Spatio-Temporal Variability in Bio-Optical Properties of the Southern Caspian Sea: A Historic Analysis of Ocean Color Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database and Preprocessing
2.2. Series Trend Analysis
2.2.1. Theil-Sen Median Trend Estimator
2.2.2. Mann–Kendall Trend Test
2.3. Linear Modeling
3. Results and Discussion
3.1. Durbin–Watson and Prewhitening Statistics
3.2. Temporal Profile (Chl-a, Attenuation Coefficient, and Rrs_555nm)
3.2.1. Median Trend Analysis of Bio-Optical Parameters
3.2.2. Mann–Kendall Analysis of Bio-Optical Parameters
3.3. Linear Modeling
3.3.1. Relationships between Driving Factors in Variations of Chl-a
3.3.2. Relationships between the Bio-Optical Indices
3.3.3. Significance Test of Linear Modeling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Significance Level. | Mann–Kendal. Chl-a | Regional Mann–Kendal. Chl-a | Mann–Kendal. Attenuation Coefficient | Regional Mann–Kendal. Attenuation Coefficient | Mann–Kendal (Rrs_555nm) | Regional Mann–Kendal. (Rrs_555nm) |
---|---|---|---|---|---|---|
8.00 | 7.50 | 11.80 | 11.80 | 57.90 | 59.70 | |
12.00 | 12.00 | 15.90 | 16.40 | 73.90 | 77.20 | |
22.00 | 24.40 | 23.90 | 26.00 | 87.30 | 88.30 | |
insignificant | 88.00 | 75.40 | 76.10 | 74.00 | 12.70 | 11.70 |
Appendix B
Appendix C
References
- Mamedov, R.; Khoshravan, H. The Atlas of Caspian Sea Hydromorphology; Sophia Publishing Group: Richmond, BC, Canada, 2015. [Google Scholar]
- The Caspian Sea Environment; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2005; Volume 5.
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Space Phys. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Nezlin, N.P.; Li, B.-L. Time-series analysis of remote-sensed chlorophyll and environmental factors in the Santa Monica–San Pedro Basin off Southern California. J. Mar. Syst. 2003, 39, 185–202. [Google Scholar] [CrossRef]
- Kavak, M.T. Long term investigation of SST regime variability and its relationship with phytoplankton in the Caspian Sea using remotely sensed AVHRR and SeaWiFS data. Turk. J. Fish. Aquat. Sci. 2012, 12, 709–717. [Google Scholar] [CrossRef]
- Kopelevich, O.; Sheberstov, V.I.B.V. Application of SeaWiFS data for studying variability of bio-optical characteristics in the Barents, Black and Caspian Seas. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 1063–1091. [Google Scholar] [CrossRef]
- Nezlin, N.P. Patterns of seasonal and interannual variability of remotely sensed chlorophyll. In The Caspian Sea Environment; Springer: Berlin/Heidelberg, Germany, 2005; Volume 5, pp. 143–157. [Google Scholar]
- Kopelevich, O.; Burenkov, V.I.; Sheberstov, S.V. Case Studies of Optical Remote Sensing in the Barents Sea, Black Sea and Caspian Sea. Remote Sens. Eur. Seas 2008, 53–66. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, C.; Shang, S.; Müller-Karger, F.E.; Li, Y.; Dai, M.; Huang, B.; Ning, X.; Hong, H. Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China. Remote Sens. Environ. 2006, 102, 250–263. [Google Scholar] [CrossRef]
- Krishna, K.M.; Rao, S.R. Seasonal and interannual variability of sea surface chlorophyll a concentration in the Arabian Sea. J. Appl. Remote Sens. 2008, 2, 023501. [Google Scholar] [CrossRef]
- Kahru, M.; Kudela, R.M.; Manzano-Sarabia, M.; Mitchell, B.G. Trends in the surface chlorophyll of the California Current: Merging data from multiple ocean color satellites. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2012, 77, 89–98. [Google Scholar] [CrossRef]
- Chen, X.; Pan, D.; Bai, Y.; He, X.; Wang, T. Are the trends in the surface chlorophyll opposite between the South China Sea and the Bay of Bengal? In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014; International Society for Optics and Photonics: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Xian, T.; Sun, L.; Yang, Y.; Fu, Y.-F. Monsoon and eddy forcing of chlorophyll-a variation in the northeast South China Sea. Int. J. Remote Sens. 2012, 33, 7431–7443. [Google Scholar] [CrossRef]
- Xian, T.; Yang, Y.; Sun, L.; Fu, Y.-F. Spatiotemporal variability of satellite-derived colored dissolved and detrital organic materials in the South China Sea from 1997–2007. Aquat. Ecosyst. Health Manag. 2012, 15, 118–126. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Ma, A.; Li, T.; Du, Z. Spatio-temporal stability and abnormality of chlorophyll-a in the Northern South China Sea during 2002–2012 from MODIS images using wavelet analysis. Cont. Shelf Res. 2014, 75, 15–27. [Google Scholar] [CrossRef]
- Zhao, J.; Ghedira, H. Monitoring red tide with satellite imagery and numerical models: A case study in the Arabian Gulf. Mar. Pollut. Bull. 2014, 79, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Muller-Karger, F.E.; Smith, J.P.; Werner, S.; Chen, R.; A Roffer, M.; Liu, Y.; Muhling, B.; Lindo-Atichati, D.; Lamkin, J.T.; Cerdeira-Estrada, S.; et al. Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog. Oceanogr. 2015, 134, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Baliarsingh, S.K.; Lotliker, A.A.; Sahu, K.C.; Kumar, T.S. Spatio-temporal distribution of chlorophyll-a in relation to physico-chemical parameters in coastal waters of the northwestern Bay of Bengal. Environ. Monit. Assess. 2015, 187, 481. [Google Scholar] [CrossRef] [PubMed]
- Colella, S.; Falcini, F.; Rinaldi, E.; Sammartino, M.; Santoleri, R. Mediterranean Ocean colour chlorophyll trends. PLoS ONE 2016, 11, e0155756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Eastman, J.R. TerrSet Help System. Accessed in TerrSet [18.10]; Clark University: Worcester, MA, USA, 2015. [Google Scholar]
- Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability; Springer: Berlin/Heidelberg, Germany, 1999; pp. 11–26. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A contextual mann-kendall approach for the assessment of trend significance in image time series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Wang, X.L.; Swail, V.R. Changes of extreme wave heights in northern hemisphere oceans and related atmospheric circulation regimes. J. Clim. 2001, 14, 2204–2221. [Google Scholar] [CrossRef]
- Douglas, E.; Vogel, R.M.; Kroll, C.N. Trends in floods and low flows in the United States: Impact of spatial correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Motiee, H.; McBean, E. An assessment of long-term trends in hydrologic components and implications for water levels in Lake Superior. Hydrol. Res. 2009, 40, 564–579. [Google Scholar] [CrossRef]
- Nychka, D.; Buchberger, R.; Wigley, T.M.L.; Santer, B.D.; Taylor, K.E.; Jones, R. Confidence Intervals for Trend Estimates with Autocorrelated Observations; 2000; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.6828&rep=rep1&type=pdf (accessed on 24 October 2020).
- PSU. Available online: http://sites.stat.psu.edu/~ajw13/stat505/fa06/08_partcor/06_partcor_partial.html (accessed on 18 August 2013).
- Acker, J.G.; Harding, L.W.; Leptoukh, G.; Zhu, T.; Shen, S. Remotely-sensed chl a at the Chesapeake Bay mouth is correlated with annual freshwater flow to Chesapeake Bay. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Ahmadi, M.R.; Babanezhad, M.; Seyfabadi, J. Environmental variables and their interaction effects on chlorophyll-a in coastal waters of the southern Caspian Sea: Assessment by multiple regression grey models. Aquat. Ecol. 2014, 48, 351–365. [Google Scholar] [CrossRef]
- Rodionov, S.N. Global and Regional Climate Interaction: The Caspian Sea Experience; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012; Volume 11. [Google Scholar]
- Ghanghermeh, A.; Roshan, G.; Al-Yahyai, S. The influence of Atlantic-Eurasian teleconnection patterns on temperature regimes in South Caspian Sea coastal areas: a study of Golestan Province, North Iran. Pollution 2015, 1, 67–83. [Google Scholar]
- Byshev, V.I.; Neiman, V.G.; Romanov, Y.A. On the essential differences between the large-scale variations of the surface temperature over the oceans and continents. Oceanology 2006, 46, 147–158. [Google Scholar] [CrossRef]
- Nesterov, E. Low-frequency variability of atmospheric circulation and the Caspian Sea level in the second half of the 20th century. Meteorol. Gidrol. 2001, 11, 27–36. [Google Scholar]
- Stanev, E.; Peneva, E.L. Regional sea level response to global climatic change: Black Sea examples. Glob. Planet. Chang. 2001, 32, 33–47. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Ginzburg, A.I.; Lavrova, O.Y.; Lebedev, S.A.; Mityagina, M.I.; Sheremet, N.A.; Soloviev, D.M. Comprehensive Satellite Monitoring of Caspian Sea Conditions; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 505–521. [Google Scholar]
- Cianca, A.; Rueda, M.J.; Neuer, S.; Marrero, F.J.P.; Godoy, J.M.; Martin, J.M.; Llinas, O. Interannual variability of chlorophyll and the influence of low-frequency climate modes in the North Atlantic subtropical gyre. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Werdell, P.J.; Bailey, S.W.; Franz, B.A.; Harding, L.W., Jr.; Feldman, G.C.; McClain, C.R. Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens. Environ. 2009, 113, 1319–1330. [Google Scholar] [CrossRef]
- Kideys, A.; Moghim, M. Distribution of the alien ctenophore Mnemiopsisleidyi in the Caspian Sea in August 2001. Mar. Biol. 2003, 142, 163–171. [Google Scholar] [CrossRef]
- Kosarev, A.N.; Tuzhilkin, V.S.; Kostianoy, A.G. Main features of the Caspian Sea hydrology. In Dying and Dead Seas Climatic Versus Anthropic Causes; Springer: Berlin/Heidelberg, Germany, 2004; pp. 159–184. [Google Scholar]
- Sur, H.I.; Özsoy, E.; Ibrayev, R. Satellite-derived flow characteristics of the Caspian Sea. In Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Nassar, M.Z.A.; El-Din, N.G.S.; Gharib, S.M. Phytoplankton variability in relation to some environmental factors in the eastern coast of Suez Gulf, Egypt. Environ. Monit. Assess. 2015, 187, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longhurst, A. Seasonal cycles of pelagic production and consumption. Prog. Oceanogr. 1995, 36, 77–167. [Google Scholar] [CrossRef]
SST-1 | SST-2 | SST-3 | Chl-a-1 | Chl-a-2 | Chl-a-3 | τ−1 | τ−2 | τ−3 | Kd_490nm −1 | Kd_490nm −2 | Kd_490nm −3 | Rrs_555nm −1 | Rrs_555nm −2 | Rrs_555nm −3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NAO | −0.17 (0) | −0.19 (0) | −0.15 (0) | −0.15 (−6) | −0.14 (+8) | −0.21 (−5) | +0.16 (+9) | +0.23 (+9) | +0.16 (+2) | +0.13 (+3 and −12) | −0.16 (+9) | −0.21 (−4) | - | +0.14 (−2) | −0.19 (−6) |
ENSO | +0.17 (−8 and −7) | +0.19 (−8 and −7) | +0.20 (−8) | −0.10 (−11 and −12) | +0.22 (−5) | +0.17 (−6) | +0.21 (−1 and 0) | +0.21 (−1 and 0) | +0.22 (−1 and 0) | −0.10 (−12) | +0.21 (−4 and −5) | +0.22 (−6 and −5) | −0.19 (+7) | −0.14 (+12) | −0.21 (+1) |
SST-1 | 1 | +0.81 (0) | +0.70 (0) | +0.30 (0) | +0.13 (+6) | +0.17 (+7 and −7) | −0.19 (−6) | −0.24 (+1) | −0.23 (+1) | +0.24 (−2) | +0.14 (+1) | +0.17 (+11) | −0.31 (−12) | −0.16 (+11) | −0.21 (+11) |
SST-2 | x | 1 | +0.87 (0) | +0.27 (0) | +0.15 (−7) | +0.13 (+8 and +7) −0.13 (−12) | −0.27 (−6) | −0.28 (−6) | −0.30 (−6) | +0.32 (+11) | +0.18 (+11) | +0.11 (+8 and +11) | −0.32 (−10) | −0.18 (0) | −0.30 (0) |
SST-3 | x | x | 1 | +0.31 (−3) | +0.13 (+3) | −0.16 (−1 and +12) | −0.22 (−6) | −0.24 (−6) | −0.26 (−6) | +0.26 (+11) | +0.22 (+10) | +0.13 (+3) | −0.31 (+12, +1) | −0.21 (−1) | −0.29 (0) |
Chl-a-1 | x | x | x | 1 | +0.13 (−7) | −0.14 (+10) | +0.30 (−3) | +0.30 (−3) | +0.29 (−3) | +0.52 (−1) | +0.19 (0) | −0.18 (−12) | +0.20 (0) | −0.15 (0) | −0.22 (−11) |
Chl-a-2 | x | x | x | x | 1 | +0.40 (−1 and 0) | +0.22 (+1) | +0.11 (+1) | −0.10 (+2) | −0.16 (+3) | +0.57 (+1) | +0.47 (+1) | −0.20 (+11) | −0.22 (+8) | - |
Chl-a-3 | x | x | x | x | x | 1 | +0.11 (−4) | −0.15 (+5) | −0.11 (+2, +5, +11) | −0.13 (−11 and +2) | +0.26 (0) | +0.63 (0) | −0.26 (−5) | −0.19 (+7) | +0.12 (0, 10, −4) |
τ−1 | x | x | x | x | x | x | 1 | +0.75 (0) | +0.25 (0) | +0.18 (−6) | +0.14 (0) | +0.19 (+3) | −0.13 (−2) | +0.19 (−1) | −0.16 (−9) +0.16 (+12) |
τ−2 | x | x | x | x | x | x | x | 1 | +0.60 (0) | +0.18 (+11) | +0.14 (+11) | +0.14 (0) | +0.10 (−11) | +0.32 (−1) | +0.20 (−1) |
τ−3 | x | x | x | x | x | x | x | 1 | 1 | +0.26 (−12) | −0.16 (−9) | −0.15 (−1) | +0.26 (−1) | +0.33 (−1) | |
Kd_490nm −1 | x | x | x | x | x | x | x | x | x | 1 | +0.26 (0) | −0.13 (+4) | −0.17 (+12) | −0.14 (+10) | −0.13 (+2 and −11) |
Kd_490nm −2 | x | x | x | x | x | x | x | x | x | x | 1 | +0.47 (0) | −0.21 (+11) | − | −0.13 (−4) |
Kd_490nm −3 | x | x | x | x | x | x | x | x | x | x | x | 1 | −0.24 (−4) | −0.20 (−5) | +0.15 (+1 and +3) |
Rrs_555nm −1 | x | X | x | x | x | x | x | x | x | x | x | x | 1 | +0.22 (−1) | +0.28 (−2) |
Rrs_555nm −2 | x | X | x | x | x | x | x | x | x | x | X | x | x | 1 | +0.42 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, B.; Gholamalifard, M.; Kutser, T.; Vignudelli, S.; Kostianoy, A. Spatio-Temporal Variability in Bio-Optical Properties of the Southern Caspian Sea: A Historic Analysis of Ocean Color Data. Remote Sens. 2020, 12, 3975. https://doi.org/10.3390/rs12233975
Ahmadi B, Gholamalifard M, Kutser T, Vignudelli S, Kostianoy A. Spatio-Temporal Variability in Bio-Optical Properties of the Southern Caspian Sea: A Historic Analysis of Ocean Color Data. Remote Sensing. 2020; 12(23):3975. https://doi.org/10.3390/rs12233975
Chicago/Turabian StyleAhmadi, Bonyad, Mehdi Gholamalifard, Tiit Kutser, Stefano Vignudelli, and Andrey Kostianoy. 2020. "Spatio-Temporal Variability in Bio-Optical Properties of the Southern Caspian Sea: A Historic Analysis of Ocean Color Data" Remote Sensing 12, no. 23: 3975. https://doi.org/10.3390/rs12233975
APA StyleAhmadi, B., Gholamalifard, M., Kutser, T., Vignudelli, S., & Kostianoy, A. (2020). Spatio-Temporal Variability in Bio-Optical Properties of the Southern Caspian Sea: A Historic Analysis of Ocean Color Data. Remote Sensing, 12(23), 3975. https://doi.org/10.3390/rs12233975