An Atmospheric Correction Using High Resolution Numerical Weather Prediction Models for Satellite-Borne Single-Channel Mid-Wavelength and Thermal Infrared Imaging Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Weather Prediction Models
2.2. Formulation of a Regression Model
2.3. Determination of Model Parameters
2.4. Corrections of Model Biases
2.5. Processing Steps
3. Results and Validations
3.1. Atmospheric Correction Parameters
3.2. Accuracy of Sea Surface Temperature Estimations
4. Discussions
4.1. Model Validations
4.2. Effects of Observation Angles
4.3. Effects of Selecting Numerical Prediction Models between LDAPS and RDAPS
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res.: Atmos. 2003, 108, 4688–4695. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Jackson, T.J.; Kustas, W.P.; Schmugge, T.J.; French, A.N.; Cosh, M.H.; Bindlish, R. Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sens. Environ. 2004, 92, 521–534. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Cristóbal, J.; Sobrino, J.A.; Sòria, G.; Ninyerola, M.; Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Tang, H.; Li, Z.L. Quantitative Remote Sensing in Thermal Infrared: Theory and Applications; Springer Science & Business Media: Berlin, Germany, 2013; pp. 13–25, 93–135. ISBN 978-3-642-42027-6. [Google Scholar]
- Ulivieri, C.M.M.A.; Castronuovo, M.M.; Francioni, R.; Cardillo, A. A split window algorithm for estimating land surface temperature from satellites. Adv. Space Res. 1994, 14, 59–65. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Li, Z.L.; Nerry, F.; Zhang, X. A new thermal infrared channel configuration for accurate land surface temperature retrieval from satellite data. Remote Sens. Environ. 2019, 231, 111216. [Google Scholar] [CrossRef]
- Zhang, S.; Duan, S.B.; Li, Z.L.; Huang, C.; Wu, H.; Han, X.J.; Gao, M. Improvement of Split-Window Algorithm for Land Surface Temperature Retrieval from Sentinel-3A SLSTR Data Over Barren Surfaces Using ASTER GED Product. Remote Sens. 2019, 11, 3025. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Helder, D.L.; Hook, S.J.; Markham, B.L.; Chander, G.; O’Donnell, E.M. Landsat TM and ETM+ thermal band calibration. Can. J. Remote Sens. 2003, 29, 141–153. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Hu, T.; Liu, X. A practical single-channel algorithm for land surface temperature retrieval: Application to Landsat series data. J. Geophys. Res.: Atmos. 2019, 124, 299–316. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A single-channel algorithm for land-surface temperature retrieval from ASTER data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 176–179. [Google Scholar] [CrossRef]
- Cristóbal, J.; Jiménez-Muñoz, J.C.; Prakash, A.; Mattar, C.; Skoković, D.; Sobrino, J.A. An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band. Remote Sens. 2018, 10, 431. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. In Proceedings of the IGARSS 2003, Toulouse, France, 21–25 July 2003; IEEE Cat. No. 03CH37477. Volume 5, pp. 3014–3016. [Google Scholar]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Bray, M.; Islam, T.; Gupta, M.; Dai, Q. Estimation of land surface temperature from atmospherically corrected LANDSAT TM image using 6S and NCEP global reanalysis product. Environ. Earth Sci. 2014, 72, 5183–5196. [Google Scholar] [CrossRef]
- Tardy, B.; Rivalland, V.; Huc, M.; Hagolle, O.; Marcq, S.; Boulet, G. A software tool for atmospheric correction and surface temperature estimation of Landsat infrared thermal data. Remote Sens. 2016, 8, 696. [Google Scholar] [CrossRef] [Green Version]
- Islam, T.; Hulley, G.C.; Malakar, N.K.; Radocinski, R.G.; Guillevic, P.C.; Hook, S.J. A physics-based algorithm for the simultaneous retrieval of land surface temperature and emissivity from VIIRS thermal infrared data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 563–576. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Urety, S.; Shao, X.; Bai, Y.; Weng, F. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos. 2013, 118, 11–664. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Application Manual of Numerical Forecast Data; Korea Meteorological Administration (KMA): Seoul, Korea, 2013. [Google Scholar]
- Liou, K.N. An Introduction to Atmospheric Radiation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 116–168. ISBN 978-0-12-451451-5. [Google Scholar]
- Meador, W.E.; Weaver, W.R. Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci. 1980, 37, 630–643. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M. Atmospheric Radiation, 1st ed.; Sigma Press: Seoul, Korea, 2000; pp. 23–31, 109–132. ISBN 89-8445-037-5. [Google Scholar]
- Griffin, M.K.; Hsiao-hua, K.B.; Kerekes, J.P. Understanding radiative transfer in the midwave infrared: A precursor to full-spectrum atmospheric compensation. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X. Int. Soc. Opt. Photonics 2004, 5425, 348–357. [Google Scholar]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, R. Geopotential and Geometric Altitude; Public Domain of Aeronautical Software (PDA): Santa Cruz, CA, USA, 2003. [Google Scholar]
- Niclòs, R.; Caselles, V.; Valor, E.; Coll, C.; Sanchez, J.M. A simple equation for determining sea surface emissivity in the 3–15 µ m region. Int. J. Remote Sens. 2009, 30, 1603–1619. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Explanation Document of Meteorological Data; Marine Weather Buoys, Wave Height Buoys, Marine Light Beacons; Korea Meteorological Administration (KMA): Seoul, Korea, 2015. [Google Scholar]
- NOAA Office of Satellite and Product Operations (OSPO). GHRSST GDS2 Level 2P Global Skin Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite created by the NOAA Advanced Clear-Sky Processor for Ocean (ACSPO); Ver. 2.4; PO.DAAC: Pasadena, CA, USA, 2015. [Google Scholar] [CrossRef]
- JPL/OBPG/RSMAS. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Aqua satellite; Ver. 2014.0; PO.DAAC: Pasadena, CA, USA, 2016. [Google Scholar] [CrossRef]
System | P0 | P1 | P2 | P3 | P4 |
---|---|---|---|---|---|
P5 | P6 | P7 | P8 | P9 | |
VIIRS I4 (MWIR) | 0.00148 | 0.795 | 0.000499 | −0.528 | −0.00294 |
0.00000912 | 0.409 | −0.000928 | 0.0000285 | −0.0000000671 | |
VIIRS I5 (TIR) | 0.0318 | 2.78 | −0.00497 | 4.79 | −0.0585 |
0.000147 | −4.43 | −0.00511 | 0.000497 | −0.00000116 |
Systems and Observation Angles | 0˚ | 10 ˚ | 20 ˚ | 30 ˚ | 40 ˚ | 50 ˚ | 60 ˚ | |
---|---|---|---|---|---|---|---|---|
I4 band | 0.000589 | 0.000381 | 0.000429 | 0.000493 | 0.000820 | 0.0014 | 0.0032 | |
0.000423 | 0.000410 | 0.000560 | 0.000463 | 0.000759 | 0.0011 | 0.0021 | ||
0.0015 | 0.0012 | 0.0016 | 0.0014 | 0.0033 | 0.0032 | 0.011 | ||
I5 band | 0.0863 | 0.0632 | 0.0527 | 0.0599 | 0.0822 | 0.0720 | 0.262 | |
0.0680 | 0.0604 | 0.0935 | 0.0924 | 0.148 | 0.216 | 0.267 | ||
0.00940 | 0.00710 | 0.00660 | 0.00700 | 0.0128 | 0.0171 | 0.0616 |
Locations of Ocean Buoys Employed for Validation | |||||
---|---|---|---|---|---|
No. | Location | Coordinates | No. | Location | Coordinates |
1 | Deokjeok-Do (isl.*) | 37°14′10″N/126°01′08″E | 15 | Cheongsan-Do (isl.) | 34°08′17″N/126°44′39″E |
2 | Oeyeon-Do (isl.) | 36°15′00″N/125°45′00″E | 16 | Geoje-Do (isl.) | 34°46′00″N/128°54′00″E |
3 | Seosu-Do (isl.) | 37°19′30″N/126°23′36″E | 17 | Haeundae | 35°08′56″N/129°10′11″E |
4 | Sinjin-Do (isl.) | 36°36′18″N/126°07′34″E | 18 | Dumi-Do (isl.) | 34°44′40″N/128°10′30″E |
5 | Chilbal-Do (isl.) | 34°47′36″N/125°46′37″E | 19 | Haegeumgang | 34°44′09″N/128°41′27″E |
6 | Chinan | 34°44′00″N/126°14′30″E | 20 | Busan Harbor | 35°01′21″N/128°57′22″E |
7 | Galmaeyeo | 35°36′48″N/126°14′42″E | 21 | Pohang | 36°21′00″N/129°47′00″E |
8 | Ock-Do (isl.) | 34°41′34″ N/126°03′20″E | 22 | Jukbyeon | 37°06′15″ N/129°23′22″E |
9 | Jin-Do (isl.) | 34°26′33″ N/126°03′25″E | 23 | Guryongpo | 35°59′52″ N/129°35′10″E |
10 | Mara-Do (isl.) | 33°05′00″ N/126°02′00″E | 24 | Ulleung-Do (isl.) | 37°27′20″N/131°06′52″E |
11 | Jeju Harbor | 33°31′31″N/126°29′38″E | 25 | Donghae | 37°28′50″N/129°57′00″E |
12 | Joong Moon | 33°13′31″N/126°23′35″E | 26 | Hyeolam | 37°32′29″N/130°51′15″E |
13 | Geomun-Do (isl.) | 34°00′05″N/127°30′05″E | 27 | Goo-am | 37°28′44″N/130°48′16″E |
14 | Ganyeoam | 34°17′06″N/127°51′28″E | 28 | Yeongok | 37°52′03″N/128°53′08″E |
Time | SST Data | Samples | Errors ( °C) | |||
---|---|---|---|---|---|---|
Night | Estimated SST, I4 Band, Proposed | 258 | Mean | −0.39 | RMSE | 0.95 |
Std. | 0.86 | Max. (abs) | 3.86 | |||
Estimated SST, I5 Band, Proposed | 258 | Mean | −0.07 | RMSE | 1.81 | |
Std. | 1.80 | Max. (abs) | 6.39 | |||
Estimated SST, I4 Band, MODTRAN | 258 | Mean | −0.23 | RMSE | 0.81 | |
Std. | 0.78 | Max. (abs) | 3.66 | |||
Estimated SST, I5 Band, MODTRAN | 258 | Mean | 0.91 | RMSE | 1.67 | |
Std. | 1.40 | Max. (abs) | 10.7 | |||
VIIRS SST Product * | 210 | Mean | 0.06 | RMSE | 0.92 | |
Std. | 0.91 | Max. (abs) | 5.75 | |||
MODIS SST Product ** | 215 | Mean | 0.33 | RMSE | 1.74 | |
Std. | 1.75 | Max. (abs) | 13.6 | |||
Day | Estimated SST, I5 Band, Proposed | 240 | Mean | −0.37 | RMSE | 1.95 |
Std. | 1.91 | Max. (abs) | 6.14 | |||
VIIRS SST Product * | 179 | Mean | −0.14 | RMSE | 1.95 | |
Std. | 1.94 | Max. (abs) | 13.5 | |||
MODIS SST Product ** | 219 | Mean | −0.02 | RMSE | 2.62 | |
Std. | 2.62 | Max. (abs) | 14.3 |
Errors ( °C) and Systems | LDAPS (1.5 km Resolution) | |||
Mean | Std. | Max. | RMSE | |
VIIRS I4 band | −0.23 | 0.96 | 3.67 | 0.99 |
VIIRS I5 band | 0.98 | 1.01 | 3.16 | 1.41 |
Errors ( °C) and Systems | RDAPS (12 km Resolution) | |||
Mean | Std. | Max. | RMSE | |
VIIRS I4 band | −0.39 | 0.86 | 3.86 | 0.95 |
VIIRS I5 band | −0.07 | 1.80 | 6.39 | 1.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Won, J.-S.; Park, W. An Atmospheric Correction Using High Resolution Numerical Weather Prediction Models for Satellite-Borne Single-Channel Mid-Wavelength and Thermal Infrared Imaging Sensors. Remote Sens. 2020, 12, 853. https://doi.org/10.3390/rs12050853
Lee H, Won J-S, Park W. An Atmospheric Correction Using High Resolution Numerical Weather Prediction Models for Satellite-Borne Single-Channel Mid-Wavelength and Thermal Infrared Imaging Sensors. Remote Sensing. 2020; 12(5):853. https://doi.org/10.3390/rs12050853
Chicago/Turabian StyleLee, Hongtak, Joong-Sun Won, and Wook Park. 2020. "An Atmospheric Correction Using High Resolution Numerical Weather Prediction Models for Satellite-Borne Single-Channel Mid-Wavelength and Thermal Infrared Imaging Sensors" Remote Sensing 12, no. 5: 853. https://doi.org/10.3390/rs12050853
APA StyleLee, H., Won, J.-S., & Park, W. (2020). An Atmospheric Correction Using High Resolution Numerical Weather Prediction Models for Satellite-Borne Single-Channel Mid-Wavelength and Thermal Infrared Imaging Sensors. Remote Sensing, 12(5), 853. https://doi.org/10.3390/rs12050853