Grassland Wildfires in the Southern Great Plains: Monitoring Ecological Impacts and Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Delineating the Footprint of the Wildfires and Selecting Research Plots
2.3. MODIS Surface Reflectance and Vegetation Index Data
2.4. Gross Primary Production (GPP) Data from the Data-driven Vegetation Photosynthesis Model (VPM)
2.5. Statistical Analysis
3. Results
3.1. Effect of Wildfire on Vegetation Greenness—Pair-Wise Comparison of Vegetation Indices between Fire-Affected and No-Fire Areas
3.2. Effect of Wildfire on Gross Primary Production (GPP)—Pair-Wise Comparison of Gross Primary Production between Fire-Affected and Non-Fire Areas
4. Discussion
4.1. Effect of Wildfire Impacts on Grassland Greenness As Described by Vegetation Indices
4.2. Effect of Wildfire Impacts of Grassland GPP As Predicted by Data-Driven Models
4.3. Use of Remotely Sensed Information for Monitoring and Assessment of Wildfire Recovery
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Plot ID | Burn Date(s)23 | Soil Type (%) | Land Cover Type (%) | Elevation Mean (m) | Elevation Range (m) | Gradient Mean (%) | Gradient Range (%) |
---|---|---|---|---|---|---|---|
A1B | 23 March 2016 | Loam (100) | Grass (95) | 609.1 | 579–629 | 1.4 | 0.2–3.1 |
A1U | Loam (100) | Grass (98) | 622.9 | 594–645 | 1.2 | 0.0–2.7 | |
A2B | 23 March 2016 | Clay (100) | Grass (89) | 531.2 | 500–578 | 2.1 | 0.2–4.3 |
A2U | Clay (100) | Grass (97) | 523.9 | 494–559 | 1.5 | 0.2–3.5 | |
A3B | 23 March 2016 | Loam (100) | Grass (82), DF (13) | 580.7 | 546–616 | 1.6 | 0.2–3.6 |
A3U | Loam (100) | Grass (82), CC (13) | 571.7 | 542–618 | 1.4 | 0.1–3.6 | |
A4B | 23 March 2016 | Clay (72), Loam (28) | Grass (95) | 535.7 | 504–561 | 1.7 | 0.2–4.4 |
A4U | Clay (44), Loam (40), Loamy Sand (16) | Grass (95) | 538.3 | 512–562 | 1.3 | 0.1–3.3 | |
A5B | 21 March 2016 23 March 2016 25 March 2016 | Sandy Loam (51), Bedrock (39) | Grass (83), CC (8) | 454.0 | 437–483 | 1.1 | 0.0–3.5 |
A5U | Bedrock (60), Sandy Loam (34) | Grass (70), CC (21) | 439.0 | 419–470 | 1.0 | 0.0–3.0 | |
S1B | 7 March 2017 | Sandy Loam (64), Loamy Sand (36) | Grass (85), Water (8) | 692.4 | 676–725 | 1.1 | 0.1–2.9 |
S1U | Sandy Loam (59), Loamy Sand (31), Silt Loam (10) | Grass (74), Water (11), CC (11) | 710.2 | 693–755 | 0.9 | 0.0–2.4 | |
S2B | 7 March 2017 | Fine Sand (70), Loamy Sand (28) | Grass (94) | 544.0 | 526–569 | 0.5 | 0.0–2.0 |
S2U | Fine Sand (75), Loamy Sand (25) | Grass (91) | 527.8 | 511–552 | 0.5 | 0.0–1.9 | |
S3B | 7 March 2017 8 March 2017 | Loam (100) | Grass (80), CC (15) | 607.2 | 583–633 | 1.1 | 0.1–2.7 |
S3U | Loam (100) | Grass (85), CC (12) | 602.0 | 575–630 | 0.9 | 0.0–2.8 | |
S4B | 7 March 2017 | Clay Loam (100) | Grass (97) | 716.7 | 678–762 | 2.5 | 0.5–5.3 |
S4U | Clay Loam (100) | Grass (94) | 730.6 | 686–771 | 2.1 | 0.2–4.3 | |
S5B | 6 March 2017 | Clay Loam (68), Sandy Loam (32) | Grass (95) | 713.9 | 692–749 | 1.2 | 0.1–2.5 |
S5U | Clay Loam (80), Loam (12) | Grass (94) | 657.8 | 648–671 | 0.4 | 0.0–1.2 | |
P1B | 7 March 2017 | Sandy Loam (100) | Grass (72), Shrub (26) | 771.6 | 754–786 | 0.9 | 0.0–2.2 |
P1U | Sandy Loam (100) | Grass (66), Shrub (34) | 776.5 | 750–800 | 0.7 | 0.0–2.4 | |
P2B | 7 March 2017 | Sandy Loam (100) | Grass (94) | 818.1 | 794 – 840 | 0.8 | 0.0 – 2.0 |
P2U | Sandy Loam (100) | Grass (81), Shrub (13) | 821.5 | 796–840 | 0.8 | 0.1–2.0 | |
P3B | 7 March 2017 | Clay Loam (51), Loam (49) | Grass (55), Shrub (30), CC (13) | 774.0 | 737 – 800 | 1.5 | 0.0 – 4.2 |
P3U | Loam (51), Clay Loam (48) | Grass (49), Shrub (41), CC (8) | 719.7 | 694–752 | 1.4 | 0.1–3.0 | |
P4B | 5 March 2017 6 March 2017 | Loam (100) | Grass (69), Shrub (30) | 870.4 | 796–900 | 2.4 | 0.1–7.9 |
P4U | Loam (100) | Shrub (54), Grass (42) | 869.9 | 812–925 | 2.5 | 0.3–6.1 | |
P5B | 7 March 2017 | Silt Loam (74), Sandy Loam (26) | Shrub (55), Grass (34), CC (8) | 871.6 | 848–889 | 1.0 | 0.2–2.2 |
P5U | Silt Loam (64), Loam (36) | Grass (61), Shrub (27), CC (8) | 884.0 | 860–900 | 0.9 | 0.0–2.2 |
References
- Steiner, J.L.; Wagle, P.; Gowda, P. Management of water resources for grasslands. In Improving Grassland and Pasture Management in Agriculture; Marshall, A., Collins, R., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 265–282. [Google Scholar]
- Steiner, J.L.; Starks, P.J.; Neel, J.P.S.; Northup, B.; Turner, K.E.; Gowda, P.; Coleman, S.; Brown, M. Managing Tallgrass Prairies for Productivity and Ecological Function: A Long-Term Grazing Experiment in the Southern Great Plains, USA. Agronomy 2019, 9, 699. [Google Scholar] [CrossRef] [Green Version]
- Donovan, V.M.; Wonkka, C.L.; Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett. 2017, 44, 5986–5993. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Kloesel, K.; Bartush, B.; Banner, J.; Brown, D.; Lemery, J.; Lin, X.; Loeffler, C.; McManus, G.; Mullens, E.; Nielsen-Gammon, J.; et al. Chapter 23: Southern Great Plains. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II, pp. 987–1035. [CrossRef]
- Steiner, J.L.; Briske, D.D.; Brown, D.P.; Rottler, C.M. Vulnerability of Southern Plains agriculture to climate change. Clim. Chang. 2018, 146, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Hoff, D.L.; Will, R.E.; Zou, C.B.; Lillie, N.D. Encroachment Dynamics of Juniperus virginiana L. and Mesic Hardwood Species into Cross Timbers Forests of North-Central Oklahoma, USA. Forests 2018, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xiao, X.; Qin, Y.; Doughty, R.B.; Dong, J.; Zou, Z. Characterizing the encroachment of juniper forests into sub-humid and semi-arid prairies from 1984 to 2010 using PALSAR and Landsat data. Remote. Sens. Environ. 2018, 205, 166–179. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Geissler, G.; Zhang, G.; Cejda, N.; Alikhani, B.; Doughty, R.B. Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images. Remote. Sens. Environ. 2017, 190, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Brunsell, N.A.; Van Vleck, E.S.; Nosshi, M.; Ratajczak, Z.; Nippert, J.B. Assessing the Roles of Fire Frequency and Precipitation in Determining Woody Plant Expansion in Central U.S. Grasslands. J. Geophys. Res. Biogeosci.s 2017, 122, 2683–2698. [Google Scholar] [CrossRef]
- Abrams, J.B.; Knapp, M.; Paveglio, T.B.; Ellison, A.; Moseley, C.; Nielsen-Pincus, M.; Carroll, M.S. Re-envisioning community-wildfire relations in the U.S. West as adaptive governance. Ecol. Soc. 2015, 20, 34. [Google Scholar] [CrossRef] [Green Version]
- Gorte, R. The rising cost of wildfire protection. Renew. Resourc. J. 2017, 31, 2–9. [Google Scholar]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, B.J.; Higuera, P.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.; et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.J.; Gavin, D.G.; Long, C.J.; Anderson, R.S.; Briles, C.E.; Brown, K.J.; Colombaroli, D.; Hallett, D.J.; Power, M.J.; et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidl, R.; Spies, T.A.; Peterson, D.L.; Stephens, S.L.; Hicke, J.A. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 2016, 53, 120–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syphard, A.D.; Bar Massada, A.; Butsic, V.; Keeley, J.E. Land Use Planning and Wildfire: Development Policies Influence Future Probability of Housing Loss. PLoS ONE 2013, 8, e71708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef]
- Shore, L. 2016–2018 Southern Plains Wildfire Assessment Report, 26pp. 2019. Available online: http://www.southernclimate.org/documents/Wildfire_Report.pdf. (accessed on 13 December 2019).
- Holden, Z.A.; Smith, A.M.S.; Morgan, P.; Rollins, M.G.; Gessler, P.E. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. Int. J. Remote. Sens. 2005, 26, 4801–4808. [Google Scholar] [CrossRef]
- U.S. Geological Survey, National Land Cover Database (USGS NLCD). 2016. Available online: https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#qt-science_center_objects. (accessed on 13 December 2019).
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. 2019. Available online: https://websoilsurvey.nrcs.usda.gov/ (accessed on 13 December 2019).
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Xiao, X.; Merbold, L.; Arneth, A.; Veenendaal, E.; Kutsch, W.L. Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa. Remote. Sens. Environ. 2013, 135, 189–201. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Noormets, A.; Xiao, X.; Xu, J.; Lu, N.; Chen, S. Modelling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data. Int. J. Remote. Sens. 2013, 34, 2829–2857. [Google Scholar] [CrossRef]
- Wagle, P.; Xiao, X.; Torn, M.S.; Cook, D.R.; Matamala, R.; Fischer, M.L.; Jin, C.; Dong, J.; Biradar, C. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought. Remote. Sens. Environ. 2014, 152, 1–14. [Google Scholar] [CrossRef]
- Xin, F.; Xiao, X.; Zhao, B.; Miyata, A.; Baldocchi, D.; Knox, S.; Kang, M.; Shim, K.-M.; Min, S.; Chen, B.; et al. Modeling gross primary production of paddy rice cropland through analyses of data from CO2 eddy flux tower sites and MODIS images. Remote. Sens. Environ. 2017, 190, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Doughty, R.; Xiao, X.; Wu, X.; Zhang, Y.; Bajgain, R.; Zhou, Y.; Qin, Y.; Zou, Z.; McCarthy, H.; Friedman, J.; et al. Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010–2016, Oklahoma, USA. Agric. Water Manag. 2018, 204, 47–59. [Google Scholar] [CrossRef]
- Li, M.; Guo, X. Evaluating Post-Fire Vegetation Recovery in North American Mixed Prairie Using Remote Sensing Approaches. Open J. Ecol. 2018, 8, 646–680. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, W.J.D.; Casady, G.M.; Neary, D.G.; Bautista, S.; Alloza, J.A.; Carmel, Y.; Wittenberg, L.; Malkinson, D.; Orr, B.J. Monitoring post-wildfire vegetation response with remotelysensed time-series data in Spain, USA, and Israel. Intern. J. Wildland Fire 2010, 19, 75–93. [Google Scholar] [CrossRef]
- Hulbert, L.C. Causes of Fire Effects in Tallgrass Prairie. Ecology 1988, 69, 46–58. [Google Scholar] [CrossRef]
- Glasgow, S.; Bidwell, T.G.; Weir, J.R.; Goodman, L.E. Management after wildfire. In NREM-2881; Oklahoma State University: Stillwater, OK, USA, 2016; Available online: http://www.okrangelandswest.okstate.edu/files/fire%20ecology%20pdfs/NREM-2881.pdf (accessed on 13 December 2019).
- Fick, W.H. Rangeland management following wildfire. In L514; Kansas State University: Manhattan, KS, USA, 2017; Available online: https://bookstore.ksre.ksu.edu/pubs/L514.pdf (accessed on 13 December 2019).
- Gates, E.A.; Vermeire, L.T.; Marlow, C.B.; Waterman, R.C. Fire and Season of Postfire Defoliation Effects on Biomass, Composition, and Cover in Mixed-Grass Prairie. Rangel. Ecol. Manag. 2017, 70, 430–436. [Google Scholar] [CrossRef]
- Gullap, M.K.; Erkovan, S.; Erkovan, H.I.; Koc, A. Effects of fire on litter, forage dry matter production, and forage quality in steppe vegetation of Eastern Anatolia, Turkey. J. Agric. Sci. Technol. 2018, 20, 61–70. [Google Scholar]
- Powell, J.; Martin, B.; Dreitz, V.J.; Allred, B.W. Grazing Preferences and Vegetation Feedbacks of the Fire-Grazing Interaction in the Northern Great Plains. Rangel. Ecol. Manag. 2018, 71, 45–52. [Google Scholar] [CrossRef]
- Fuhlendorf, S.D.; Engle, D.M.; Kerby, J.; Hamilton, R. Pyric herbifory: Rewilding landscapes through the recoupling of fire and grazing. Conserv. Biol. 2009, 23, 588–598. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, J.L.; Wetter, J.; Robertson, S.; Teet, S.; Wang, J.; Wu, X.; Zhou, Y.; Brown, D.; Xiao, X. Grassland Wildfires in the Southern Great Plains: Monitoring Ecological Impacts and Recovery. Remote Sens. 2020, 12, 619. https://doi.org/10.3390/rs12040619
Steiner JL, Wetter J, Robertson S, Teet S, Wang J, Wu X, Zhou Y, Brown D, Xiao X. Grassland Wildfires in the Southern Great Plains: Monitoring Ecological Impacts and Recovery. Remote Sensing. 2020; 12(4):619. https://doi.org/10.3390/rs12040619
Chicago/Turabian StyleSteiner, Jean L., Jeffrey Wetter, Shelby Robertson, Stephen Teet, Jie Wang, Xiaocui Wu, Yuting Zhou, David Brown, and Xiangming Xiao. 2020. "Grassland Wildfires in the Southern Great Plains: Monitoring Ecological Impacts and Recovery" Remote Sensing 12, no. 4: 619. https://doi.org/10.3390/rs12040619