Comparison of Major Sudden Stratospheric Warming Impacts on the Mid-Latitude Mesosphere Based on Local Microwave Radiometer CO Observations in 2018 and 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microwave Radiometer
2.2. Data from Other Databases
3. Results: The Local SSW Effects Over the Mid-Latitude Station
3.1. Planetary Wave Activity
3.2. Zonal Wind Variability in the Mesosphere and Stratosphere
3.3. Temperature Profile Changes
3.4. CO Variability
4. Discussion
4.1. Zonal Waves, Zonal Wind, and Temperature
4.2. Descent of the Mid-Latitude CO Anomalies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matsuno, T. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 1971, 28, 1479–1494. [Google Scholar] [CrossRef]
- Butler, A.H.; Gerber, E.P. Optimizing the definition of a Sudden Stratospheric Warming. J. Clim. 2018, 31, 2337–2344. [Google Scholar] [CrossRef]
- Vargin, P.N.; Volodin, E.M.; Karpechko, A.Y.; Pogoreltsev, A.I. Stratosphere-troposphere interactions. Her. Russ. Acad. Sci. 2015, 85, 56–65. [Google Scholar] [CrossRef]
- Maury, P.; Claud, C.; Manzini, E.; Hauchecorne, A.; Keckhut, P. Characteristics of stratospheric warming events during Northern winter. J. Geophys. Res. Atmos. 2016, 121, 5368–5380. [Google Scholar] [CrossRef] [Green Version]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Butler, A.H.; Sjoberg, J.P.; Seidel, D.J.; Rosenlof, K.H. A sudden stratospheric warming compendium. Earth Syst. Sci. Data 2017, 9, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Kruger, K.; Naujokat, B.; Labitzke, K. The unusual midwinter warming in the Southern Hemisphere stratosphere 2002: A comparison to northern hemisphere phenomena. J. Atmos. Sci. 2005, 62, 603–613. [Google Scholar] [CrossRef]
- Butler, A.H.; Lawrence, Z.D.; Lee, S.H.; Lillo, S.P.; Long, C.S. Differences between the 2018 and 2019 stratospheric polar vortex split events. Q. J. R. Meteorol. Soc. 2020, 1–19. [Google Scholar] [CrossRef]
- Ma, Z.; Gong, Y.; Zhang, S.D.; Luo, J.H.; Zhou, Q.H.; Huang, C.M.; Huang, K.M. Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019. Earth Planet. Phys. 2020, 4, 493–503. [Google Scholar] [CrossRef]
- Vargin, P.N.; Luk’yanov, A.N.; Kiryushov, B.M. Dynamic processes in the Arctic stratosphere in the winter of 2018/2019. Russ. Meteorol. Hydrol. 2020, 45, 387–397. [Google Scholar] [CrossRef]
- WMO (World Meteorological Organization); Commission for Atmospheric Sciences. Abridged Final Report of the Seventh Session, Manila, 27 February–10 March 1978, WMO—No. 509; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1978; p. 113. [Google Scholar]
- Manney, G.L.; Lawrence, Z.D.; Santee, M.L.; Read, W.G.; Livesey, N.J.; Lambert, A.; Froidevaux, L.; Pumphrey, H.C.; Schwartz, M.J. A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter. Geophys. Res. Lett. 2015, 42, 7808–7816. [Google Scholar] [CrossRef]
- Charlton-Perez, A.J.; Baldwin, M.P.; Birner, T.; Black, R.X.; Butler, A.H.; Calvo, N.; Davis, N.A.; Gerber, E.P.; Gillett, N.; Hardiman, S.; et al. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 2494–2505. [Google Scholar] [CrossRef]
- Hoffmann, C.G.; Raffalski, U.; Palm, M.; Funke, B.; Golchert, S.H.W.; Hochschild, G.; Notholt, J. Observation of strato-mesospheric CO above Kiruna with ground-based microwave radiometry–retrieval and satellite comparison. Atmos. Meas. Tech. 2011, 4, 2389–2408. [Google Scholar] [CrossRef]
- Stray, N.H.; Orsolini, Y.J.; Espy, P.J.; Limpasuvan, V.; Hibbins, R.E. Observations of planetary waves in the mesosphere–lower thermosphere during stratospheric warming events. Atmos. Chem. Phys. 2015, 15, 4997–5005. [Google Scholar] [CrossRef] [Green Version]
- Manney, G.L.; Schwartz, M.J.; Krüger, K.; Santee, M.L.; Pawson, S.; Lee, J.N.; Daffer, W.H.; Fuller, R.A.; Livesey, N.J. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett. 2009, 36, L12815. [Google Scholar] [CrossRef] [Green Version]
- Chandran, A.; Collins, R.L.; Garcia, R.R.; Marsh, D.R.; Harvey, V.L.; Yue, J.; de la Torre, L. A climatology of elevated stratopause events in the whole atmosphere community climate model. J. Geophys. Res. Atmos. 2013, 118, 1234–1246. [Google Scholar] [CrossRef]
- Limpasuvan, V.; Orsolini, Y.J.; Chandran, A.; Garcia, R.R.; Smith, A.K. On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause. J. Geophys. Res. Atmos. 2016, 121, 4518–4537. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, M.G.; Beagley, S.R.; Fomichev, V.I. Stratospheric warming influence on the mesosphere/lower thermosphere as seen by the extended CMAM. Ann. Geophys. 2014, 32, 589–608. [Google Scholar] [CrossRef] [Green Version]
- Zülicke, C.; Becker, E.; Matthias, V.; Peters, D.H.W.; Schmidt, H.; Liu, H.-L.; de la Torre Ramos, L.; Mitchell, D.M. Coupling of stratospheric warmings with mesospheric coolings in observations and simulations. J. Clim. 2018, 31, 1107–1133. [Google Scholar] [CrossRef]
- Tomikawa, Y.; Sato, K.; Watanabe, S.; Kawatani, Y.; Miyazaki, K.; Takahashi, M. Growth of planetary waves and the formation of an elevated stratopause after a major stratospheric sudden warming in a T213L256 GCM. J. Geophys. Res. 2012, 117, D16101. [Google Scholar] [CrossRef]
- France, J.A.; Harvey, V.L. A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause. J. Geophys. Res. Atmos. 2013, 118, 2241–2254. [Google Scholar] [CrossRef]
- Chandran, A.; Collins, R.L.; Garcia, R.R.; Marsh, D.R. A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model. Geophys. Res. Lett. 2011, 38, L08804. [Google Scholar] [CrossRef] [Green Version]
- Zülicke, C.; Becker, E. The structure of the mesosphere during sudden stratospheric warmings in a global circulation model. J. Geophys. Res. Atmos. 2013, 118, 2255–2271. [Google Scholar] [CrossRef]
- Salmi, S.M.; Verronen, P.T.; Thölix, L.; Kyrölä, E.; Backman, L.; Karpechko, A.Y.; Seppälä, A. Mesosphere-to-stratosphere descent of odd nitrogen in February–March 2009 after sudden stratospheric warming. Atmos. Chem. Phys. 2011, 11, 4645–4655. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shulga, V.; Milinevsky, G.; Patoka, A.; Evtushevsky, O.; Klekociuk, A.; Han, W.; Grytsai, A.; Shulga, D.; Myshenko, V.; et al. Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements. Atmos. Chem. Phys. 2019, 19, 10303–10317. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Garcia, R.R.; Olivero, J.J.; Bevilacqua, R.M.; Schwartz, P.R.; Clancy, R.T.; Muhleman, D.O. Photochemistry and transport of carbon monoxide in the middle atmosphere. J. Atmos. Sci. 1985, 42, 1072–1083. [Google Scholar] [CrossRef]
- Minschwaner, K.; Manney, G.L.; Livesey, N.J.; Pumphrey, H.C.; Pickett, H.M.; Froidevaux, L.; Lambert, A.; Schwartz, M.J.; Bernath, P.F.; Walker, K.A.; et al. The photochemistry of carbon monoxide in the stratosphere and mesosphere evaluated from observations by the Microwave Limb Sounder on the Aura satellite. J. Geophys. Res. 2010, 115, D13303. [Google Scholar] [CrossRef] [Green Version]
- Huret, N.; Pirre, M.; Hauchecorne, A.; Robert, C.; Catoire, V. On the vertical structure of the stratosphere at midlatitudes during the first stage of the polar vortex formation and in the polar region in the presence of a large mesospheric descent. J. Geophys. Res. 2006, 111, D06111. [Google Scholar] [CrossRef] [Green Version]
- Funke, B.; López-Puertas, M.; García-Comas, M.; Stiller, G.P.; von Clarmann, T.; Höpfner, M.; Glatthor, N.; Grabowski, U.; Kellmann, S.; Linden, A. Carbon monoxide distributions from the upper troposphere to the mesosphere inferred from 4.7μm non-local thermal equilibrium emissions measured by MIPAS on Envisat. Atmos. Chem. Phys. 2009, 9, 2387–2411. [Google Scholar] [CrossRef] [Green Version]
- Kvissel, O.K.; Orsolini, Y.J.; Stordal, F.; Limpasuvan, V.; Richter, J.; Marsh, D.R. Mesospheric intrusion and anomalous chemistry during and after a major stratospheric sudden warming. J. Atmos. Sol. Terr. Phys. 2012, 78–79, 116–124. [Google Scholar] [CrossRef]
- Rüfenacht, R.; Kämpfer, N.; Murk, A. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectroradiometer. Atmos. Meas. Tech. 2012, 5, 2647–2659. [Google Scholar] [CrossRef] [Green Version]
- Scheiben, D.; Straub, C.; Hocke, K.; Forkman, P.; Kämpfer, N. Observations of middle atmospheric H2O and O3 during the 2010 major sudden stratospheric warming by a network of microwave radiometers. Atmos. Chem. Phys. 2012, 12, 7753–7765. [Google Scholar] [CrossRef] [Green Version]
- Forkman, P.; Christensen, O.M.; Eriksson, P.; Billade, B.; Vassilev, V.; Shulga, V.M. A compact receiver system for simultaneous measurements of mesospheric CO and O3. Geosci. Instrum. Method Data Syst. 2016, 5, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Rüfenacht, R.; Baumgarten, G.; Hildebrand, J.; Schranz, F.; Matthias, V.; Stober, G.; Lübken, F.-J.; Kämpfer, N. Intercomparison of middle-atmospheric wind in observations and models. Atmos. Meas. Tech. 2018, 11, 1971–1987. [Google Scholar] [CrossRef] [Green Version]
- Piddyachiy, V.; Shulga, V.; Myshenko, V.; Korolev, A.; Antyufeyev, O.; Shulga, D.; Forkman, P. Microwave radiometer for spectral observations of mesospheric carbon monoxide at 115 GHz over Kharkiv, Ukraine. J. Infrared Millim. Terahertz Waves 2017, 38, 292–302. [Google Scholar] [CrossRef]
- Angot, G.; Keckhut, P.; Hauchecorne, A.; Claud, C. Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44 N). J. Geophys. Res. 2012, 117, D21102. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Evtushevsky, O.; Milinevsky, G.; Shulga, V.; Yukhymchuk, Y.; Han, W.; Shulga, D.; Grytsai, A. The major sudden stratospheric warming impact on mid-latitude surface weather. EPJ Web Conf. 2020, 237, 04007. [Google Scholar] [CrossRef]
- Lee, S.H.; Butler, A.H. The 2018–2019 Arctic stratospheric polar vortex. Weather 2020, 75, 52–57. [Google Scholar] [CrossRef]
- ERA-Interim Global Atmospheric Reanalysis. Available online: https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim (accessed on 30 August 2020).
- MERRA-2: Atmospheric Chemistry and Dynamics Laboratory (Code 614). Available online: https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_data.html (accessed on 10 September 2020).
- MLS: Microwave Limb Sounder EOS MLS Data Readers. Available online: https://mls.jpl.nasa.gov/data/readers.php (accessed on 30 August 2020).
- Piddyachiy, V.I.; Shulga, V.M.; Myshenko, V.V.; Korolev, A.M.; Myshenko, A.V.; Antyufeyev, A.V.; Poladich, A.V.; Shkodin, V.I. 3-mm wave spectroradiometer for studies of atmospheric trace gases. Radiophys. Quantum Electron. 2010, 53, 326–333. [Google Scholar] [CrossRef]
- Eriksson, P.; Jiménez, C.; Buehler, S.A. Qpack, a tool for instrument simulation and retrieval work. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, P.; Buehler, S.A.; Davis, C.P.; Emde, C.; Lemke, O. ARTS, the atmospheric radiative transfer simulator, version 2. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1551–1558. [Google Scholar] [CrossRef] [Green Version]
- Buehler, S.A.; Mendrok, J.; Eriksson, P.; Perrin, A.; Larsson, R.; Lemke, O. ARTS, the atmospheric radiative transfer simulator–version 2.2, the planetary toolbox edition. Geosci. Model Dev. 2018, 11, 1537–1556. [Google Scholar] [CrossRef] [Green Version]
- ARTS: The Atmospheric Radiative Transfer Simulator. Available online: http://www.radiativetransfer.org/ (accessed on 1 October 2020).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Xu, X.; Manson, A.H.; Meek, C.E.; Chshyolkova, T.; Drummond, J.R.; Hall, C.M.; Riggin, D.M.; Hibbins, R.E. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data. Ann. Geophys. 2009, 27, 3387–3409. [Google Scholar] [CrossRef] [Green Version]
- Pumphrey, H.C.; Filipiak, M.J.; Livesey, N.J.; Schwartz, M.J.; Boone, C.; Walker, K.A.; Bernath, P.; Ricaud, P.; Barret, B.; Clerbaux, C.; et al. Validation of middle-atmosphere carbon monoxide retrievals from the Microwave Limb Sounder on Aura. J. Geophys. Res. 2007, 112, D24S38. [Google Scholar] [CrossRef] [Green Version]
- Livesey, N.J.; Filipiak, M.J.; Froidevaux, L.; Read, W.G.; Lambert, A.; Santee, M.L.; Jiang, J.H.; Pumphrey, H.C.; Waters, J.W.; Cofield, R.E.; et al. Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere. J. Geophys. Res. 2008, 113, D15S02. [Google Scholar] [CrossRef] [Green Version]
- Robinson, W.A. A model of the wave 1–wave 2 vacillation in the winter stratosphere. J. Atmos. Sci. 1985, 42, 2289–2304. [Google Scholar] [CrossRef] [Green Version]
- Labitzke, K. Interannual variability of the winter stratosphere in the Northern Hemisphere. Mon. Wea. Rev. 1977, 105, 762–770. [Google Scholar] [CrossRef]
- Teng, H.; Branstator, G. A zonal wavenumber 3 pattern of northern hemisphere wintertime planetary wave variability at high latitudes. J. Clim. 2012, 25, 6756–6769. [Google Scholar] [CrossRef]
- Shi, C.; Xu, T.; Guo, D.; Pan, Z. Modulating effects of planetary wave 3 on a stratospheric sudden warming event in 2005. J. Atmos. Sci. 2017, 74, 1549–1559. [Google Scholar] [CrossRef]
- Kuang, X.; Zhang, Y.; Huang, Y.; Huang, D. Spatial differences in seasonal variation of the upper-tropospheric jet stream in the Northern Hemisphere and its thermal dynamic mechanism. Theor. Appl. Climatol. 2014, 117, 103–112. [Google Scholar] [CrossRef]
- Siskind, D.E.; Coy, L.; Espy, P. Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument. Geophys. Res. Lett. 2005, 32, L09804. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.N.; Wub, D.L.; Ruzmaikin, A.; Fontenla, J. Solar cycle variations in mesospheric carbon monoxide. J. Atmos. Sol. Terr. Phys. 2018, 170, 21–34. [Google Scholar] [CrossRef]
- Orsolini, Y.J.; Limpasuvan, V.; Pérot, K.; Espy, P.; Hibbins, R.; Lossow, S.; Larsson, K.R.; Murtagh, D. Modelling the descent of nitric oxide during the elevated stratopause event of January 2013. J. Atmos. Sol. Terr. Phys. 2017, 155, 50–61. [Google Scholar] [CrossRef]
- Harvey, V.L.; Pierce, R.B.; Hitchman, M.H. A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res. 2002, 107, 4442. [Google Scholar] [CrossRef]
- Engel, A.; Möbius, T.; Haase, H.-P.; Bönisch, H.; Wetter, T.; Schmidt, U.; Levin, I.; Reddmann, T.; Oelhaf, H.; Wetzel, G.; et al. Observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003. Atmos. Chem. Phys. 2006, 6, 267–282. [Google Scholar] [CrossRef] [Green Version]
- Sunspot Index and Long-Term Solar Observations. Available online: http://www.sidc.be/silso/DATA/SN_m_tot_V2.0.txt (accessed on 30 August 2020).
- McLandress, C.; Scinocca, J.F.; Shepherd, T.G.; Reader, M.C.; Manney, G.L. Dynamical control of the mesosphere by orographic and non-orographic gravity wave drag during the extended northern winters of 2006 and 2009. J. Atmos. Sci. 2013, 70, 2152–2169. [Google Scholar] [CrossRef]
- Ryan, N.J.; Kinnison, D.E.; Garcia, R.R.; Hoffmann, C.G.; Palm, M.; Raffalski, U.; Notholt, J. Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors. Atmos. Chem. Phys. 2018, 18, 1457–1474. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Shulga, V.; Ivaniha, O.; Wang, Y.; Evtushevsky, O.; Milinevsky, G.; Klekociuk, A.; Patoka, A.; Han, W.; Shulga, D. Comparison of Major Sudden Stratospheric Warming Impacts on the Mid-Latitude Mesosphere Based on Local Microwave Radiometer CO Observations in 2018 and 2019. Remote Sens. 2020, 12, 3950. https://doi.org/10.3390/rs12233950
Shi Y, Shulga V, Ivaniha O, Wang Y, Evtushevsky O, Milinevsky G, Klekociuk A, Patoka A, Han W, Shulga D. Comparison of Major Sudden Stratospheric Warming Impacts on the Mid-Latitude Mesosphere Based on Local Microwave Radiometer CO Observations in 2018 and 2019. Remote Sensing. 2020; 12(23):3950. https://doi.org/10.3390/rs12233950
Chicago/Turabian StyleShi, Yu, Valerii Shulga, Oksana Ivaniha, Yuke Wang, Oleksandr Evtushevsky, Gennadi Milinevsky, Andrew Klekociuk, Aleksey Patoka, Wei Han, and Dmitry Shulga. 2020. "Comparison of Major Sudden Stratospheric Warming Impacts on the Mid-Latitude Mesosphere Based on Local Microwave Radiometer CO Observations in 2018 and 2019" Remote Sensing 12, no. 23: 3950. https://doi.org/10.3390/rs12233950
APA StyleShi, Y., Shulga, V., Ivaniha, O., Wang, Y., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Patoka, A., Han, W., & Shulga, D. (2020). Comparison of Major Sudden Stratospheric Warming Impacts on the Mid-Latitude Mesosphere Based on Local Microwave Radiometer CO Observations in 2018 and 2019. Remote Sensing, 12(23), 3950. https://doi.org/10.3390/rs12233950