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Abstract: This paper presents a single-channel atmospheric correction method for remotely sensed
infrared (wavelength of 3–15 µm) images with various observation angles. The method is based on
basic radiative transfer equations with a simple absorption-focused regression model to calculate
the optical thickness of each atmospheric layer. By employing a simple regression model and
re-organization of atmospheric profiles by considering viewing geometry, the proposed method
conducts atmospheric correction at every pixel of a numerical weather prediction model in a single
step calculation. The Visible Infrared Imaging Radiometer Suite (VIIRS) imaging channel (375 m) I4
(3.55~3.93 µm) and I5 (10.50~12.40 µm) bands were used as mid-wavelength and thermal infrared
images to demonstrate the effectiveness of the proposed single-channel atmospheric correction
method. The estimated sea surface temperatures (SSTs) obtained by the proposed method with high
resolution numerical weather prediction models were compared with sea-truth temperature data
from ocean buoys, multichannel-based SST products from VIIRS/MODIS, and results from MODerate
resolution atmospheric TRANsmission 5 (MODTRAN 5), for validation. High resolution (1.5 km
and 12 km) numerical weather prediction (NWP) models distributed by the Korea Meteorological
Administration (KMA) were employed as input atmospheric data. Nighttime SST estimations with
the I4 band showed a root mean squared error (RMSE) of 0.95 ◦C, similar to that of the VIIRS product
(RMSE: 0.92 ◦C) and lower than that of the MODIS product (RMSE: 1.74 ◦C), while estimations with
the I5 band showed an RMSE of 1.81 ◦C. RMSEs from MODTRAN simulations were similar (within
0.2 ◦C) to those of the proposed method (I4: 0.81 ◦C, I5: 1.67 ◦C). These results demonstrated the
competitive performance of a regression-based method using high-resolution numerical weather
prediction (NWP) models for atmospheric correction of single-channel infrared imaging sensors.

Keywords: mid-wavelength and thermal infrared; single-channel atmospheric correction; numerical
weather prediction model; VIIRS; sea surface temperature

1. Introduction

Earth surface applications of mid-wavelength (3–5 µm) and thermal infrared (8–14 µm) (MWIR
and TIR, respectively) remote sensing, including surface temperature retrieval, essentially require
atmospheric correction. The commonly used methods of atmospheric correction of infrared (IR) images
can be categorized as single- or multi-channel, based on the number of used spectral bands [1–5].
Currently, most land surface temperature and sea surface temperature (LST and SST, respectively)
products are based on multichannel methods. The split-window (SW) algorithm is widely used for
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TIR sensors, as it is easy to apply and can be used without extensive computation of radiative transfer
models (RTMs) or explicit information of atmospheric conditions [1,6–9]. However, these multi-channel
methods have limited application in other types of single-channel-based IR sensors, such as
LANDSAT-7 [10].

Conventional single-channel atmospheric correction methods are based on radiative transfer
codes or regression models; those require ancillary atmospheric data such as atmospheric profiles,
total column precipitable water vapor contents (TPW), and near-surface air temperature [2,4,11–13].
Some recent studies used numerical weather prediction (NWP) models as input atmospheric information
for single-channel atmospheric corrections [14–17]. However, most conventional single-channel
methods calculate a single set of atmospheric correction parameters (atmospheric upwelling and
downwelling radiances and transmittance) per calculation [7,18]. Depending on the radiative transfer
models, the number of calculations should be increased, or even require calculations for every pixels of
NWP data, in order to minimize the effects of different viewing angles, as well as atmospheric spatial
inhomogeneity and to obtain a uniform atmospheric correction quality within a scene.

In this study, we provide an idea of a single-channel atmospheric correction method, with a
combination of high-resolution (1.5 km and 12 km) NWP models from the Korea Meteorological
Administration (KMA). By adopting a simple regression method derived from MODTRAN 5
simulations, the proposed method could calculate atmospheric correction parameters at every pixel of
NWP model data with a single step calculation of the atmospheric correction process by considering
target to sensor geometry.

The proposed method was applied to the VIIRS imaging channels I4 (3.55~3.93 µm,
mid-wavelength Infrared, MWIR) and I5 (10.50~12.40 µm, thermal infrared, TIR) for sea surface
temperature (SST) estimations and a performance verification of the proposed method using the
SST estimation results. Both channels have spatial resolutions of 375 m and 0.4 K of on-orbit noise
equivalent differential temperature (NEdT) performance [18]. VIIRS imagery was selected because
it has both MWIR and TIR channels within its imaging channels, and its multi-channel-based SST
product can be compared with the results of the proposed method.

The accuracy assessment was conducted by comparing the results with current SST products
(from VIIRS and MODIS), SST estimation using MODTRAN 5 simulations, and sea-truth data from
ocean buoys in coastal regions of the Korean Peninsula.

2. Materials and Methods

2.1. Numerical Weather Prediction Models

The Korea Meteorological Administration (KMA) has been producing NWPs with different
spatial resolutions and cover areas. Two models were used in this study: Regional Data Assimilation
and Prediction System (RDAPS) and Local Data Assimilation and Prediction System (LDAPS).
RDAPS covers eastern Asia including Korea, Japan, China, and a part of Southeast Asia with a spatial
resolution of 12 km. It analyzes atmospheric conditions four times a day (00, 06, 12, 18 UTC) and
produces 30 weather predictions from +0 h to +87 h with a 3 h interval [19]. LDAPS covers the Korean
Peninsula with a 1.5 km spatial resolution. Its analysis interval is 3 h (00, 03, 06, 09, 12, 15, 18, 21 UTC),
and weather predictions are made at hourly intervals [19] (Figure 1). Twenty six atmospheric layers
were extracted from both models: a 1.5 m geometric altitude layer and 25 isobaric layers from 1000 hpa
to 50 hpa. Atmospheric temperature, pressure, relative humidity, and geopotential height were used in
this study.
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Korea Meteorological Administration (KMA) National Meteorological Super Computer Center [19]. 
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Figure 1. Areal coverage and examples of numerical weather prediction models of Regional
Data Assimilation and Prediction System (RDAPS) and Local Data Assimilation and Prediction
System (LDAPS). Examples of atmospheric temperatures at 1.5 m geometric altitude layers,
analyzed 4 September 2014, 18:00 UTC and +0 h prediction. The data and coverage map were obtained
from the Korea Meteorological Administration (KMA) National Meteorological Super Computer
Center [19].

2.2. Formulation of a Regression Model

To maintain simplicity, the single-channel atmospheric correction algorithm proposed in this
study was based on the following basic atmospheric radiative transfer equations [20,21]:

Iatm
λ, ↑,at TOA =

∫ τsurf

0
Bλ(Tτ′)e−(τ

′
−0)/µ dτ′

µ
(1)

Iatm
λ, ↓,at Surf =

∫ τsurf

0
Bλ(Tτ′)e−(τsurf−τ

′) dτ′

µ
(2)

Tλ = exp(−τsurf/µ) (3)

where Iatm
λ, ↑,at TOA is the spectral atmospheric upwelling radiance measured at the top of the atmosphere

(TOA) and Iatm
λ, ↓,at Surf is the spectral atmospheric downwelling radiance measured at the Earth’s surface.

Both atmospheric radiances can be calculated by integrations from optical thickness of TOA level
(τTOA = 0) to that of the Earth’s surface (τsurf), with a consideration of light path geometry (µ, cosine of
path zenith angle).

Bλ is Planck’s function acting as a source function under the local thermal equilibrium condition.
Tλ is the spectral atmospheric transmittance for a total radiation path from the surface to the TOA.
Unlike other variables in Equations (1) to (3), optical thickness can neither be easily acquired from
NWP data, nor simply calculated. Therefore, a regression model was formulated for calculating
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the optical thickness. Under clear-sky conditions with low aerosol content, the scattering process of
atmospheric molecules in the 3–15 µm infrared region is not as significant as that in shorter wavelength
regions [20–23]. For satellite remote sensing applications upon the Earth’s surface with clear-sky
conditions, those exclude cloud/fog/aerosol contaminated images. Therefore, to maintain simplicity,
the regression model was focused only on an absorption process in this study.

An optical thickness between altitudes z0 and z1 could be calculated by Equation (4), without
considering the scattering process.

τλ(z0, z1) =

∫ z1

z0

kabs
λ ρabsdz (4)

Here, kabs
λ

is an absorption coefficient for wavelength λ, and ρabs is the density of atmospheric
molecules that contribute to the absorption process. With multiple gas species, an absorption coefficient
can be expressed as a summation of the ith absorption lines of the nth gas species for the center
wavelength λ with the strength function Si(T) and the line shape function fi,λ(p, T), given by
Equation (5) [20,22].

kabs
λ =

N∑
n=1

I∑
i=1

Sn,i(T) fλ,n,i(p, T) (5)

Since Equation (5) is a simple summation, the absorption coefficient can be separated into terms
of dry air, kabs

λ,dry, and water vapor, kabs
λ,wv:

kabs
λ =

N−1∑
n=1

I∑
i=1

Sn,i(T) fλ,n,i(p, T) +
I∑

i=1

Swv,i(T) fλ,wv,i(p, T) = kabs
λ,dry + kabs

λ,wv (6)

Dividing the absorption coefficients and pre-calculating coefficients according to infrared sensors
have been attempted in previous studies [24]. In this study, however, an exponential function was
employed to increase the simplicity of the regression model and minimize pre-calculation while
utilizing NWP models and obtaining 3D atmospheric information from the models [20].

kabs
λ ≈ kabs

λ

(
pre f , Tre f

)( p
pre f

)np(Tre f

T

)nT

(7)

Here, an absorption coefficient can be expressed as a function of atmospheric pressure, p,
and temperature, T. kabs

λ

(
pre f , Tre f

)
is the coefficient acquired under reference conditions with pressure,

pre f , and temperature, Tre f . np and nT are exponential terms for pressure and temperature, respectively.
Therefore, the atmospheric absorption introduced in Equation (5) can be expressed as Equation (8),
by combining Equations (6) and (7).

kabs
λ

= kabs
λ,dry + kabs

λ,wv

≈ kabs
λ, dry

(
pre f , Tre f

)( p
pre f

)np(Tre f
T

)nT

+kabs
λ,wv

(
pre f , Tre f

)( p
pre f

)np(Tre f
T

)nT
(8)

The optical thickness can then be calculated with integrations of exponential functions by
substituting Equation (8) into Equation (4).
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τλ(z0, z1) =
∫ z1

z0
kabs
λ
ρabsdz =

∫ z1
z0

(
kabs
λ,dryρdry + kabs

λ,wvρwv

)
dz

= kabs
(λ,dry)(pre f , Tre f )

∫ z1
z0

((
pz

pre f

)np(Tre f
Tz

)nT
ρz, dry

)
dz

+kabs
(λ,wv)(pre f , Tre f )

∫ z1
z0

((
pz

pre f

)np(Tre f
Tz

)nT
ρz, wv

)
dz

(9)

The integrations in Equation (9) can be solved through a multivariate regression analysis, in which
the two integration terms are considered as two independent variables (x , y), and the dry air and
water vapor reference absorption coefficients kabs

λ, dry

(
pre f , Tre f

)
and kabs

λ, wv

(
pre f , Tre f

)
were used as the

regression coefficients (P1, P2, respectively).

τλ(z0, z1) ≡ P1x + P2y (10)

Since the reference absorption coefficients become regression coefficients, arbitrary values of pre f
and Tre f can be used. These values were set as 1013 hpa and 290 K, respectively, following typical
ambient atmospheric pressure and temperature conditions. Instead of the 1st order polynomial
regression model of Equation (10), a 3rd order polynomial is practically a more realistic regression
model, as given by Equation (11).

τλ(z0, z1) ≡ P0 + P1x + P2y + P3x2 + P4xy + P5y2 + P6x3 + P7x2y + P8xy2 + P9y3 (11)

In the proposed 3rd order polynomials, the strict physical meanings of the regression coefficients
as the reference absorption coefficients are loosened. However, the 3rd order polynomials are
generally a better fit to the actual atmospheric conditions as compared to the 1st order polynomials.
Thus, Equation (11) was adopted in this study instead of Equation (10) in order to provide atmospheric
optical thickness values and the solution for Equations (1) to (3).

2.3. Determination of Model Parameters

A normal equation was employed to determine regression parameters.

θ =
(
XTX

)−1
XTτ̂

where, τ̂ =
[
τ1,λ,total τ2,λ,total · · · τn,λ,total

]T

X =


1 x1 y1 x2

1 x1y1 y2
1 x3

1 x2
1y1 x1y2

1 y3
1

1 x2 y2 x2
2 x2y2 y2

2 x3
2 x2

2y2 x2y2
2 y3

2
...

...
...

...
...

...
...

...
...

...
1 xn yn x2

n xnyn y2
n x3

n x2
nyn xny2

n y3
n


θ = [P1 P2 P3 P4 P5 P6 P7 P8 P9]

T

(12)

An observation vector, τ̂, is the optical thickness obtained during the MODTRAN 5 simulation,
and the variables xn, yn are calculated from the nth atmospheric profile used for the simulation (Figure 2).
A total of 520 MODTRAN simulations were conducted to gain values for an observation vector. A total
of 26 atmospheric columns were used, with two profiles per month and one extra profile for August
and January. A total of 20 sensor altitude settings were applied to the atmospheric profiles, from 0 km
to 19 km with an interval of one kilometer.
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Figure 2. A schematic diagram for the simulation of atmospheric layers with multiple sensor altitudes
and conditions.

After the calculation of regression coefficients, the least-squares of τ̂′ can easily be obtained by:

τ̂′ = Xθ (13)

Regression analysis, using Equations (12) and (13), was conducted with various combinations of
exponent terms np and nT from Equations (7) and (8). The combination that resulted in the best fit
model was used for the final calculation of the coefficient Pn. Figure 3 shows the distributions of RMSEs
calculated from the observation vector and least-squares fitted values according to the combinations of
the exponent terms and minimum RMSEs.
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Figure 3. Distributions of RMSEs calculated from the observation vector and fitted values according to
various combinations of exponent terms used for the regression analysis: (a) 1st order regression for the
VIIRS I4 band (MWIR) and (b) 1st order regression for the VIIRS I5 band (TIR); (c) 3rd order regression
for the VIIRS I4 band (MWIR) and (d) 3rd order regression for the VIIRS I5 band (TIR). The suggested
values of np and nT were 1 and 0.5, respectively [20]. However, Figure 3 implies that the best fit results
were obtained at a point different from (1, 0.5). Additionally, the minimum RMSEs of the 3rd order
polynomial regressions were smaller than those of the 1st order polynomial regression, suggesting that
the fits of the former are better. The optimal regression coefficients obtained in this study for infrared
satellite systems are summarized in Table 1.

Table 1. Regression coefficients used for the infrared satellite systems.

System P0 P1 P2 P3 P4
P5 P6 P7 P8 P9

VIIRS I4
(MWIR)

0.00148 0.795 0.000499 −0.528 −0.00294
0.00000912 0.409 −0.000928 0.0000285 −0.0000000671

VIIRS I5 (TIR)
0.0318 2.78 −0.00497 4.79 −0.0585

0.000147 −4.43 −0.00511 0.000497 −0.00000116

2.4. Corrections of Model Biases

By applying the proposed regression model for the optical thickness (Equation (11), Table 1)
and radiative transfer equations (Equations (1) to (3)), preliminary calculations of the atmospheric
correction parameters via the radiative transfer equations were conducted. Figures 4 and 5 display
comparisons between the preliminary calculation results and simulation results from MODTRAN 5,
under a nadir observation condition. Comparisons before and after model bias corrections under a
nadir observation condition are both provided in the following Figures 4 and 5.
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Figure 4. Comparison of the atmospheric correction parameters between the results calculated from the
proposed regression model with radiative transfer equations and simulation results from MODTRAN
5, under a nadir observation condition (VIIRS I4 band): (a,c,e) before correcting for model biases;
(b,d,f) after correcting for model biases.
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proposed regression model with radiative transfer equations and simulation results from MODTRAN
5, under nadir observation conditions: (a,c,e) before correcting for model biases; (b,d,f) after correcting
for model biases.
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The model biases could be corrected by matching preliminary calculation results to the MODTRAN
5 simulated results, with a polynomial regression. Model bias correction functions for VIIRS I4 and I5
bands are listed in Equations (14) to (16). As seen in Figures 4 and 5, the model bias of atmospheric
downwelling radiances was significant for both VIIRS I4 and I5 bands, while that of the atmospheric
transmittance values was relatively insignificant. The atmospheric transmittance could be directly
calculated from optical thickness values with the proposed regression model in Equation (11). On the
other hand, only path radiance and extinction were considered in the calculation of atmospheric
radiances. Therefore, ground/near-ground multiple scattering could contribute to the model biases
when calculating downwelling radiance between the proposed model and the MODTRAN. In order to
simplify this process, the effects of the ground/near ground multiple scattering were treated as model
bias and corrected with regression models (Figures 4e and 5e).

Tλ(x) =


0.9875x3

− 2.595x2 + 3.255x− 0.6478 (I4 band, MWIR)
−1.187x4 + 2.852x3

− 2.572x2 + 2.045x− 0.1528 (I5 band, LWIR)
where, x = Tλ f rom radiative trans f er equations

(14)

Iatm
(λ,↑,at TOA)

(x) =


n(0.4563x3 + 0.8519x2 + 0.865x− 0.0005 (I4 band, MWIR)
−0.004x3 + 0.0499x2 + 0.820x− 0.0877 (I5 band, LWIR)
where, x = Iatm

(λ,↑,at TOA)
f rom radiative trans f er equations.

(15)

Iatm
(λ,↓,at Surf)(x) =


n(30.45x3 + 4.615x2 + 1.67x− 0.001 (I4 band, MWIR)
−0.004x3 + 0.0949x2 + 1.686x− 0.0198 (I5 band, LWIR)
where, x = Iatm

(λ,↓,at Surf) f rom radiative trans f er equations.
(16)

As shown in Figures 4b and 5b, the RMSEs were significantly reduced after the model bias
correction. Figure 6 shows examples of calculated atmospheric downwelling radiances after correcting
for the model bias, compared to MODTRAN 5 simulation results under various observation angles.
The two results were linearly correlated without any offsets, implying that model biases were
successfully separated from the effects of observation angles. Correction functions for these effects are
listed in Equations (17) to (19).
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Aλ,Trans(θ) =


1.001 sin

{
0.07362 tan (1.35θ) + 1.574

}
(I4 band, MWIR)

sin
{
0.1415 tan (1.25θ) + 1.558

}
(I5 band, LWIR)

where, θ in degree
(17)
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Aλ,up(θ) =


1/

{
1.005 sin(0.09463 tan(1.35θ) + 1.498)

}
(I4 band, MWIR)

1/
{
1.002 sin

{
0.1898 tan(1.15θ) + 1.553

}
(I5 band, LWIR)

where, θ in degree
(18)

Aλ,dwr(θ) =


0.9994 sin {0.0172θ+ 1.538} (I4 band, MWIR)
1.001 sin {0.1257θ+ 1.58} (I5 band, LWIR)
where, θ in degree

(19)

where θ is the observation zenith angle.
The effects from observation angles can be corrected by multiplying slopes according to observation

angles. An example of acquiring atmospheric transmittance is shown below (Equation (20)),
where Tλ, final(x,θ) is a result after two steps of correction functions.

Tλ, final(x,θ) = Aλ,Trans(θ) × Tλ(x) (20)

2.5. Processing Steps

Processing of the proposed single-channel atmospheric correction method consisted of four steps:
stacking atmospheric layers into 3D cubes, interpolating the layers, re-organizing atmospheric blocks
according to the observation geometry, and calculating atmospheric correction parameters (Figure 7).
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Figure 7. Schematic diagram depicting the proposed single-channel atmospheric correction method,
which consists of four steps, including the atmospheric blocks re-organization procedure to
accommodate various observation angles.

First, model surfaces and isobaric surfaces from numerical weather prediction models were stacked
according to their geometric altitudes. The models provided geopotential altitudes. Therefore, the
altitudes were converted as per the following equation [25]:

Z =
EH

E−H
(Units : m) (21)

where Z is the geometric altitude, H is the geopotential altitude, and E is the radius of the Earth.
The radius was set as 6,371,229 m, following the value assigned by the KMA in the numerical models.
In total, four datasets were stacked: temperature, relative humidity, pressure, and altitude.
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After the altitude unit conversion, the geometric altitudes of each dataset were different. To conduct
re-organization in Step 3 and to conduct integration in Equations (1) and (2), every dataset must be in a
unified altitude system through an interpolation. Figure 8 shows the variation of average errors from
SST estimations according to the numbers of the interpolated atmospheric layers. In the figure, as the
number of interpolations increases, the average error of the MWIR region decreases. Even though the
decrease after 300 layers was insignificant, atmospheric datasets were interpolated to 2000 layers for
the MWIR region to obtain the best accuracy. For the TIR region, however, the minimum average error
occurred near 300 layers, and therefore, the datasets were interpolated up to 300 layers.
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of average errors of SST estimation with VIIRS I5 band (TIR).

After the datasets were interpolated, re-organization was conducted for each pixel within a
scene, considering the observation geometry of the sensor. Infrared images were assumed to have
a row-column coordinate system with a north-up orientation that started from the top-left corner.
Each pixel on the lowest atmospheric layer was considered as an individual starting point, with row
and column coordinates of r0 and c0, respectively. The following equations were then applied to
re-organize the atmospheric dataset.

rn =

 n−1∑
i=1

−
{
tan(θ)sin(ϕ)

}
dzi/dx

+ r0 (22)

cn =

 n−1∑
i=1

−
{
tan(θ)cos(ϕ)

}
dzi/dx

+ c0 (23)

where θ and ϕ are the satellite zenith angle and azimuth angle, respectively, and dzi is the thickness of
the ith atmospheric layer. The result, (rn, cn), indicated row-column coordinates of pixels on the nth
layer and that its value would be relocated to (r0, c0, n). The re-organization process was essential for
the proposed algorithm to accommodate various satellite observations and increase its compatibility.
By conducting the re-organization, calculation over a whole ROI in a vertical direction with a single
process became possible, while considering sensor-viewing geometry.

The optical thickness of each atmospheric layers was calculated with the developed
regression model with Equation (11) and the coefficients introduced in Table 1. The calculated
atmospheric thickness was used to acquire the three atmospheric correction parameters (atmospheric
up-/down-welling radiances and transmittance) from radiative transfer equations (Equations (1) to (3)),
along with atmospheric temperature information from atmospheric profiles. Two-step correction
functions were applied to remove the model biases of the results.
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3. Results and Validations

3.1. Atmospheric Correction Parameters

The calculated values of atmospheric correction parameters were compared with the simulated
results from MODTRAN 5. The RMSEs according to observation angles are summarized in Table 2.
The parameters were calculated for VIIRS imaging channels I4 and I5 by the single-channel method
proposed in this study. A total of 24 RDAPS data were randomly selected, and atmospheric profiles
from 28 reference points (Figure 9 and Table 3) were also extracted from each RDAPS data.

The atmospheric transmittance values with an observation angle of 50 degrees ranged between
0.55–0.9 and 0.2–0.9 for the VIIRS I4 and I5 bands, respectively. The RMSEs of the transmittances from
the proposed method showed 0.6% (I4 band) and 8% (I5 band) of their minimum values with the same
observation angle. Under an observation angle of 60 degrees, error levels increased to 2.8% (0.4–0.77,
I4 band) and 60% (0.1–0.8, I5 band) of the minimum transmittance values.

Atmospheric upwelling (I4: 0.005–0.1 and I5: 0.4–6.8 W/m2/sr/µm) and downwelling (I4: 0.07–0.125,
I5: 0.4–7.1 W/m2/sr/µm) radiances for VIIRS imaging channels had RMSE values less than 2–3% of
their maximum values with an observation angle of 50 degrees. The RMSE levels increased by up to
60% as compared to their minimum radiance magnitudes. After the angle was increased to 60 degrees,
the RMSEs of upwelling (I4: 0.005–0.14, I5: 0.5–7.5 W/m2/sr/µm) and downwelling (I4: 0.005–0.13,
I5: 0.4–6.9 W/m2/sr/µm) radiances were less than 4% of the maximum values and less than 60% of the
minimum values.

Table 2. RMSEs of atmospheric correction parameters as compared to MODTRAN 5.

Systems and
Observation Angles 0◦ 10 ◦ 20 ◦ 30 ◦ 40 ◦ 50 ◦ 60 ◦

I4
band

Iatm
λ,↑,at TOA 0.000589 0.000381 0.000429 0.000493 0.000820 0.0014 0.0032
Iatm
λ,↓,at surf 0.000423 0.000410 0.000560 0.000463 0.000759 0.0011 0.0021
τλ,↑ 0.0015 0.0012 0.0016 0.0014 0.0033 0.0032 0.011

I5
band

Iatm
λ,↑,at TOA 0.0863 0.0632 0.0527 0.0599 0.0822 0.0720 0.262
Iatm
λ,↓,at surf 0.0680 0.0604 0.0935 0.0924 0.148 0.216 0.267
τλ,↑ 0.00940 0.00710 0.00660 0.00700 0.0128 0.0171 0.0616
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Table 3. A list of ocean buoys providing sea-truth temperature data for validation.

Locations of Ocean Buoys Employed for Validation

No. Location Coordinates No. Location Coordinates

1 Deokjeok-Do (isl. *) 37◦14′10”N/126◦01′08”E 15 Cheongsan-Do (isl.) 34◦08′17”N/126◦44′39”E
2 Oeyeon-Do (isl.) 36◦15′00”N/125◦45′00”E 16 Geoje-Do (isl.) 34◦46′00”N/128◦54′00”E
3 Seosu-Do (isl.) 37◦19′30”N/126◦23′36”E 17 Haeundae 35◦08′56”N/129◦10′11”E
4 Sinjin-Do (isl.) 36◦36′18”N/126◦07′34”E 18 Dumi-Do (isl.) 34◦44′40”N/128◦10′30”E
5 Chilbal-Do (isl.) 34◦47′36”N/125◦46′37”E 19 Haegeumgang 34◦44′09”N/128◦41′27”E
6 Chinan 34◦44′00”N/126◦14′30”E 20 Busan Harbor 35◦01′21”N/128◦57′22”E
7 Galmaeyeo 35◦36′48”N/126◦14′42”E 21 Pohang 36◦21′00”N/129◦47′00”E
8 Ock-Do (isl.) 34◦41′34” N/126◦03′20”E 22 Jukbyeon 37◦06′15” N/129◦23′22”E
9 Jin-Do (isl.) 34◦26′33” N/126◦03′25”E 23 Guryongpo 35◦59′52” N/129◦35′10”E

10 Mara-Do (isl.) 33◦05′00” N/126◦02′00”E 24 Ulleung-Do (isl.) 37◦27′20”N/131◦06′52”E
11 Jeju Harbor 33◦31′31”N/126◦29′38”E 25 Donghae 37◦28′50”N/129◦57′00”E
12 Joong Moon 33◦13′31”N/126◦23′35”E 26 Hyeolam 37◦32′29”N/130◦51′15”E
13 Geomun-Do (isl.) 34◦00′05”N/127◦30′05”E 27 Goo-am 37◦28′44”N/130◦48′16”E
14 Ganyeoam 34◦17′06”N/127◦51′28”E 28 Yeongok 37◦52′03”N/128◦53′08”E

* isl.: Island

3.2. Accuracy of Sea Surface Temperature Estimations

The proposed single-channel atmospheric correction method was applied to estimate SST to
validate its accuracy. Sea surface emissivity values were calculated using a simple model and the
ASTER spectral library [26,27]. The estimated SST values were compared with sea-truth temperature
data gathered from 28 buoys, scattered around the southern part of the Korean Peninsula (Figure 9 and
Table 3). Those buoys corresponded to the prediction area of the KMA NWP models (Figure 1) [28].

Three types of remotely sensed SSTs were compared to sea-truth temperatures obtained from
ocean buoys (Figure 10 and Table 4), which included SSTs computed by the proposed method,
a single-channel method using MODTRAN 5 simulations for every validation point, and SST
products of VIIRS/MODIS (VIIRS SST Product: VIIRS_NPP-OSPO-L2P-v2.4, MODIS SST Product:
MODIS_A-JPL-L2P-v2014.0) [29,30]. SST estimations using MODTRAN5 were conducted using
atmospheric profiles extracted after the re-organization process described in Section 2.5, for comparing
the results under similar conditions.

At night, in the absence of the solar signal, all four errors of the I4 band (mean, Std., Max., RMSE)
were larger while using the proposed single-channel method than while using the MODTRAN on the
VIIRS I4 band (Table 4). However, their differences were less than 0.2 ◦C. RMSE, and the standard
deviation of the I4 band, based on the proposed method, was similar to that of the VIIRS SST product
and half of the MODIS SST product. The maximum absolute error from the proposed method applied
to the I4 band was smaller than that of the VIIRS product. The values obtained for the I4 band using
the proposed method were biased by −0.39 ◦C, as shown in Table 4.

For the I5 band, the proposed method showed the largest RMSE and standard deviation among
the four different SSTs. However, the mean error and maximum absolute error were the smallest
at −0.07 ◦C and 6.39 ◦C, respectively. During the daytime, a mean error of the proposed method
using the I5 band was slightly more than the VIIRS and MODIS SST products. Additionally, standard
deviations of nighttime results showed the MODIS product and the I5 band results with broader
error distributions and larger standard deviations. The VIIRS product and I4 band, which had more
concentrated distributions, showed smaller standard deviations.
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the MODTRAN 5, proposed method, and existing SST products. (a) MODIS SST product
(MODIS_A-JPL-L2P-v2014.0) [30], (b) VIIRS SST product (VIIRS_NPP-OSPO-L2P-v2.4) [29], (c) VIIRS
I4 band processed by MODTRAN, (d) VIIRS I5 band processed by MODTRAN, (e) VIIRS I4 band
processed by the proposed method, and (f) VIIRS I5 band processed by the proposed method.
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Table 4. Analysis of the estimated SST as derived from VIIRS imaging channels with the proposed
single-channel atmospheric correction method, compared with the SST products of VIIRS and MODIS
based on multichannel atmospheric correction methods.

Time SST Data Samples Errors ( ◦C)

Night

Estimated SST, I4 Band, Proposed 258
Mean −0.39 RMSE 0.95
Std. 0.86 Max. (abs) 3.86

Estimated SST, I5 Band, Proposed 258
Mean −0.07 RMSE 1.81
Std. 1.80 Max. (abs) 6.39

Estimated SST, I4 Band, MODTRAN 258
Mean −0.23 RMSE 0.81
Std. 0.78 Max. (abs) 3.66

Estimated SST, I5 Band, MODTRAN 258
Mean 0.91 RMSE 1.67
Std. 1.40 Max. (abs) 10.7

VIIRS SST Product * 210
Mean 0.06 RMSE 0.92
Std. 0.91 Max. (abs) 5.75

MODIS SST Product ** 215
Mean 0.33 RMSE 1.74
Std. 1.75 Max. (abs) 13.6

Day

Estimated SST, I5 Band, Proposed 240
Mean −0.37 RMSE 1.95
Std. 1.91 Max. (abs) 6.14

VIIRS SST Product * 179
Mean −0.14 RMSE 1.95
Std. 1.94 Max. (abs) 13.5

MODIS SST Product ** 219
Mean −0.02 RMSE 2.62
Std. 2.62 Max. (abs) 14.3

* VIIRS SST Product: VIIRS_NPP-OSPO-L2P-v2.4 [29]; ** MODIS SST Product: MODIS_A-JPL-L2P-v2014.0 [30].

4. Discussions

4.1. Model Validations

Even though RMSEs compared to the minimum values of the atmospheric correction parameters
were up to 60%, the comparison results in Table 2 suggested that the simplified regression models
were successfully able to provide the parameters with an accuracy comparable to those by MODTRAN
5. However, the proposed method required further improvements particularly for high-observation
angle conditions. Actual effects of the parameter calculation errors could be indirectly recognized by
the estimation result of SST estimated. The results of SST estimation showed that that accuracy of the
proposed method was comparable to that of other multi-channel-based methods. Especially, the SST
estimation of the proposed method from the MWIR region (VIIRS I4) resulted in a difference of 0.03 in
both the squared correlation coefficient R2 and RMSE, which was comparable to the multi-channel
method-based VIIRS SST product (Table 4). The results from the TIR region (VIIRS I5) showed the
largest RMSE, which would be caused by errors in the atmospheric correction parameter calculations
(Table 4). In addition, the results of the MWIR region for the daytime images were not presented in
this study because they were seriously affected by solar irradiance. The daytime MWIR results after a
simple Sun-glint correction process will be introduced in further studies.

4.2. Effects of Observation Angles

Figure 11 shows the error in SST estimation by the proposed method according to various satellite
observation angles during the nighttime. The fitted lines indicate their trends. All I4 and I5 derived
results in Figure 11a,b had slopes smaller than the 10−2 order, which was comparable to that of VIIRS
or the MODIS SST product. This clearly demonstrated that the proposed single-channel method
was free from angular dependency on SST estimation up to a 60◦ observation angle. This suggested
that the correction functions for angular effects (Equations (17) to (19)) compensated the effects of
observation angles.
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Figure 11. Error distributions of SST estimations with the proposed method and their trends according
to various satellite and observation angles: (a) derived from the VIIRS I4 band, (b) derived from the
VIIRS I5 band, (c) VIIRS SST product, and (d) MODIS SST product [29,30].

4.3. Effects of Selecting Numerical Prediction Models between LDAPS and RDAPS

The effects of numerical model spatial resolutions were also assessed based on estimated SSTs
(Table 5). Two types of weather prediction models were used, as described in Section 2.1, including the
RDAPS with a resolution of 12 km and the LDAPS with a resolution of 1.5 km. The results are listed in
Table 5. Even with a low spatial resolution of 12 km, the estimation errors of the I4 derived SSTs were
comparable to those obtained by using a model of higher spatial resolution. For instance, RMSE of the
I4 band increased from 0.95 ◦C to 0.99 ◦C, while the maximum error decreased from 3.80 ◦C to 3.67 ◦C.
However, for the TIR region, errors decreased coherently as the spatial resolution of the numerical
model increased, except for the mean error.

Table 5. Errors of SSTs derived from VIIRS imaging channels with the proposed single-channel
atmospheric correction method for comparison between different weather prediction models having
different spatial resolutions.

Errors ( ◦C) and Systems
LDAPS (1.5 km Resolution)

Mean Std. Max. RMSE
VIIRS I4 band −0.23 0.96 3.67 0.99
VIIRS I5 band 0.98 1.01 3.16 1.41

Errors ( ◦C) and Systems
RDAPS (12 km Resolution)

Mean Std. Max. RMSE
VIIRS I4 band −0.39 0.86 3.86 0.95
VIIRS I5 band −0.07 1.80 6.39 1.81
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To cover the area displayed in Figure 9 and Table 3, in total, 1,920,000 pixels (1200 pixels by
1600 pixels) were required for LDAPS data. Meanwhile, only 28,000 pixels (200 pixels by 140 pixels) of
RDAPS data could cover the same area. The calculation time of the proposed model depended on
the number of atmospheric layers, the amount of NWP data, and computing power. For calculations
with 2000 atmospheric layers (for MWIR images), it took about 3 h to process using LDAPS data
and about 2 h using RDAPS data. With 300 layers (for LWIR images), it took about 30 min using
LDAPS data and about 20 min using RDAPS data. The calculation time of conventional radiative
transfer codes also depended on conditions and simulation settings. However, an assumption of just
0.5 s per calculation would result in about 4 h, for calculations on every 28,000 pixels in RDAPS data.
Furthermore, calculations using LDAPS data would cost about 267 h.

Therefore, according to this brief comparison in this study, a consistent improvement of SST
estimation errors could not be recognized, despite a spatial resolution improvement of NWP data
and an increase of the calculation time. This implied that inhomogeneity of atmospheric components
affecting infrared atmospheric correction would be negligible within the 12 km range and over a
sea surface.

5. Conclusions

This study proposed a single-channel atmospheric correction algorithm for both mid-wavelength
and thermal infrared channels. The proposed algorithm utilized high spatial resolution NWP models
for infrared atmospheric correction. It re-organized atmospheric profiles according to each pixel of the
NWP models within the infrared images, accounting for their viewing geometry. Therefore, it was
applicable to sensors with a wide field of view or sensors with a high maneuver and various observation
angles. It adopted an absorption-focused regression model and basic radiative transfer equations to
simplify the calculations. This approach could achieve a simple deduction of atmospheric optical
thickness and the calculation of atmospheric correction parameters, and consequently, the atmospheric
correction parameters for every pixel of NWP data could be calculated with a single step calculation.

The proposed method was applied to VIIRS I4 and I5 bands for estimating SSTs and its validation.
SSTs estimated around the Korean Peninsula were compared with sea-truth temperatures from ocean
buoys for validation. SST products of VIIRS and MODIS, which were based on multi-channel methods,
were also used for comparison.

From the results of SST estimation, the proposed method applied to satellite infrared images
showed a comparable accuracy to the widely used RTM, MODRAN 5, or even multi-channel-based
atmospheric correction algorithms (VIIRS/MODIS SST products) during the nighttime. In addition,
estimation errors were almost independent of observation angles up to 60◦. These validation results
supported that the proposed method using high-resolution NWP models was effectively able to
conduct an atmospheric correction for various observation angles.

The KMA NWP models used in this study had specific boundaries of data, which restricted the
validation area of the algorithm. Nevertheless, utilization examples of high-resolution NWP models,
combined with a simplified radiative transfer model, were provided under this study. The results
and approach of this study will be a helpful background for studies combining high-resolution NWP
models and infrared satellite imagery.
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Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band. Remote Sens.
2018, 10, 431. [CrossRef]

14. Barsi, J.A.; Barker, J.L.; Schott, J.R. An atmospheric correction parameter calculator for a single thermal band
earth-sensing instrument. In Proceedings of the IGARSS 2003, Toulouse, France, 21–25 July 2003; IEEE Cat.
No. 03CH37477. Volume 5, pp. 3014–3016.

15. Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Bray, M.; Islam, T.; Gupta, M.; Dai, Q. Estimation of land
surface temperature from atmospherically corrected LANDSAT TM image using 6S and NCEP global
reanalysis product. Environ. Earth Sci. 2014, 72, 5183–5196. [CrossRef]

16. Tardy, B.; Rivalland, V.; Huc, M.; Hagolle, O.; Marcq, S.; Boulet, G. A software tool for atmospheric correction
and surface temperature estimation of Landsat infrared thermal data. Remote Sens. 2016, 8, 696. [CrossRef]

17. Islam, T.; Hulley, G.C.; Malakar, N.K.; Radocinski, R.G.; Guillevic, P.C.; Hook, S.J. A physics-based algorithm
for the simultaneous retrieval of land surface temperature and emissivity from VIIRS thermal infrared data.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 563–576. [CrossRef]

18. Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Urety, S.; Shao, X.; Bai, Y.; Weng, F. Suomi NPP VIIRS sensor data
record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos. 2013, 118,
11–664. [CrossRef]

19. Korea Meteorological Administration (KMA). Application Manual of Numerical Forecast Data;
Korea Meteorological Administration (KMA): Seoul, Korea, 2013.

http://dx.doi.org/10.1029/2003JD003480
http://dx.doi.org/10.1016/j.rse.2004.02.018
http://dx.doi.org/10.1109/TGRS.2008.2007125
http://dx.doi.org/10.1016/0273-1177(94)90193-7
http://dx.doi.org/10.3390/rs6109829
http://dx.doi.org/10.1016/j.rse.2019.111216
http://dx.doi.org/10.3390/rs11243025
http://dx.doi.org/10.5589/m02-087
http://dx.doi.org/10.1029/2018JD029330
http://dx.doi.org/10.1109/LGRS.2009.2029534
http://dx.doi.org/10.3390/rs10030431
http://dx.doi.org/10.1007/s12665-014-3388-1
http://dx.doi.org/10.3390/rs8090696
http://dx.doi.org/10.1109/TGRS.2016.2611566
http://dx.doi.org/10.1002/2013JD020418


Remote Sens. 2020, 12, 853 20 of 20

20. Liou, K.N. An Introduction to Atmospheric Radiation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2002;
pp. 116–168, ISBN 978-0-12-451451-5.

21. Meador, W.E.; Weaver, W.R. Two-stream approximations to radiative transfer in planetary atmospheres:
A unified description of existing methods and a new improvement. J. Atmos. Sci. 1980, 37, 630–643.
[CrossRef]

22. Lee, K.M. Atmospheric Radiation, 1st ed.; Sigma Press: Seoul, Korea, 2000; pp. 23–31, 109–132, ISBN
89-8445-037-5.

23. Griffin, M.K.; Hsiao-hua, K.B.; Kerekes, J.P. Understanding radiative transfer in the midwave infrared:
A precursor to full-spectrum atmospheric compensation. In Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery X. Int. Soc. Opt. Photonics 2004, 5425, 348–357.

24. Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.;
Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model
Dev. 2018, 11, 2717–2737. [CrossRef]

25. Carmichael, R. Geopotential and Geometric Altitude; Public Domain of Aeronautical Software (PDA): Santa Cruz,
CA, USA, 2003.

26. Niclòs, R.; Caselles, V.; Valor, E.; Coll, C.; Sanchez, J.M. A simple equation for determining sea surface
emissivity in the 3–15 µ m region. Int. J. Remote Sens. 2009, 30, 1603–1619. [CrossRef]

27. Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0. Remote Sens.
Environ. 2009, 113, 711–715. [CrossRef]

28. Korea Meteorological Administration (KMA). Explanation Document of Meteorological Data; Marine Weather
Buoys, Wave Height Buoys, Marine Light Beacons; Korea Meteorological Administration (KMA): Seoul,
Korea, 2015.

29. NOAA Office of Satellite and Product Operations (OSPO). GHRSST GDS2 Level 2P Global Skin Sea Surface
Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite created by the
NOAA Advanced Clear-Sky Processor for Ocean (ACSPO); Ver. 2.4; PO.DAAC: Pasadena, CA, USA, 2015.
[CrossRef]

30. JPL/OBPG/RSMAS. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the NASA Aqua Satellite; Ver. 2014.0; PO.DAAC: Pasadena, CA, USA, 2016.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1175/1520-0469(1980)037&lt;0630:TSATRT&gt;2.0.CO;2
http://dx.doi.org/10.5194/gmd-11-2717-2018
http://dx.doi.org/10.1080/01431160802541523
http://dx.doi.org/10.1016/j.rse.2008.11.007
http://dx.doi.org/10.5067/GHVRS-2PO03
http://dx.doi.org/10.5067/GHMDA-2PJ02
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Numerical Weather Prediction Models 
	Formulation of a Regression Model 
	Determination of Model Parameters 
	Corrections of Model Biases 
	Processing Steps 

	Results and Validations 
	Atmospheric Correction Parameters 
	Accuracy of Sea Surface Temperature Estimations 

	Discussions 
	Model Validations 
	Effects of Observation Angles 
	Effects of Selecting Numerical Prediction Models between LDAPS and RDAPS 

	Conclusions 
	References

