Comparison of ISS–CATS and CALIPSO–CALIOP Characterization of High Clouds in the Tropics
Abstract
:1. Introduction
2. Data and Methods
2.1. The Cloud–Aerosol Transport System (CATS)
2.2. The Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP)
2.3. Comparison Criteria
3. Results
3.1. Spatial Distribution of High Cloud Density
3.2. Vertical Distribution of High Clouds
3.3. Cloud Optical Depth
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Chapter 7; pp. 571–658. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Bony, S.; Dufresne, J.L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 2014, 505, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Bony, S.; Stevens, B.; Frierson, D.M.W.; Jakob, C.; Kageyama, M.; Pincus, R.; Shepherd, T.G.; Sherwood, S.C.; Pier Siebesma, A.; Sobel, A.H.; et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 2015, 8, 261–268. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Cloud Dynamics; Academic Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Schoeberl, M.R.; Jensen, E.J.; Pfister, L.; Ueyama, R.; Wang, T.; Selkirk, H.; Avery, M.; Thornberry, T.; Dessler, A.E. Water vapor, clouds, and saturation in the tropical tropopause layer. J. Geophys. Res. 2019, 124, 3984–4003. [Google Scholar] [CrossRef]
- Pan, L.L.; Munchak, L.A. Relationship of Cloud Top to the Tropopause and Jet Structure from CALIPSO Data. J. Geophys. Res. 2011, 116, D12201. [Google Scholar] [CrossRef]
- Stephens, G.; Winker, D.; Pelon, J.; Trepte, C.; Vane, D.; Yuhas, C.; L’Ecuyer, T.; Lebsock, M. CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System. Bull. Am. Meteorol. Soc. 2018, 99, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Matsui, T.; Chern, J.D.; Tao, W.K.; Lang, S.; Satoh, M.; Hashino, T.; Kubota, T. On the Land–Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models. J. Hydrometeorol. 2016, 17, 1425–1445. [Google Scholar] [CrossRef]
- Emmanuel, K.A. Atmospheric Convection; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Noel, V.; Chepfer, H.; Chiriaco, M.; Yorks, J. The diurnal cycle of cloud profiles over land and ocean between 51∘ S and 51∘ N, seen by the CATS spaceborne lidar from the International Space Station. Atmos. Chem. Phys. 2018, 18, 9457–9473. [Google Scholar] [CrossRef] [Green Version]
- Chepfer, H.; Brogniez, H.; Noel, V. Diurnal variations of cloud and relative humidity profiles across the tropics. Sci. Rep. 2019, 9, 16045. [Google Scholar] [CrossRef] [Green Version]
- Dauhut, T.; Noel, V.; Dion, I.A. The diurnal cycle of the clouds extending above the tropical tropopause observed by spaceborne lidar. Atmos. Chem. Phys. 2020, 20, 3921–3929. [Google Scholar] [CrossRef] [Green Version]
- Yorks, J.E.; McGill, M.J.; Palm, S.P.; Hlavka, D.L.; Selmer, P.A.; Nowottnick, E.P.; Vaughan, M.A.; Rodier, S.D.; Hart, W.D. An overview of the CATS level 1 processing algorithms and data products. Geophys. Res. Lett. 2016, 43, 4632–4639. [Google Scholar] [CrossRef] [Green Version]
- Yorks, J.E.; Palm, S.P.; McGill, M.J.; Hlavka, D.L.; Hart, W.D.; Selmer, P.A.; Nowottnick, E.P. CATS Algorithm Theoretical Basis Document, Level 1 and Level 2 Data Products, release 1.2. In Technical Report; NASA GSFC: Greenbelt, MD, USA, 2016. Available online: https://cats.gsfc.nasa.gov/media/docs/CATS_ATBD.pdf (accessed on 13 February 2018).
- Pauly, R.M.; Yorks, J.E.; Hlavka, D.L.; McGill, M.J.; Amiridis, V.; Palm, S.P.; Rodier, S.D.; Vaughan, M.A.; Selmer, P.A.; Kupchock, A.W.; et al. Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation. Atmos. Meas. Tech. 2019, 12, 6241–6258. [Google Scholar] [CrossRef] [Green Version]
- Proestakis, E.; Amiridis, V.; Marinou, E.; Binietoglou, I.; Ansmann, A.; Wandinger, U.; Hofer, J.; Yorks, J.; Nowottnick, E.; Makhmudov, A.; et al. EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product. Atmos. Chem. Phys. 2019, 19, 11743–11764. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Tissier, A.S.; Legras, B. Convective sources of trajectories traversing the tropical tropopause layer. Atmos. Chem. Phys. 2016, 16, 3383–3398. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.J. Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res. Atmos. 2005, 110, D23104. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.; Jensen, E. Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci. 2013, 6, 169–176. [Google Scholar] [CrossRef]
- Vernier, J.P.; Fairlie, T.D.; Natarajan, M.; Wienhold, F.G.; Bian, J.; Martinsson, B.G.; Crumeyrolle, S.; Thomason, L.W.; Bedka, K.M. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J. Geophys. Res. Atmos. 2015, 120, 1608–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Top Altitude | Percent Difference of Occurrence | |
---|---|---|
DJF | JJA | |
13 | 8.6 ± 59.9% | −4.4 ± 50.7% |
14 | −10.0 ± 64.5% | −6.6 ± 55.2% |
15 | −15.2 ± 65.9% | −12.9 ± 60.2% |
16 | −18.8 ± 69.8% | −13.9 ± 70.0% |
17 | −36.7 ± 73.2% | −29.8 ± 77.3% |
18 | −78.9 ± 56.4% | −84.9 ± 42.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sellitto, P.; Bucci, S.; Legras, B. Comparison of ISS–CATS and CALIPSO–CALIOP Characterization of High Clouds in the Tropics. Remote Sens. 2020, 12, 3946. https://doi.org/10.3390/rs12233946
Sellitto P, Bucci S, Legras B. Comparison of ISS–CATS and CALIPSO–CALIOP Characterization of High Clouds in the Tropics. Remote Sensing. 2020; 12(23):3946. https://doi.org/10.3390/rs12233946
Chicago/Turabian StyleSellitto, Pasquale, Silvia Bucci, and Bernard Legras. 2020. "Comparison of ISS–CATS and CALIPSO–CALIOP Characterization of High Clouds in the Tropics" Remote Sensing 12, no. 23: 3946. https://doi.org/10.3390/rs12233946
APA StyleSellitto, P., Bucci, S., & Legras, B. (2020). Comparison of ISS–CATS and CALIPSO–CALIOP Characterization of High Clouds in the Tropics. Remote Sensing, 12(23), 3946. https://doi.org/10.3390/rs12233946