The Potential of ICESat-2 to Identify Carbon-Rich Peatlands in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. ICESat-2 Data
2.2.2. EGM2008
2.2.3. Airborne LiDAR Data
2.2.4. WorldDEM Data
2.3. Methods
2.3.1. Data Processing
2.3.2. PHU Surface Interpolation Using Ordinary Kriging
2.3.3. Validation
3. Results
3.1. Peat Surface Topography—Comparison of ICESat-2 and Airborne LiDAR DTM
3.2. Peat Surface Topography—Comparison of ICESat-2 and WorldDEM DTM
3.3. Peat Surface Modeling
4. Discussion
4.1. The Accuracy of ICESat-2 DTM Footprints
4.2. The Accuracy of the Peat Surface Topography Model
4.3. Potential Error Sources
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murdiyarso, D.; Saragi-Sasmito, M.F.; Rustini, A. Greenhouse gas emissions in restored secondary tropical peat swamp forests. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 507–520. [Google Scholar] [CrossRef]
- Posa, M.R.C.; Wijedasa, L.S.; Corlett, R.T. Biodiversity and conservation of tropical peat swamp forests. BioScience 2011, 61, 49–57. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Avitabile, V.; Hijioka, Y.; DasGupta, R.; Togawa, T.; Murayama, Y. The future of Southeast Asia’s forests. Nat. Commun. 2019, 10, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, N.L. Formation of Tropical Peatlands. Available online: https://www.grida.no/resources/12531 (accessed on 4 June 2020).
- Page, S.E.; Rieley, J.O.; Wüst, R. Lowland tropical peatlands of Southeast Asia. Peatl. Evol. Rec. Environ. Clim. Chang. 2006, 9, 145–172. [Google Scholar] [CrossRef]
- Page, S.E.; Banks, C.J.; Rieley, J.O. Tropical peatlands: Distribution, extent and carbon storage–Uncertainties and knowledge gaps. Peatl. Int. 2007, 2, 1–7. [Google Scholar]
- Jaenicke, J.; Rieley, J.O.; Mott, C.; Kimman, P.; Siegert, F. Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 2008, 147, 151–158. [Google Scholar] [CrossRef]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef] [Green Version]
- Warren, M.; Hergoualc’h, K.; Kauffman, J.B.; Murdiyarso, D.; Kolka, R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: Uncertainties and potential losses from conversion. Carbon Balance Manag. 2017, 12, 12. [Google Scholar] [CrossRef]
- Page, S.E.; Wűst, R.A.J.; Weiss, D.; Rieley, J.O.; Shotyk, W.; Limin, S.H. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present and future carbon dynamics. J. Quat. Sci. 2004, 19, 625–635. [Google Scholar] [CrossRef]
- Agus, F.; Hairiah, K.; Mulyani, A. Measuring Carbon Stock in Peat Soils. Practical Guidelines; World agroforestry centre (ICRAF) Southeast Asia regional program; Indonesian Centre for Agricultural Land Resources Research and Development: Bogor Jawa Barat, Indonesia, 2011; ISBN 9789793198668. [Google Scholar]
- Page, S.E.; Hooijer, A. In the line of fire: The peatlands of Southeast Asia. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [Green Version]
- Ballhorn, U.; Jubanski, J.; Siegert, F. ICESat/GLAS data as a measurement tool for peatland topography and peat swamp forest biomass in Kalimantan, Indonesia. Remote Sens. 2011, 3, 1957–1982. [Google Scholar] [CrossRef] [Green Version]
- Dinsmore, K.J.; Skiba, U.M.; Billett, M.F.; Rees, R.M. Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant Soil 2009, 318, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Carlson, K.M.; Goodman, L.K.; Calen, C.M.T. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 2015, 10, 74006. [Google Scholar] [CrossRef]
- Wetlands International. Peatland Distribution in Sumatra and Kalimantan: Explanation of Its Data Sets Including Source of Information, Data Constraints and Gaps, Bogor. 2008. Available online: https://indonesia.wetlands.org/publications/peatland-distribution-in-sumatra-and-kalimantan-explanation-of-its-data-sets-including-source-of-information-accuracy-data-constraints-and-gap/ (accessed on 29 March 2020).
- Ballhorn, U. Airborne and Spaceborne LiDAR Data as a Measurement Tool for Peatland Topography, Peat Fires Burn Depth, and Forest Above Ground Biomass in Central Kalimantan, Indonesia. Ph.D. Dissertation, Ludwig-Maximilian-University, Munich, Germany, 2012. [Google Scholar]
- Bourdeau, J.; Nelson, R.F.; Margolis, H.A.; Beaudion, A.; Guidon, L.; Kimes, D. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sens. Environ. 2008, 112, 3876–3890. [Google Scholar] [CrossRef]
- Carabajal, C.C.; Harding, D. SRTM C-band and ICESat laser altimetry elevation comparisons as a function of tree cover and relief. Photogramm. Eng. Remote Sens. 2006, 72, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Harding, D.J.; Carabajal, C.C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys. Res. Lett. 2005, 32, 2509. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Popescu, S.; Malambo, L. Feasibility of burned area mapping based on ICESAT−2 photon counting data. Remote Sens. 2020, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Jaenicke, J.; Wösten, H.; Budiman, A.; Siegert, F. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, S.; Knight, R.; Viezzoli, A.; Richardson, C.J.; Anshari, G.Z.; Dewar, N.; Flanagan, N.; Comas, X. Quantification of peat thickness and stored carbon at the landscape scale in tropical peatlands: A comparison of airborne geophysics and an empirical topographic method. J. Geophys. Res. Earth Surf. 2019, 124, 3107–3123. [Google Scholar] [CrossRef] [Green Version]
- Dommain, R.; Couwenberg, J.; Joosten, H. Hydrological self-regulation ofdomed peat swamps in south-east Asia and consequences for conservation andrestoration. Mires Peat 2010, 6, 1–17. [Google Scholar]
- Nasrul, B.; Maas, A.; Utami, S.N.H.; Nurudin, M. The relationship between surface topography and peat thickness on Tebing Tinggi Island, Indonesia. Mires. Peat. 2020, 26, 1–21. [Google Scholar] [CrossRef]
- Englhart, S.; Jubanski, J.; Siegert, F. Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets. Remote Sens. 2013, 5, 2368–2388. [Google Scholar] [CrossRef] [Green Version]
- Matheron, G. The Theory of Regionalized Variables and Its Applications; École Nationale Supérieure des Mines: Paris, France, 1971. [Google Scholar]
- Siegert, F.; Ruecker, G.; Hinrichs, A.; Hoffmann, A.A. Increased damage from fires in logged forests during droughts caused by El Niño. Nature 2001, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Ballhorn, U.; Siegert, F.; Mason, M.; Limin, S. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc. Natl. Acad. Sci. USA 2009, 106, 21213–21218. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land–Vegetation Along-Track Products (ATL08); National Aeronautics and Space Administration (NASA), 2019. Available online: https://icesat-2.gsfc.nasa.gov/sites/default/files/files/ATL08_15June2018.pdf (accessed on 12 April 2020).
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth gravitational model 2008 (EGM2008). J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Geographic Lib. Geoid Height. Available online: https://geographiclib.sourceforge.io/html/geoid.html#geoidinst (accessed on 18 April 2020).
- Ballhorn, U.; Navratil, P.; Jubanski, J.; Siegert, F. LiDAR Survey of the Kalimantan Forests and Climate Partnership (KFCP) Project Site and EMRP Area in Central Kalimantan; Technical Working Paper; Remote Sensing Solutions GmbH: Munich, Germany, 2014. [Google Scholar]
- Konecny, K.; Ballhorn, U.; Navratil, P.; Jubanski, J.; Page, S.E.; Tansey, K.; Hooijer, A.; Vernimmen, R.; Siegert, F. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Chang. Biol. 2016, 22, 1469–1480. [Google Scholar] [CrossRef] [Green Version]
- Suppa, M. WorldDEM™ Technical Product Specification. Digital Surface Model, Digital Terrain Model Version 2.0; Airbus Defence and Space Intelligence, 2015; Available online: https://www.intelligence-airbusds.com/files/pmedia/public/r51492_9_2019-04_worlddem_technicalspecs_version2.5_i1.0.pdf (accessed on 29 March 2020).
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Magruder, L.A. Canopy and terrain height retrievals with ICESat-2: A first look. Remote Sens. 2019, 11, 1721. [Google Scholar] [CrossRef] [Green Version]
- Barton, J.M.H.; Buchberger, S.G.; Lange, M.L. Estimation of error and compliance in surveys by kriging. J. Surv. Eng. 1999, 125, 87–108. [Google Scholar] [CrossRef]
- Jassim, F.A.; Altaany, F. Image interpolation using kriging technique for spatial data. Can. J. Image Process. Comp. Vis. 2013, 4, 16–21. [Google Scholar]
- Yilmaz, M.; Uysal, M. Comparing uniform and random data reduction methods for DTM accuracy. Int. J. Eng. Geosci. 2017, 2, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.O.; Rodrigues, D.D.; Santos, G.R.D.; Ferraz Rosa, L.M. In bathymetric surfaces: IDW or kriging? Bol. Ciênc. Geod. 2017, 23, 493–508. [Google Scholar] [CrossRef] [Green Version]
- Wojciech, M. Kriging method optimization for the process of DTM creation based on huge data sets obtained from MBESs. Geosciences 2018, 8, 433. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geograph. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar]
- Handbook of spatial analysis. In Theory and Practical Application with R; Loonis, V.; Bellefon, M.P. (Eds.) Montrouge Cedex, Institut National de la Statistique et des Études Économiques (INSEE): Montrouge, France, 2018. [Google Scholar]
- Hengl, T. A Practical Guide to Geostatistical Mapping, 2nd ed.; Hengl: Amsterdam, The Netherlands, 2009; ISBN 9090249818. [Google Scholar]
- Peterson, R.A.; Cavanaugh, J.E. Ordered quantile normalization: A semiparametric transformation built for the cross-validation era. J. Appl. Stat. 2019, 47, 2312–2327. [Google Scholar] [CrossRef]
- Sakizadeh, M.; Mohamed, M.A.M.; Klammler, H. Trend analysis and spatial prediction of groundwater levels using time series forecasting and a novel spatio-temporal method. Water Resour. Manag. 2019, 33, 1425–1437. [Google Scholar] [CrossRef]
- Bhowmik, A.K.; Cabral, P. Spatially shifting temporal points: Estimating pooled within-time series variograms for scarce hydrological data. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 2243–2265. [Google Scholar] [CrossRef] [Green Version]
- Weller, Z.D.; Hoeting, J.A. A Review of Nonparametric Hypothesis Tests of Isotropy Properties in Spatial Data. Statistical Science 2016. Available online: http://arxiv.org/pdf/1508.05973v2 (accessed on 9 December 2020).
- Pebesma, E.J. Gstat User’s Manual; Department of Physical Geography, Utrecht University: Utrecht, The Netherlands, 2014. [Google Scholar]
- Hayashi, M.; Saigusa, N.; Yamagata, Y.; Hirano, T. Regional forest biomass estimation using ICESat/GLAS spaceborne LiDAR over Borneo. Carbon Manag. 2015, 6, 19–33. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Magruder, L. The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems. Remote Sens. 2016, 8, 1039. [Google Scholar] [CrossRef] [Green Version]
- Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ. 2011, 115, 636–649. [Google Scholar] [CrossRef]
- Vernimmen, R.; Hooijer, A.; Akmalia, R.; Fitranatanegara, N.; Mulyadi, D.; Yuherdha, A.; Andreas, H.; Page, S. Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra. Carbon Balance Manag. 2020, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.G.; Adam, B.J.; Karney, B.W. Bias in log-transformed frequency distributions. J. Hydrol. 1990, 118, 19–37. [Google Scholar] [CrossRef]
- Newman, M.C. Regression analysis of log-transformed data: Statistical bias and its correction. Environ. Toxicol. Chem. 1993, 12, 1129–1133. [Google Scholar] [CrossRef]
- Yamamoto, J.K. On unbiased back-transform of lognormal kriging estimates. Comput. Geosci. 2007, 11, 219–234. [Google Scholar] [CrossRef]
Sensor Comparison | Mean Elevation (m) | R2 | RMSE (m) |
---|---|---|---|
Airborne – WorldDEM DTM | 3.35 3.30 | 0.95 | ±0.47 |
Airborne – ICESat-2 | 3.35 3.69 | 0.89 | ±0.83 |
WorldDEM DTM – ICESat-2 | 3.30 3.69 | 0.94 | ±0.86 |
PHU | Sensor | Mean Elevation (m) | R2 | RMSE (m) |
---|---|---|---|---|
Sungai Katingan Sebangau | WorldDEM OK model | 11.86 12.50 | 0.78 | ±2.67 |
Sungai Kahayan Sebangau | WorldDEM OK model | 4.57 4.33 | 0.84 | ±0.68 |
Sungai Kahayan Kapuas | WorldDEM OK model | 7.70 7.27 | 0.97 | ±1.47 |
PHU | Sensor | Mean Elevation (m) | R2 | RMSE (m) |
---|---|---|---|---|
Pulau Padang | Airborne OK model | 5.81 7.65 | 0.72 | ±2.39 |
Sungai Mendahara–Sungai Betanghari | Airborne OK model | 3.82 4.36 | 0.85 | ±1.06 |
Sungai Saleh–Sungai Sugihan | Airborne OK model | 2.72 3.14 | 0.69 | ±1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berninger, A.; Siegert, F. The Potential of ICESat-2 to Identify Carbon-Rich Peatlands in Indonesia. Remote Sens. 2020, 12, 4175. https://doi.org/10.3390/rs12244175
Berninger A, Siegert F. The Potential of ICESat-2 to Identify Carbon-Rich Peatlands in Indonesia. Remote Sensing. 2020; 12(24):4175. https://doi.org/10.3390/rs12244175
Chicago/Turabian StyleBerninger, Anna, and Florian Siegert. 2020. "The Potential of ICESat-2 to Identify Carbon-Rich Peatlands in Indonesia" Remote Sensing 12, no. 24: 4175. https://doi.org/10.3390/rs12244175
APA StyleBerninger, A., & Siegert, F. (2020). The Potential of ICESat-2 to Identify Carbon-Rich Peatlands in Indonesia. Remote Sensing, 12(24), 4175. https://doi.org/10.3390/rs12244175