Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain)
Abstract
:1. Introduction
2. Background
2.1. The Rules Reservoir
2.2. Geological and Geomorphological Setting of the Rules Reservoir
2.3. Slope Instabilities Registered in the Rules Reservoir Area
3. Methods
3.1. SAR Interferometry
3.2. Geomorphological Investigation
3.3. Analysis of InSAR Times Series
4. Results
4.1. InSAR Velocity Map of the Rules Reservoir
4.2. Geomorphological Study
4.2.1. Cortijo de Lorenzo area
4.2.2. Rules Viaduct Landslide
4.2.3. El Arrecife Landslide
4.3. Displacement-Time Series of the Unstable Areas in the Rules Reservoir
5. Discussion
5.1. DInSAR as a Monitoring System for the Rules Dam
5.2. Triggering Factors of the Slope Instabilities in the Rules Reservoir
5.3. Characterization of Slope Stabilities and Potential Hazards in the Rules Reservoir
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lane, K.S. Stability of reservoir slopes in: Failure and breakage of rock. In Proceedings of the Eight Sysmposium of Rock Mechanics, University of Minnesota, Minneapolis, MN, USA, 15–17 September 1966; Fairhust, C., Ed.; American Rock Mechanics Association: Alexandria, VA, USA, 1966; pp. 321–336. [Google Scholar]
- Kiersch, G.A. Vaiont Reservoir disaster. Civ. Eng. 1964, 34, 32–40. [Google Scholar]
- Schuster, R.L. Reservoir-induced landslides. Bull. Int. Assoc. Eng. Geol. Bull. l’Assoc. Int. Géologie l’Ingénieur 1979, 20, 8–15. [Google Scholar] [CrossRef]
- Jones, F.O.; Embody, D.R.; Peterson, W.L. Landslides along the Columbia River valley, northeastern Washington. U.S. Geol. Survey Prof. Paper 1961, 367, 1–98. [Google Scholar]
- Novosad, S.; Barvinek, R.; de la Torre Sabrevilla, M. Estudio de estabilidad del Derrumbe No. 5 en el reservorio de Tablachaca de la Central Hidroelectrica del Mantaro. In Proceedings of the VI Pan-American Soil Mechanics and Foundation Engineering Congress, Lima, Perú, 2–7 December 1979; pp. 331–344. [Google Scholar]
- Qi, S.; Yan, F.; Wang, S.; Xu, R. Characteristics, mechanism and development tendency of deformation of Maoping landslide after commission of Geheyan reservoir on the Qingjiang River, Hubei Province, China. Eng. Geol. 2006, 86, 37–51. [Google Scholar] [CrossRef]
- Wang, F.W.; Zhang, Y.M.; Huo, Z.T.; Matsumoto, T.; Huang, B.L. The July 14, 2003 Qianjiangping landslide, three gorges reservoir, China. Landslides 2004, 1, 157–162. [Google Scholar] [CrossRef]
- Rybář, J. Prediction of slope failures on water reservoi rbanks. Bull. Int. Assoc. Eng. Geol. Bull. L’assoc. Int. Géologie L’ingénieur 1977, 16, 64–67. [Google Scholar]
- Spanilá, T.; Horsky, O.; Banach, M. Slides and sliding in the water reservoirs banks. In Landslides: Proceedings of the First European Conference on Landslides; Rybář, J., Stemberk, J., Wagner, P., Eds.; CRC Press: Prague, Czech Republic, 2002; p. 315. [Google Scholar]
- Lopez-Marinas, J.M.; Gazta aga, J.M.; Cajete, J. Landslides in the Cortes reservoir during initial filling. In Proceedings of the Transactions of the Nineteenth International Congress on Large Dams, Florence, Italy, 26–30 May 1997; Volume 3, pp. 537–550. [Google Scholar]
- Gutiérrez, F.; Lucha, P.; Galve, J.P. Reconstructing the geochronological evolution of large landslides by means of the trenching technique in the Yesa Reservoir (Spanish Pyrenees). Geomorphology 2010, 124, 124–136. [Google Scholar] [CrossRef]
- Millet, R.A.; Lawton, G.M.; Repetto, P.C.; Garga, V.K. Stabilization of Tablachaca Dam landslide. In Stability and Perfomance of Slopes and Embakments; Seed, R.B., Boulanger, R.W., Eds.; American Society of Civil Engineers: Reston, VA, USA, 1992; Volume 2, pp. 1365–1381. [Google Scholar]
- Milillo, P.; Perissin, D.; Salzer, J.T.; Lundgren, P.; Lacava, G.; Milillo, G.; Serio, C. Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 221–229. [Google Scholar] [CrossRef]
- Bozzano, F.; Cipriani, I.; Mazzanti, P.; Prestininzi, A. Displacement patterns of a landslide affected by human activities: Insights from ground-based InSAR monitoring. Nat. Hazards 2011, 59, 1377–1396. [Google Scholar] [CrossRef]
- Kraus, K. Photogrammetry, Vol.2, Advanced Methods and Applications; Dümmler Verlag: Bonn, Germany, 1997; 466p. [Google Scholar]
- Teza, G.; Galgaro, A.; Zaltron, N.; Genevois, R. Terrestrial laser scanner to detect landslide displacement fields: A new approach. Int. J. Remote Sens. 2007, 28, 3425–3446. [Google Scholar] [CrossRef]
- Brunner, F.; Zobl, F.; Gassner, G. On the Capability of GPS for Landslide Monitoring. Felsbau 2003, 21, 51–54. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Monserrat, O.; Crosetto, M.; Luzi, G. A review of ground-based SAR interferometry for deformation measurement. Isprs J. Photogramm. Remote Sens. 2014, 93, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Barra, A.; Monserrat, O.; Mazzanti, P.; Esposito, C.; Crosetto, M.; Scarascia Mugnozza, G. First insights on the potential of Sentinel-1 for landslides detection. Geomat. Nat. Hazards Risk 2016, 7, 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- Catani, F.; Casagli, N.; Ermini, L.; Righini, G.; Menduni, G. Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2005, 2, 329–342. [Google Scholar] [CrossRef]
- Herrera, G.; Davalillo, J.C.; Mulas, J.; Cooksley, G.; Monserrat, O.; Pancioli, V. Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central Pyrenees case study. Nat. Hazard Earth Syst. Sci. 2009, 9, 1587–1598. [Google Scholar] [CrossRef]
- Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): The PSI-based matrix approach. Landslides 2013, 10, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Crosetto, M.; Devanthéry, N.; Cuevas-González, M.; Monserrat, O.; Barra, A.; Crippa, B. Deformation monitoring using Sentinel-1 SAR imagery. In Living Planet Symposium; Mico Milano Congressi: Milan, Italy, 2016. [Google Scholar]
- Ciampalini, A.; Raspini, F.; Bianchini, S.; Frodella, W.; Bardi, F.; Lagomarsino, D.; Di Traglia, F.; Moretti, S.; Proietti, C.; Pagliara, P.; et al. Remote sensing as tool for development of landslide databases: The case of the Messina Province (Italy) geodatabase. Geomorphology 2015, 249, 103–118. [Google Scholar] [CrossRef]
- Rocca, A.; Mazzanti, P.; Bozzano, F.; Perissin, D. Advanced characterization of a landslide-prone area by satellite a-DInSAR. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P.T., Luino, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 5, pp. 177–181. [Google Scholar]
- Sousa, J.J.; Hlaváčová, I.; Bakoň, M.; Lazecký, M.; Patrício, G.; Guimarães, P.; Ruiz, A.M.; Bastos, L.; Sousa, A.; Bento, R. Potential of Multi-temporal InSAR Techniques for Bridges and Dams Monitoring. Procedia Technol. 2014, 16, 834–841. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Perissin, D.; Rocca, F.; Liao, M.S. Three Gorges Dam stability monitoring with time-series InSAR image analysis. Sci. China Earth Sci. 2011, 54, 720–732. [Google Scholar] [CrossRef]
- Cignetti, M.; Manconi, A.; Manunta, M.; Giordan, D.; De Luca, C.; Allasia, P.; Ardizzone, F. Taking advantage of the esa G-pod service to study ground deformation processes in high mountain areas: A valle d’aosta case study, northern italy. Remote Sens. 2016, 8, 852. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Xie, M.; Chai, X.; Wang, L.; Dong, C. D-InSAR-based landslide location and monitoring at Wudongde Hydropower Reservoir in China. Environ. Earth Sci. 2013, 69, 2763–2777. [Google Scholar] [CrossRef]
- Barra, A.; Solari, L.; Béjar-Pizarro, M.; Monserrat, O.; Bianchini, S.; Herrera, G.; Crosetto, M.; Sarro, R.; González-Alonso, E.; Mateos, R.M.; et al. A methodology to detect and update active deformation areas based on Sentinel-1 SAR images. Remote Sens. 2017, 9, 1002. [Google Scholar] [CrossRef] [Green Version]
- Rucci, A.; Ferretti, A.; Monti Guarnieri, A.; Rocca, F. Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sens. Environ. 2012, 120, 156–163. [Google Scholar] [CrossRef]
- Tang, P.; Chen, F.; Guo, H.; Tian, B.; Wang, X.; Ishwaran, N. Large-area landslides monitoring using advanced multi-temporal InSAR technique over the giant panda habitat, Sichuan, China. Remote Sens. 2015, 7, 8925–8949. [Google Scholar] [CrossRef] [Green Version]
- Pérez, A.N. La presa de Rules. Rev. De Obras Públicas Órgano Prof. De Los Ing. De Caminoscanales Y Puertos 2004, 3441, 131–152. [Google Scholar]
- Bergillos, R.J.; Ortega-Sánchez, M. Assessing and mitigating the landscape effects of river damming on the Guadalfeo River delta, southern Spain. Landsc. Urban. Plan. 2017, 165, 117–129. [Google Scholar] [CrossRef]
- Vera, J.; Martín-Algarra, A. Cordillera Bética y Baleares. Divisiones mayores y nomenclatura. In Geología de España; Vera, J., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 347–350. [Google Scholar]
- Simancas, J.F. A reappraisal of the Alpine structure of the Alpujárride Complex in the Betic Cordillera: Interplay of shortening and extension in the westernmost Mediterranean. J. Struct. Geol. 2018, 115, 231–242. [Google Scholar] [CrossRef]
- Aldaya, F.; Díaz de Federico, A.; García-Dueñas, V.; Martínez-García, E.; Navarro-Vilá, F.; Puga, E. Lanjarón (1042). Geological Map of Spain 1:50000; Geological Survey of Spain (IGME): Madrid, Spain, 1979. [Google Scholar]
- Simancas, J.F.; Campos, J. Compresión NNW–SSE tardi a postmetamórfica y extensión subordinada en el Complejo Alpujárride (Dominio de Alborán, Orógeno Bético). Rev. Soc. Geol. España 1993, 6, 23–35. [Google Scholar]
- Galindo-Zaldívar, J.; Jabaloy, J.; Serrano, I.; Morales, J.; González-Lodeiro, F.; Torcal, F. Recent and present-day stresses in the Granada Basin (Betic Cordilleras): Example of a late Miocene-present-day extensional basin in a convergent plate boundary. Tectonics 1999, 18, 686–702. [Google Scholar]
- Martínez-Martínez, J.M.; Soto, J.I.; Balanyá, J.C. Orthogonal folding of extensional detachments: Structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain). Tectonics 2002, 21, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Sanz de Galdeano, C.; García Tortosa, F.J.; Peláez Montilla, J.A.; Alfaro García, P.; Azañón, J.M.; Galindo Zaldívar, J.; López-Casado, C.; López-Garrido, A.C.; Rodríguez-Fernández, J.; Ruano, P. Main active faults in the Granada and Guadix-Baza Basins (Betic Cordillera). J. Iber. Geol. 2012, 38, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Fernández, T.; Brabb, E.; Delgado, F.; Martin-Algarra, A.; Irigaray, C.; Estévez, A.; Chacón-Montero, J. Rasgos geológicos y movimientos de ladera en el sector Ízbor-Vélez Benaudalla de la cuenca del río Guadalfeo (Granada). In Proceedings of the IV Simposio Nacional Sobre Taludes y Laderas Inestables, Granada, Spain, 11–14 November 1997; pp. 795–808. [Google Scholar]
- Chacón, J.; Irigaray, T.; Fernández, T. Los movimientos de ladera de la provincia de Granada. In Atlas Riesgos Naturales en la Provincia de Granada, 1st ed.; Ferrer, M., Ed.; Diputación de Granada-Geological Survey of Spain (IGME): Madrid, Spain, 2007; pp. 45–82. [Google Scholar]
- Irigaray, C.; Lamas, F.; El Hamdouni, R.; Fernández, T.; Chacón, J. The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat. Hazards 2000, 21, 65–81. [Google Scholar] [CrossRef]
- Fernández-Motril, R. La A-44 se Traga en Cuatro Años Más de 80 Millones en Parches; Newspaper ‘Granada Hoy’: Granada, Spain, 2013. [Google Scholar]
- Navarrete, M. El Ministro de Fomento Inaugura el Tramo de Autovía Más caro de España; Newspaper ‘Ideal’: Granada, Spain, May 2009. [Google Scholar]
- Fernández-Motril, R. Fomento Invertirá 19 Millones en Reparar un Nuevo Fallo en el Viaducto de Rules; Newspaper ‘Granada Hoy: Granada, Spain, 2013. [Google Scholar]
- Fernández-Motril, R. N-323: Una Carretera Abandonada Desde 2009; Newspaper ‘Granada Hoy’: Granada, Spain, 2013. [Google Scholar]
- Fernández-Motril, R. Fomento Terminará Las Obras del Viaducto de Rules Esta Semana; Newspaper ‘Granada Hoy’: Granada, Spain, 2015. [Google Scholar]
- Lazecky, M.; Authority, E.; Nikolaeva, E.; Bakon, M. Potential of Sentinel-1a for Nation-Wide Routine Updates of Active Landslide Maps. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 775–781. [Google Scholar] [CrossRef]
- Devanthéry, N.; Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Crippa, B. An approach to persistent scatterer interferometry. Remote Sens. 2014, 6, 6662–6679. [Google Scholar] [CrossRef] [Green Version]
- Biescas, E.; Crosetto, M.; Agudo, M.; Monserrat, O.; Crippa, B. Two radar interferometric approaches to monitor slow and fast land deformation. J. Surv. Eng. 2007, 133, 66–71. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas, M.; Crippa, B. Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement. Remote Sens. 2011, 3, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Solari, L.; Bianchini, S.; Franceschini, R.; Barra, A.; Monserrat, O.; Thuegaz, P.; Bertolo, D.; Crosetto, M.; Catani, F. Satellite interferometric data for landslide intensity evaluation in mountainous regions. Int. J. Appl. Earth. Obs. 2020, 87, 102028. [Google Scholar] [CrossRef]
- Arjona, A.; Santoyo, M.A.; Fernández, J.; Monells, D.; Prieto, J.F.; Pallero, J.L.G.; Prieto, E.; Seco, A.; Luzón, F.; Mallorquí, J. On the Applicability of an Advanced Dinsar Technique near Itoiz and Yesa Reservoirs, Navarra, Spain. Fringe 2009 Work. 2010, 2009, 2–7. [Google Scholar]
- Di Martire, D.; Iglesias, R.; Monells, D.; Centolanza, G.; Sica, S.; Ramondini, M.; Pagano, L.; Mallorquí, J.J.; Calcaterra, D. Comparison between Differential SAR interferometry and ground measurements data in the displacement monitoring of the earth-dam of Conza della Campania (Italy). Remote Sens. Environ. 2014, 148, 58–69. [Google Scholar] [CrossRef]
- Liao, H.J.; Sheng, Q.; Gao, S.H.; Xu, Z.P. Influence of drawdown of reservoir water level on landslide stability. Chin. J. Rock Mech. Eng. 2005, 24, 3454–3458. [Google Scholar]
- Macfarlane, D.F. Observations and predictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand. Eng. Geol. 2009, 109, 5–15. [Google Scholar] [CrossRef]
- Záruba, Q.; Fencl, J.; Simek, J.; Eisenstein, Z. Analysis of the Dneboh Landslide. J. Geol. Sci. 1966, 5, 141–160. [Google Scholar]
- De Vita, P.; Reichenbach, P.; Bathurst, J.C.; Borga, M.; Crozier, G.M.; Glade, T.; Guzzetti, F.; Hansen, A.; Wasowski, J. Rainfall-triggered landslides: A reference list. Environ. Geol. 1998, 35, 219–233. [Google Scholar] [CrossRef]
- Rybář, J.; Stemberk, J.; Wagner, P. Landslides: Proceedings of the First European Conference on Landslides; CRC Press: Prague, Czech Republic, 2002; 748p. [Google Scholar]
- Polemio, O.; Petrucci, O. Rainfall as a Landslide Triggering Factor: an overview of recent international research. In Landslides in Research, Theory and Practice: Proceedings of the 8th International Symposium on Landslides; Bromhead, E., Dixon, N., Ibsen, M.-L., Eds.; Thomas Telford: London, UK, 2000; pp. 1219–1226. [Google Scholar]
- Turner, A.K.; Schuster, R.L. Landslides: Investigation and Mitigation. Special Report 247; National Academy Press: Washington, DC, USA, 1996; 673p. [Google Scholar]
- Salcedo, D.A. Behavior of a landslide prior to inducing a viaduct failure, Caracas-La Guaira highway, Venezuela. Eng. Geol. 2009, 109, 16–30. [Google Scholar] [CrossRef]
- Monserrat, O.; Crosetto, M.; Cuevas, M.; Crippa, B. The thermal expansion component of persistent scatterer interferometry observations. IEEE Geosci. Remote Sens. Lett. 2011, 8, 864–868. [Google Scholar] [CrossRef]
- Petley, D.N.; Bulmer, M.H.; Murphy, W. Patterns of movement in rotational and translational landslides. Geology 2002, 30, 719–722. [Google Scholar] [CrossRef]
- Datei, C. Riproduzione su Modello in Scala 1:500 Della Frana Caduta nel 1959 Entro il Lago-Serbatoio del Maè; Internal report; University of Padova: Padova, Italy, 2012. [Google Scholar]
- Fritz, H.M.; Hager, W.H.; Minor, H.E. Lituya bay case: Rockslide impact and wave run-up. Sci. Tsunami Haz. 2001, 1, 3–22. [Google Scholar]
- Harbitz, C.B. Model simulations of tsunamis generated by the Storegga slides. Mar. Geol. 1992, 105, 1–21. [Google Scholar] [CrossRef]
- Solari, L.; Raspini, F.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ferrigno, F.; Tucci, S.; Casagli, N. Satellite radar data for back-analyzing a landslide event: the Ponzano (Central Italy) case study. Landslides 2018, 15, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zhang, L.; Li, M.; Yu, Y.; Liao, M.; Gong, J.; Luo, H. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets. Landslides 2018, 15, 135–144. [Google Scholar] [CrossRef]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Del Conte, S.; Farina, P.; Allievi, J.; Ferretti, A.; Casagli, N. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides 2018, 15, 123–133. [Google Scholar] [CrossRef] [Green Version]
Satellite | Sentinel-1A and B |
---|---|
Acquisition mode | Interferometric Wide (IW) Swath |
Product type | Single Looked Complex (SLC) |
Orbit | Ascending |
Incidence angle | 39° |
Track or relative orbit number | 1 |
Minimum revisit period (days) | 6 |
Temporal span | March 2015–September 2018 (3.5 years) |
Number of images | 139 |
Wavelength (cm) | 5.5 |
Polarization | VV |
Full resolution (azimuth/range) (m) | 14/4 |
Number of processed swaths | 1 |
Number of processed bursts | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Carmona, C.; Barra, A.; Galve, J.P.; Monserrat, O.; Pérez-Peña, J.V.; Mateos, R.M.; Notti, D.; Ruano, P.; Millares, A.; López-Vinielles, J.; et al. Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain). Remote Sens. 2020, 12, 809. https://doi.org/10.3390/rs12050809
Reyes-Carmona C, Barra A, Galve JP, Monserrat O, Pérez-Peña JV, Mateos RM, Notti D, Ruano P, Millares A, López-Vinielles J, et al. Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain). Remote Sensing. 2020; 12(5):809. https://doi.org/10.3390/rs12050809
Chicago/Turabian StyleReyes-Carmona, Cristina, Anna Barra, Jorge Pedro Galve, Oriol Monserrat, José Vicente Pérez-Peña, Rosa María Mateos, Davide Notti, Patricia Ruano, Agustín Millares, Juan López-Vinielles, and et al. 2020. "Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain)" Remote Sensing 12, no. 5: 809. https://doi.org/10.3390/rs12050809