1 | 21.25°S 55.71°E | 160 | AL | 50.2 | 2014/08/24 | 2019/12/08 | 29 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 16.2 × 26.2 | 21.25°S 55.74°E | 161 | AL | 40.4 | 2014/09/26 | 2019/12/13 | 25 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 11.6 × 26.2 | 21.25°S 55.71°E | 162 | AL | 27.7 | 2014/09/03 | 2019/12/14 | 20 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 15.4 × 26.3 | 21.25°S 55.71°E | 166 | AR | 30.9 | 2014/11/18 | 2017/01/10 | 2 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 18.0 × 26.3 | 21.25°S 55.71°E | 167 | AR | 46.1 | 2019/02/10 | 2019/12/15 | 4 |
ALOS2 | L | SPT | HH | 1.43/0.98 | 20.4 × 26.3 | 21.25°S 55.71°E | 168 | AR | 54.6 | 2015/01/23 | 2019/12/06 | 11 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 21.9 × 26.2 | 21.25°S 55.71°E | 169 | AR | 61.0 | 2015/01/14 | 2019/11/27 | 19 |
ALOS2 | L | SPT | HH | 1.43/0.97 | 22.9 × 26.2 | 21.25°S 55.71°E | 170 | AR | 66.2 | 2014/04/27 | 2019/12/02 | 15 |
ALOS2 | L | SM1 | HH | 1.43/1.95 | 39.3 × 72.7 | 21.35°S 55.76°E | 59 | DR | 43.5 | 2015/01/24 | 2019/02/16 | 13 |
ALOS2 | L | SM1 | HH | 1.43/1.92 | 30.8 × 72.7 | 21.19°S 55.64°E | 60 | DR | 31.5 | 2015/01/29 | 2018/02/22 | 6 |
ALOS2 | L | SM1 | HH | 1.43/2.23 | 34.0 × 72.7 | 21.09°S 55.78°E | 166 | AR | 35.2 | 2017/08/22 | 2018/04/17 | 2 |
RS2 | C | SM | Quad | 4.73/4.90 | 9.7 × 29,8 | 21.25°S 55.73°E | Q2 | AR | 20.7 | 2014/06/14 | 2014/07/08 | 2 |
RS2 | C | SM | Quad | 4.73/4.83 | 13.1 × 38,4 | 21.23°S 55.71°E | Q8 | AR | 28.0 | 2009/08/20 | 2015/06/02 | 20 |
RS2 | C | SM | Quad | 4.73/4.80 | 19.9 × 29,7 | 21.26°S 55.75°E | Q28 | DR | 46.9 | 2010/10/31 | 2015/02/07 | 23 |
RS2 | C | SM | Quad | 4.73/4.95 | 19.7 × 29,8 | 21.24°S 55.80°E | Q27 | AR | 45.6 | 2010/10/29 | 2015/02/05 | 17 |
S1 | C | IW | VH/VV | 2.32/14.06 | 159.2 × 94.8 | 21.21°S 55.46°E | 151 | DR | 36.8 | 2014/10/16 | 2019/12/25 | 128 |
S1 | C | IW | HH/HV | 2.33/14.06 | 159.3 × 211.2 | 21.38°S 55.41°E | 144 | AR | 37.9 | 2017/10/23 | 2018/04/21 | 13 |
S1 | C | IW | VH/VV | 2.33/14.06 | 159.3 × 211.2 | 21.38°S 55.41°E | 144 | AR | 37.9 | 2014/10/15 | 2019/12/24 | 116 |
S1 | C | SM | VH/VV | 2.66/4.14 | 48.7 × 165.7 | 20.31°S 55.70°E | 151 | DR | 36.8 | 2015/05/08 | 2019/12/19 | 124 |
S1 | C | SM | VH/VV | 3.19/4.11 | 56.3 × 162.4 | 20.86°S 55.82°E | 144 | AR | 37.9 | 2015/05/07 | 2019/12/30 | 135 |
CSK | X | SPT | VV | 0.40/0.70 | 5.5 × 7.0 | 21.24°S 55.72°E | S2-25 | DR | 52.4 | 2016/07/06 | 2017/07/25 | 7 |
CSK | X | SPT | VV | 0.39/0.70 | 5.2 × 7.0 | 21.24°S 55.71°E | S2-21 | AR | 48.8 | 2016/07/06 | 2017/07/25 | 8 |
CSK | X | SM | HH | 1.17/2.09 | 23.0 × 47.2 | 21.27°S 55.81°E | H4-05 | DR | 34.4 | 2015/01/15 | 2015/01/23 | 2 |
CSK | X | SM | VV | 1.17/2.09 | 23.0 × 47.1 | 21.27°S 55.81°E | H4-05 | DR | 34.4 | 2015/02/08 | 2015/02/09 | 2 |
CSK | X | SM | VV | 1.33/2.25 | 29.8 × 48.6 | 21.23°S 55.62°E | H4-09 | AR | 39.7 | 2011/04/09 | 2012/03/10 | 20 |
CSK | X | SM | VV | 1.73/2.09 | 24.9 × 45.6 | 21.22°S 55.66°E | H4-18 | DR | 52.2 | 2011/02/15 | 2019/03/01 | 107 |
CSK | X | SM | VV | 1.63/2.25 | 31.2 × 48.0 | 21.28°S 55.62°E | H4-15 | AR | 48.5 | 2011/02/15 | 2018/11/25 | 106 |
TSX/TDX | X | SPT | VV | 0.45/0.84 | 4.9 × 5.0 | 21.26°S 55.72°E | 044 | DR | 37.0 | 2018/11/21 | 2019/09/03 | 11 |
TSX/TDX | X | SPT | VV | 0.45/0.85 | 5.0 × 5.3 | 21.23°S 55.73°E | 036 | AR | 33.4 | 2018/10/04 | 2019/11/26 | 20 |
TSX/TDX | X | SM/Mono | VV | 0.90/2.07 | 19.7 × 42.7 | 21.25°S 55.64°E | 121 | DR | 37.0 | 2008/12/13 | 2019/12/11 | 63 |
TSX/TDX | X | SM/Mono | VV | 1.36/1.86 | 19.8 × 42.7 | 21.25°S 55.72°E | 68 | AR | 33.4 | 2009/03/07 | 2019/12/07 | 108 |
TSX/TDX | X | SM/Bi | VV | 0.90/2.07 | 20.7 × 56.9 | 21.23°S 55.64°E | 121 | DR | 37.0 | 2011/06/03 | 2019/12/22 | 2 × 188 |
TSX/TDX | X | SM/Bi | VV | 1.36/1.86 | 21.2 × 54.8 | 21.27°S 55.71°E | 68 | AR | 33.4 | 2011/09/06 | 2014/08/30 | 2 × 17 |
TSX/TDX | X | SM/Bi/DEM | HH | 0.90/2.07 | 20.7 × 56.9 | differ slightly | 121 | DR | 37.0 | 2011/08/30 | 2012/12/26 | 2 × 3 |
TSX/TDX | X | SM/Bi/DEM | HH | 1.36/1.86 | 21.2 × 54.8 | differ slightly | 68 | AR | 33.4 | 2013/01/24 | 2014/11/04 | 2 × 4 |
Mission Name | Country/Space Agency | Launch Date | Number of Satellites | Wavelength | Notes |
---|---|---|---|---|---|
ICEYE | Finland | ICEYE-X1 launched January 2018 | 18 SAR microsatellites | X-band | |
PAZ | Spain | launched January 2018 | 1 | X-band | Operated in constellation with Germany’s TerraSAR-X and TanDEM-X satellites |
HRWS (High Resolution Wide Swath) | Germany | 2023 | 1 active, 3 companions | X-band | |
COSMO-SkyMed | Italy | 2018–2020 | 2 | X-band | |
RCM (RADARSAT Constellation Mission) | Canada | in phase of planning, uncertain launch date | 3 | C-band | Canada focused only |
NISAR | USA-India | not before 31 January 2022 | 1 | L-band, S-band | Left-looking; free and open data policy |
TanDEM-L | Germany-Japan | uncertain | 2 | L-band |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, N.; Froger, J.-L. The role of Interferometric Synthetic Aperture Radar in Detecting, Mapping, Monitoring, and Modelling the Volcanic Activity of Piton de la Fournaise, La Réunion: A Review. Remote Sens. 2020, 12, 1019. https://doi.org/10.3390/rs12061019
Richter N, Froger J-L. The role of Interferometric Synthetic Aperture Radar in Detecting, Mapping, Monitoring, and Modelling the Volcanic Activity of Piton de la Fournaise, La Réunion: A Review. Remote Sensing. 2020; 12(6):1019. https://doi.org/10.3390/rs12061019
Chicago/Turabian StyleRichter, Nicole, and Jean-Luc Froger. 2020. "The role of Interferometric Synthetic Aperture Radar in Detecting, Mapping, Monitoring, and Modelling the Volcanic Activity of Piton de la Fournaise, La Réunion: A Review" Remote Sensing 12, no. 6: 1019. https://doi.org/10.3390/rs12061019
APA StyleRichter, N., & Froger, J.-L. (2020). The role of Interferometric Synthetic Aperture Radar in Detecting, Mapping, Monitoring, and Modelling the Volcanic Activity of Piton de la Fournaise, La Réunion: A Review. Remote Sensing, 12(6), 1019. https://doi.org/10.3390/rs12061019