Radar Remote Sensing to Supplement Pipeline Surveillance Programs through Measurements of Surface Deformations and Identification of Geohazard Risks
Abstract
:1. Introduction
2. Interferometric Data Processing
2.1. Study Area
2.2. Quantitative Assessment of Ground Deformations along Petroleum and Gas Pipelines Using PS-InSAR and SBAS
3. Results
3.1. Ground Deformations Detected from PS-InSAR and SBAS
3.2. Quantification of Ground Deformation Velocity within the Landcover Classes
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, A.; Lu, J.; Kim, J.-W. Detecting mining-induced ground deformation and associated hazards using spaceborne InSAR techniques. Geomat. Nat. Hazards Risk 2017, 9, 211–223. [Google Scholar] [CrossRef]
- Shi, J.; Yang, H.; Peng, J.; Wu, L.; Xu, B.; Liu, Y.; Zhao, B. InSAR Monitoring and Analysis of Ground Deformation Due to Fluid or Gas Injection in Fengcheng Oil Field, Xinjiang, China. J. Indian Soc. Remote Sens. 2018, 47, 455–466. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Liu, Y.; Bi, H. Linking land subsidence over the Yellow River delta, China, to hydrocarbon exploitation using multi-temporal InSAR. Nat. Hazards 2016, 84, 271–291. [Google Scholar] [CrossRef]
- Yan, S.; Shi, K.; Li, Y.; Liu, J.; Zhao, H. Integration of satellite remote sensing data in underground coal fire detection: A case study of the Fukang region, Xinjiang, China. Front. Earth Sci. 2019, 14, 1–12. [Google Scholar] [CrossRef]
- Mikhailov, V.O.; Kiseleva, E.A.; Smol’Yaninova, E.I.; Dmitriev, P.N.; Golubev, V.I.; Timoshkina, E.P.; Khairetdinov, S.A. Satellite Radar Interferometry: New Technologies for Satellite Monitoring of Mining Areas and Displacements of Natural and Man-Made Objects. Seism. Instrum. 2018, 54, 515–520. [Google Scholar] [CrossRef]
- Rucker, M.L.; Panda, B.B.; Meyers, R.A.; Lommler, J.C. Using InSAR to detect subsidence at brine wells, sinkhole sites, and mines. Carbonates Evaporites 2013, 28, 141–147. [Google Scholar] [CrossRef]
- Zheng, M.; Deng, K.-Z.; Du, S.; Liu, J.; Liu, J.; Feng, J. Joint Probability Integral Method and TCPInSAR for Monitoring Mining Time-Series Deformation. J. Indian Soc. Remote Sens. 2018, 47, 63–75. [Google Scholar] [CrossRef]
- Singhroy, V.; Li, J.; Charbonneau, F. High Resolution Rapid Revisit InSAR Monitoring of Surface Deformation. Can. J. Remote Sens. 2015, 41, 458–472. [Google Scholar] [CrossRef]
- Chang, L.; Ku, O.; Hanssen, R.F. Identification of deformation pattern changes caused by enhanced oil recovery (EOR) using InSAR. Int. J. Remote Sens. 2018, 40, 1495–1505. [Google Scholar] [CrossRef] [Green Version]
- Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng. Geol. 2003, 68, 3–14. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Zhang, J.; Luo, Y. InSAR technique applied to the monitoring of the Qinghai–Tibet Railway. Nat. Hazards Earth Syst. Sci. 2019, 19, 2229–2240. [Google Scholar] [CrossRef] [Green Version]
- Wasowski, J.; Bovenga, F.; Nutricato, R.; Nitti, D.O.; Chiaradia, M.T. Advanced satellite radar interferometry for deformation monitoring and infrastructure control in open-cast mines and oil/gas fields. Innov. Infrastruct. Solut. 2018, 3, 68. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, Y.; Wang, Q.; Xin, Y.; Li, J. Detecting land uplift associated with enhanced oil recovery using InSAR in the Karamay oil field, Xinjiang, China. Int. J. Remote Sens. 2016, 37, 1527–1540. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, D.; Zhao, C.; Han, B.; Sun, R.; Du, J.; Chen, L. Ground Deformation Revealed by Sentinel-1 MSBAS-InSAR Time-Series over Karamay Oilfield, China. Remote Sens. 2019, 11, 2027. [Google Scholar] [CrossRef] [Green Version]
- Sircar, S.; Power, D.; Randell, C.; Youden, J.; Gill, E. Lateral and subsidence movement estimation using InSAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’04, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar] [CrossRef]
- Singhroy, V.; Alasset, P.-J.; Couture, R.; Poncos, V. InSAR monitoring of landslides on permafrost terrain in Canada. IEEE Int. Geosci. Remote Sens. Symp. 2007, 2007IGARSS, 2451–2454. [Google Scholar] [CrossRef]
- Guthrie, R.; Reid, E.; Richmond, J.; Ghuman, P.; Cormier, Y. InSAR and the Pipeline Geohazards Toolbox: Instructions for Use As of 2018. In Proceedings of the Operations, Monitoring, and Maintenance; Materials and Joining, Calgary, AB, Canada, 24–28 September 2018. [Google Scholar] [CrossRef]
- Riedmann, M.; Sims, R.; Rogg, C.; Schleider, O. Application of ground movement and automated route planning technologies for pipeline planning and management—The PIPEMON project. In Proceedings of the 6th International Pipeline Conference, Calgary, AB, Canada, 25–29 September 2006; p. 9. [Google Scholar]
- Zirnig, W.; Pride, R.; Lingenfelder, I.; Chiles, R.; Hausamann, D. The PRESENSE and PIPEMON projects—Defining the ways of using space-borne earth observation services for pipeline monitoring. In Proceedings of the IGRC Conference, Vancouver, BC, Canada, 1–4 November 2004; p. 14. [Google Scholar]
- Sims, R.; Riedmann, M. Ground motion monitoring using InSAR: Example applications for mining and pipeline operations with consideration of potential for developing countries. In Proceedings of the ISPRS Commission VII (WG2 & WG7), Istanbul, Turkey, 16–18 May 2007. [Google Scholar]
- Hole, J.; Holley, R.; Giunta, G.; Lorenzo, G.; Thomas, A. InSAR assessment of pipeline stability using compact active transponders. In Proceedings of the Fringe 2011, Frascati, Italy, 19–23 September 2011; p. 53. [Google Scholar]
- Bayramov, E.R. Quantitative Assessment of Vegetation Renaturation and Soil Degradation and Their Control by Climate and ground Factors along Rights-of-Way of Petroleum/Gas Pipelines, Azerbaijan. Ph.D. Thesis, Dresden University of Technology, Dresden, Germany, 2013. [Google Scholar]
- Bayramov, E.; Buchroithner, M.F.; McGurty, E. Determination of main climate and ground factors controlling vegetation cover regrowth along oil and gas pipelines using multiple, spatial and geographically weighted regression procedures. Environ. Earth Sci. 2011, 66, 2047–2062. [Google Scholar] [CrossRef]
- Bayramov, E.; Buchroithner, M.; McGurty, E. Quantitative assessment of vegetation cover and soil degradation factors within terrain units for planning, monitoring and assessment of renaturation along oil and gas pipelines. Geocarto Int. 2012, 27, 535–555. [Google Scholar] [CrossRef]
- Bayramov, E.; Buchroithner, M.F.; McGurty, E. Prediction reliability, quantitative differences and spatial variations of erosion models for long-range petroleum and gas infrastructure. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2012, 6, 252–272. [Google Scholar] [CrossRef]
- Bayramov, E.; Buchroithner, M.F.; McGurty, E. Differences of MMF and USLE Models for Soil Loss Predictionalong BTC and SCP Pipelines. J. Pipeline Syst. Eng. Pr. 2013, 4, 81–96. [Google Scholar] [CrossRef]
- Kampes, B. Displacement Parameter Estimation using Permanent Scatterer Interferometry. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2015. [Google Scholar]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Honglei, Y.; Jun-huan, P. Monitoring Urban Subsidence with Multi-master Radar Interferometry Based on Coherent Targets. J. Ind. Soc. Remote Sens. 2015, 43, 529–538. [Google Scholar]
- D’Aria, D.; Ferretti, A.; Guarnieri, A.M.; Tebaldini, S. SAR Calibration Aided by Permanent Scatterers. IEEE Trans. Geosci. Remote Sens. 2009, 48, 2076–2086. [Google Scholar] [CrossRef]
- Perissin, D.; Ferretti, A. Urban-Target Recognition by Means of Repeated Spaceborne SAR Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4043–4058. [Google Scholar] [CrossRef]
- Lu, L.; Liao, M. Subsidence measurement with ps-insar techniques in Shanghai urban. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2008, 37, B7. [Google Scholar]
- Berardino, P.; Costantini, M.; Franceschetti, G.; Iodice, A.; Pietranera, L.; Rizzo, V. Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng. Geol. 2003, 68, 31–51. [Google Scholar] [CrossRef]
- Virk, A.S.; Singh, A.; Mittal, S.K. Advanced MT-InSAR Landslide Monitoring: Methods and Trends. J. Remote Sens. GIS 2018, 7, 1–6. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the small baseline subset algorithm: ADInSAR technique for surface deformation analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar]
- Grebby, S.; Orynbassarova, E.; Sowter, A.; Gee, D.; Athab, A. Delineating ground deformation over the Tengiz oil field, Kazakhstan, using the Intermittent SBAS (ISBAS) DInSAR algorithm. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 37–46. [Google Scholar] [CrossRef]
- Gheorghe, M.; Armaş, I. Comparison of Multi-Temporal Differential Interferometry Techniques Applied to the Measurement of Bucharest City Subsidence. Proc. Environ. Sci. 2016, 32, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Ianoschi, R.; Schouten, M.; Leezenberg, P.B.; Dheenathayalan, P.; Hanssen, R. Satellite radar interferometry for risk management of gas pipeline networks. In Proceedings of the ‘ESA Living Planet Symposium 2013’, Edinburgh, UK, 9–13 September 2013. [Google Scholar]
- Chang, L.; Dollevoet, R.; Hanssen, R.F. Monitoring Line-Infrastructure with Multisensor SAR Interferometry: Products and Performance Assessment Metrics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1593–1605. [Google Scholar] [CrossRef] [Green Version]
- Imamoglu, M.; Kahraman, F.; Çakir, Z.; Sanli, F.B. Ground Deformation Analysis of Bolvadin (W. Turkey) by Means of Multi-Temporal InSAR Techniques and Sentinel-1 Data. Remote Sens. 2019, 11, 1069. [Google Scholar] [CrossRef] [Green Version]
- Solari, L.; Bianchini, S.; Franceschini, R.; Barra, A.; Monserrat, O.; Thuegaz, P.; Bertolo, D.; Crosetto, M.; Catani, F. Satellite interferometric data for landslide intensity evaluation in mountainous regions. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102028. [Google Scholar] [CrossRef]
- Yunjun, Z.; Fattahi, H.; Amelung, F. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef] [Green Version]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2016, 115, 90–102. [Google Scholar] [CrossRef]
- Lauknes, T.R.; Dehls, J.; Larsen, Y.; Høgda, K.A.; Weydahl, D.J. A comparison of SBAS and PS ERS InSAR for subsidence monitoring in Oslo, Norway. In Proceedings of the Fringe 2005 Workshop, ESA ESRIN, Frascati, Italy, 28 November–2 December 2005. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Bonì, R.; Bosino, A.; Meisina, C.; Novellino, A.; Bateson, L.; McCormack, H. A Methodology to Detect and Characterize Uplift Phenomena in Urban Areas Using Sentinel-1 Data. Remote Sens. 2018, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Aslan, G.; Çakir, Z.; Lasserre, C.; Renard, F. Investigating Subsidence in the Bursa Plain, Turkey, Using Ascending and Descending Sentinel-1 Satellite Data. Remote Sens. 2019, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Gee, D.; Sowter, A.; Novellino, A.; Marsh, S.; Gluyas, J. Monitoring land motion due to natural gas extraction: Validation of the Intermittent SBAS (ISBAS) DInSAR algorithm over gas fields of North Holland, The Netherlands. Mar. Pet. Geol. 2016, 77, 1338–1354. [Google Scholar] [CrossRef]
- Dai, K.; Liu, G.; Li, Z.; Li, T.; Yu, B.; Wang, X.; Singleton, A. Extracting Vertical Displacement Rates in Shanghai (China) with Multi-Platform SAR Images. Remote Sens. 2015, 7, 9542–9562. [Google Scholar] [CrossRef] [Green Version]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Gehlot, S.; Ketelaar, V.B.H.; Verbree, E.; Hanssen, R.F. Conceptual Framework for PS-InSAR Interpretation Assisted by Geo-information Technology. In Proceedings of the ISPRS Workshop on “High Resolution Earth Imaging for Geospatial Information”, Hannover, Germany, 17–20 May 2005. [Google Scholar]
- Gee, D.; Bateson, L.; Marsh, S.; Grebby, S.; Novellino, A.; Cigna, F.; Marsh, S.; Banton, C.; Wyatt, L. Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geoscience 2017, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Sowter, A.; Bateson, L.; Strange, P.; Ambrose, K.; Syafiudin, M.F. DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields. Remote Sens. Lett. 2013, 4, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Sowter, A.; Che Amat, M.; Cigna, F.; Marsh, S.; Athab, A.; Alshammari, L. Mexico City land subsidence in 2014–2015 with sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 230–242. [Google Scholar]
- Stamatopoulos, C.; Petridis, P.; Parcharidis, I.; Foumelis, M. A method predicting pumping-induced ground settlement using back-analysis and its application in the Karla region of Greece. Nat. Hazards 2018, 92, 1733–1762. [Google Scholar] [CrossRef]
- Chai, J.C.; Shen, S.L.; Zhu, H.H.; Zhang, X.L. 1D analysis of land subsidence in Shanghai. Lowland Technol. Int. 2005, 7, 33–41. [Google Scholar]
- Singhroy, V.; Li, J.; Blais-Stevens, A.; Fobert, M.-A. Insar Monitoring of Pipeline Routes. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium; Institute of Electrical and Electronics Engineers (IEEE), Valencia, Spain, 22–27 July 2018; pp. 212–215. [Google Scholar]
- Sharma, J.; Busler, J.; Francioni, M.; Stead, D.; Donati, D.; Onsel, E.; Clague, J.; Brideau, M.A. Monitoring Landslides along Pipeline Corridors Using a Combined Satellite-Based InSAR and Geomechanical Modelling Approach. In Proceedings of the GeoVancouver 2016, Vancouver, BC, Canada, 2–5 October 2016. [Google Scholar]
- Dheenathayalan, P.; Hanssen, R. Target characterization and interpretation of deformation using persistent scatterer interferometry and polarimetry. In Proceedings of the 5th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, ‘POLInSAR 2011’, Frascati, Italy, 24–28 January 2011. [Google Scholar]
- Dheenathayalan, P.; Caro Cuenca, M.; Hanssen, R.F. Different approaches for psi target characterization for monitoring urban infrastructure. In Proceedings of the 8th International Workshop on Advances in the Science and Applications of SAR Interferometry, ‘FRINGE 2011’, Frascati, Italy, 19–23 September 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayramov, E.; Buchroithner, M.; Kada, M. Radar Remote Sensing to Supplement Pipeline Surveillance Programs through Measurements of Surface Deformations and Identification of Geohazard Risks. Remote Sens. 2020, 12, 3934. https://doi.org/10.3390/rs12233934
Bayramov E, Buchroithner M, Kada M. Radar Remote Sensing to Supplement Pipeline Surveillance Programs through Measurements of Surface Deformations and Identification of Geohazard Risks. Remote Sensing. 2020; 12(23):3934. https://doi.org/10.3390/rs12233934
Chicago/Turabian StyleBayramov, Emil, Manfred Buchroithner, and Martin Kada. 2020. "Radar Remote Sensing to Supplement Pipeline Surveillance Programs through Measurements of Surface Deformations and Identification of Geohazard Risks" Remote Sensing 12, no. 23: 3934. https://doi.org/10.3390/rs12233934
APA StyleBayramov, E., Buchroithner, M., & Kada, M. (2020). Radar Remote Sensing to Supplement Pipeline Surveillance Programs through Measurements of Surface Deformations and Identification of Geohazard Risks. Remote Sensing, 12(23), 3934. https://doi.org/10.3390/rs12233934