Toward the Detection of Permafrost Using Land-Surface Temperature Mapping
Abstract
:1. Introduction
1.1. Zero Curtain in the Surface and Soil Temperatures
1.2. Remote Sensing and Numerical Modeling Studies of Permafrost
2. Materials and Methods
2.1. Remotely Sensed and Climate Data
2.2. “Threshold Window” Filtering Algorithm
- (1)
- LST must be between −3.5 and 3.5 °C (defined below as the LST during a zero-curtain event, or “zero-curtain LST”);
- (2)
- The number of consecutive zero-curtain LSTs must be >3;
- (3)
- The number of days with missing data between two identified zero-curtain LSTs must be <3; and
- (4)
- The total number of zero-curtain LSTs must be >5.
2.3. Validation Sites
2.4. In-Situ Measurements at Validation Sites
3. Results
3.1. The Zero Curtain in the LST Data
3.2. Occurrence of Zero Curtains in the Study Area
3.3. Comparison Between MODIS LST and In Situ Measured Ground Temperatures
4. Discussion
4.1. The MODIS LST Product
4.2. MODIS LST and Subsurface Temperature Profiles
4.3. Effects of Scene Roughness
4.4. Spatial Resolution and Radiance Mixing
4.5. Seasonal Zero-Curtain Duration
4.6. Potential for Quantified Mapping of Seasonally Frozen Ground and Permafrost
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schuur, E.A.G.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- French, H.M. The Periglacial Environment, 3rd ed.; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Smith, S.; Brown, J. Assessment of the Status of the Development of Standards for the Terrestrial Essential Climate Variables—T7—Permafrost and Seasonally Frozen Ground; Global Terrestrial Observing System: Rome, Italy, 2009.
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Dobiński, W. Northern Hemisphere permafrost extent: Drylands, glaciers and sea floor. Comment to the paper: Obu, J.; et al. 2019. Northern Hemisphere permafrost map based on TTOP modeling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 103037. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Koven, C.; McGuire, A.D.; Grosse, G.; Kuhry, P.; et al. Permafrost collapse is accelerating carbon release. Nature 2019, 569, 32–34. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Dyck, M. Application of Multiphase Dielectric Mixing Models for Understanding the Effective Dielectric Permitivity of Frozen Soils. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Duncan, B.N.; Ott, L.E.; Abshire, J.B.; Brucker, L.; Carroll, M.L.; Carton, J.; Comiso, J.C.; Dinnat, E.P.; Forbes, B.C.; Gonsamo, A.; et al. Space-Based Observations for Understanding Changes in the Arctic-Boreal Zone. Rev. Geophys. 2020, 58, e2019RG000652. [Google Scholar] [CrossRef]
- Du, J.; Watts, J.D.; Jiang, L.; Lu, H.; Cheng, X.; Duguay, C.; Farina, M.; Qiu, Y.; Kim, Y.; Kimball, J.S.; et al. Remote Sensing of Environmental Changes in Cold Regions: Methods, Achievements and Challenges. Remote Sens. 2019, 11, 1952. [Google Scholar] [CrossRef] [Green Version]
- Outcalt, S.I.; Nelson, F.E.; Hinkel, K.M. The zero-curtain effect: Heat and mass transfer across an isothermal region in freezing soil. Water Resour. Res. 1990, 26, 1509–1516. [Google Scholar]
- Putkonen, J. What dictates the occurrence of zero curtain effect? In Ninth International Conference on Permafrost; Kane, D.L., Hinkel, K.M., Eds.; Institute of Northern Engineering, University of Alaska Fairbanks: Fairbanks, AK, USA, 2008; pp. 1451–1455. [Google Scholar]
- Yi, Y.; Kimball, J.S.; Chen, R.H.; Moghaddam, M.; Reichle, R.H.; Mishra, U.; Zona, D.; Oechel, W.C. Mapping permafrost landscape features using object-based image classification of multi-temporal SAR images. Cryosphere 2018, 12, 145–161. [Google Scholar] [CrossRef] [Green Version]
- De Pablo, M.A.; Ramos, M.; Molina, A. Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica. Solid Earth 2014, 5, 721–739. [Google Scholar] [CrossRef] [Green Version]
- Trombotto Liaudat, D. Geocryology of southern South America. In Late Cenozoic of Patagonia and Tierra del Fuego; Developments in Quaternary Sciences; Rabassa, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 11, pp. 255–268. [Google Scholar]
- Nagy, B.; Ignéczi, A.; Kovács, J.; Szalai, Z.; Mari, L. Shallow ground temperature measurements on the highest volcano on Earth, Mt. Ojos del Salado, Arid Andes, Chile. Permafr. Periglac. 2019, 30, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Baldis, C.T.; Trombotto Liaudat, D. Rockslides and rock avalanches in the Central Andes of Argentina and their possible association with permafrost degradation. Permafr. Periglac. 2019, 30, 300–304. [Google Scholar]
- Obu, J.; Westermann, S.; Kääb, A.; Bartsch, A. Ground Temperature Map, 2000–2016, Andes, New Zealand and East African Plateau Permafrost; PANGAEA: Oslo, Norway, 2019. [Google Scholar]
- French, H. Recent Contributions to the Study of Past Permafrost. Permafr. Periglac. 2008, 19, 179–194. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.M.; Romanovsky, V.E.; Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 2018, 9, 5423. [Google Scholar] [CrossRef]
- Kumar, S.V.; Dirmeyer, P.A.; Peters-Lidard, C.D.; Bindlish, R.; Bolten, J. Information theoretic evaluation of satellite soil moisture retrievals. Remote Sens. Environ. 2018, 204, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Norouzi, H.; Azarderakhsh, M.; Blake, R.; Khanbilvardi, R. Potential of satellite-based land emissivity estimates for the detection of high-latitude freeze and thaw states. Geophys. Res. Lett. 2017, 44, 2336–2342. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kimball, J.; Glassy, J.; McDonald, K. MEaSUREs Northern Hemisphere Polar EASE-Grid 2.0 Daily 6 km Land Freeze/Thaw Status from AMSR-E and AMSR2, Version 1; National Snow and Ice Data Center: Boulder, CO, USA, 2018. [Google Scholar]
- Liu, L.; Schaefer, K.; Zhang, T.; Wahr, J. Estimating 1992–2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence. J. Geophys. Res. 2012, 117, F01005. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Ludwig, R. Mapping permafrost landscape features using object-based image classification of multi-temporal SAR images. ISPRS J. Photogramm. 2018, 141, 10–29. [Google Scholar] [CrossRef]
- Chen, R.H.; Tabatabaeenejad, A.; Moghaddam, M. Retrieval of permafrost active layer properties using time-series P-band radar observations. IEEE T. Geosci. Remote 2019, 57, 6037–6054. [Google Scholar] [CrossRef]
- Westermann, S.; Langer, M.; Boike, J.; Heikenfeld, M.; Peter, M.; Etzelmüller, B.; Krinner, G. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3. Geosci. Model Dev. 2016, 9, 523–546. [Google Scholar] [CrossRef] [Green Version]
- Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M. Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness. Geophys. Res. Lett. 2018, 45, 4889–4898. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Koster, R.D.; Reichle, R.H.; Forman, B.A.; Xue, Y.; Chen, R.H.; Moghaddam, M. Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis. Cryosphere 2019, 13, 2087–2110. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006, Distributed by NASA EOSDIS Land Processes DAAC. 2015. Available online: https://doi.org/10.5067/MODIS/MOD11A1.006 (accessed on 15 April 2018).
- Wan, Z.; Hook, S.; Hulley, G. MYD11A1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006, Distributed by NASA EOSDIS Land Processes DAAC. 2015. Available online: https://doi.org/10.5067/MODIS/MYD11A1.006 (accessed on 15 April 2018).
- Brown, O.B.; Minnett, P.J. MODIS Infrared Sea Surface Temperature Algorithm; Algorithm Theoretical Basis Document, NASA Contract Number NAS5-31361; University of Florida: Miami, FL, USA, 1994. [Google Scholar]
- Hulley, G.C.; Hughes, T.; Hook, S.J. Quantifying uncertainties in land surface temperature (LST) and emissivity retrievals from ASTER and MODIS thermal infrared data. J. Geophys. Res. 2012, 117, D23113. [Google Scholar] [CrossRef] [Green Version]
- NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team. ASTER Level 2 Surface Temperature Product, ASTER Kinetic Surface Temperature (AST_08), and Registered Radiance (AST_L1B version 3) Images from April 8, 2017 (Granule UR AST_L1B.003:2248631617), NASA EOSDIS Land Processes DAAC at the USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. Available online: https://doi.org/10.5067/ASTER/AST_08.003 (accessed on 1 October 2019).
- Fan, Y.; Van Den Dool, H. A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res. 2008, 113, D01103. [Google Scholar] [CrossRef]
- NASA JPL. NASA Shuttle Radar Topography Mission Global 1 arc Second, Distributed by NASA EOSDIS Land Processes DAAC at the USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. 2013. Available online: https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1N.003 (accessed on 1 October 2019).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Derber, J.; Gandin, L.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year re-analysis project. Bull. Am. Meteorol. Soc. 1995, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Vargo, L.J.; Galewsky, J.; Rupper, S.; Ward, D.J. Sensitivity of glaciation in the arid subtropical Andes to changes in temperature, precipitation, and solar radiation. Glob. Planet. Chang. 2018, 163, 86–96. [Google Scholar] [CrossRef]
- Trombotto, D.T. Survey of Cryogenic Processes, Periglacial Forms and Permafrost Conditions in South America; Revista do Instituto Geológico: São Paulo, Brazil, 2000; pp. 33–55. [Google Scholar]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Baker, P.E.; Gonzalez-Ferran, O.; Rex, D.C. Geology and geochemistry of the Ojos del Salado volcanic region, Chile. J. Geol. Soc. 1987, 144, 85–96. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Ziese, M. GPCC Full Data Reanalysis Version 7.0: Monthly Land-surface Precipitation from Rain Gauges Built on GTS Based and Historic Data; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Available online: https://doi.org/10.5065/D6000072 (accessed on 10 January 2016).
- Buchroithner, D.; Trombotto, D. Cryophenomena in the Cold Desert of Atacama. In EGU General Assembly Conference Abstracts; EGU: Vienna, Austria, 2012; Volume 14, p. 654. [Google Scholar]
- García, A.; Ulloa, C.; Amigo, G.; Milana, J.P.; Medina, C. An inventory of cryospheric landforms in the arid diagonal of South America (high Central Andes, Atacama region, Chile). Quatern. Int. 2017, 438, 4–19. [Google Scholar] [CrossRef]
- Falvey, M.; Garreaud, R.D. Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J. Geophys. Res. 2009, 114, D04102. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/Terra Snow Cover 5-Min L2 Swath 500m. Version 5; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2006.
- Baldridge, A.M.; Hook, S.J.; Grove, C.J.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the Collection-6 MODIS land-surface temperature/emissivity products. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Frey, R. MODIS Atmosphere L2 Cloud Mask Product (35_L2). NASA MODIS Adaptive Processing System at the Goddard Space Flight Center, Greenbelt, MD, USA. 2015. Available online: http://dx.doi.org/10.5067/MODIS/MYD35_L2.006 (accessed on 10 December 2019).
- Wan, Z.; Zhang, L.; Zhan, Q.; Li, Z.L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of ice and snow. Philos. T. Roy. Soc. A 2019, 377, 20180161. [Google Scholar] [CrossRef]
- Brandt, R.E.; Warren, S.G. Solar-heating rates and temperature profiles in Antarctic snow and ice. J. Glaciol. 1993, 39, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, J.W.; D’Aria, D.M.; Wald, A. Measurements of thermal infrared spectral reflectance of frost, snow, and ice. J. Geophys. Res. 1994, 99, 24235–24240. [Google Scholar] [CrossRef]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. Earth 2007, 112, F02S03. [Google Scholar] [CrossRef] [Green Version]
- Changwei, X.; Gough, W.A.; Lin, Z.; Tonghua, W.; Wenhui, L. Temperature-dependent adjustments of the permafrost thermal profiles on the Qinghai-Tibet Plateau, China. Arct. Antarct. Alp. Res. 2015, 47, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Liu-Zeng, J.; Tapponnier, P.; Gaudemer, Y.; Ding, L. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. J. Geophys. Res-Earth 2008, 113, F04018. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predict daily Landsat surface reflectance. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 2207–2218. [Google Scholar]
- Barrett, B.S.; Campos, D.A.; Vicencio Veloso, J.; Rondanelli, R. Extreme temperature and precipitation events in March 2015 in central and northern Chile. J. Geophys. Res. Atmos. 2016, 121, 4563–4580. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.P.; Ping, C.L. Classification of Permafrost Soils. Soil Horiz. 1989, 30, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Sletten, R.S.; Hagedorn, B.; Hallet, B.; McKay, C.P.; Stone, J.O. An enhanced model of the contemporary and long-term (200 ka) sublimation of the massive subsurface ice in Beacon Valley, Antarctica. J. Geophys. Res. Earth Surf. 2015, 120, 1596–1610. [Google Scholar] [CrossRef]
- Liu, L.; Sletten, R.S.; Hallet, B.; Waddington, E.D. Thermal regime and properties of soils and ice-rich permafrost in Beacon Valley, Antarctica. J. Geophys. Res. Earth 2018, 123, 1797–1810. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Batbaatar, J.; Sletten, R.S.; Trombotto, D.; O’Neal, M.; Hanson, B.; Mushkin, A. Monitoring and mapping soil ice/water phase transitions in arid regions. In Geological Society of America Abstracts with Programs; Geological Society of America: Boulder, CO, USA, 2017. [Google Scholar]
- Zhao, L.; Wu, Q.; Marchenko, S.; Sharkhuu, N. Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafr. Periglac. 2010, 21, 198–207. [Google Scholar] [CrossRef] [Green Version]
Site | Location | Altitude, m asl | Mean Annual Climate Parameters | ||
---|---|---|---|---|---|
Precipitation 1, mm w.e. | Air Temperature 2, °C | Lapse Rate 3, °C km−1 | |||
#1 | 27°02′54” S, 69°04′52″ W | 3815 | 58 | −0.8 | 5.5 |
#2 | 26°57′31” S, 68°49′09″ W | 4415 | 58 | −3.1 | 5.5 |
#3 | 27°00′09” S, 68°42′55″ W | 4910 | 58 | −5.0 | 6.3 |
Sensor | Resolution | Launch Date | |
---|---|---|---|
Spatial | Temporal | ||
GOES | Low (4 km) | High (3 h) | 1981 |
AVHRR (NOAA) | Moderate (1 km) | High (daily) | 1979 |
MODIS | Moderate (1 km) | High (daily) | 2000 |
ASTER | High (90 m) | Low (16 days) | 2000 |
Thematic Mapper | High (60 m) | Low (16 days) | 1982 |
ECOSTRESS 1 | High (38 × 69 m) | 1 h of science data day−1 | 2019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batbaatar, J.; Gillespie, A.R.; Sletten, R.S.; Mushkin, A.; Amit, R.; Trombotto Liaudat, D.; Liu, L.; Petrie, G. Toward the Detection of Permafrost Using Land-Surface Temperature Mapping. Remote Sens. 2020, 12, 695. https://doi.org/10.3390/rs12040695
Batbaatar J, Gillespie AR, Sletten RS, Mushkin A, Amit R, Trombotto Liaudat D, Liu L, Petrie G. Toward the Detection of Permafrost Using Land-Surface Temperature Mapping. Remote Sensing. 2020; 12(4):695. https://doi.org/10.3390/rs12040695
Chicago/Turabian StyleBatbaatar, Jigjidsurengiin, Alan R. Gillespie, Ronald S. Sletten, Amit Mushkin, Rivka Amit, Darío Trombotto Liaudat, Lu Liu, and Gregg Petrie. 2020. "Toward the Detection of Permafrost Using Land-Surface Temperature Mapping" Remote Sensing 12, no. 4: 695. https://doi.org/10.3390/rs12040695
APA StyleBatbaatar, J., Gillespie, A. R., Sletten, R. S., Mushkin, A., Amit, R., Trombotto Liaudat, D., Liu, L., & Petrie, G. (2020). Toward the Detection of Permafrost Using Land-Surface Temperature Mapping. Remote Sensing, 12(4), 695. https://doi.org/10.3390/rs12040695