Imaging Floods and Glacier Geohazards with Remote Sensing
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alcântara, E.; Park, E. Editorial for the Special Issue “Remote Sensing of Large Rivers”. Remote Sens. 2020, 12, 1244. [Google Scholar] [CrossRef] [Green Version]
- Topouzelis, K.; Papakonstantinou, A.; Singha, S.; Li, X.M.; Poursanidis, D. Editorial on Special Issue “Applications of Remote Sensing in Coastal Areas”. Remote Sens. 2020, 12, 974. [Google Scholar] [CrossRef] [Green Version]
- Domeneghetti, A.; Schumann, G.J.-P.; Tarpanelli, A. Preface: Remote Sensing for Flood Mapping and Monitoring of Flood Dynamics. Remote Sens. 2019, 11, 943. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Fernández, N.; Al Bitar, A.; Colliander, A.; Zhao, T. Soil moisture remote sensing across scales. Remote Sens. 2019, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Tapete, D.; Lu, Z. Remote sensing of volcanic processes and risk. Remote Sens. 2020, 12, 2567. [Google Scholar] [CrossRef]
- Cigna, F.; Xie, H.; Chokmani, K. MDPI Remote Sensing: Special Issue “Imaging Floods and Glacier Geohazards with Remote Sensing”. Available online: https://www.mdpi.com/journal/remotesensing/special_issues/floods_glacier_geohazards (accessed on 12 November 2020).
- Paul, F. Repeat Glacier Collapses and Surges in the Amney Machen Mountain Range, Tibet, Possibly Triggered by a Developing Rock-Slope Instability. Remote Sens. 2019, 11, 708. [Google Scholar] [CrossRef] [Green Version]
- Benoudjit, A.; Guida, R. A novel fully automated mapping of the flood extent on sar images using a supervised classifier. Remote Sens. 2019, 11, 779. [Google Scholar] [CrossRef] [Green Version]
- Amitrano, D.; Guida, R.; Di Martino, G.; Iodice, A. Glacier monitoring using frequency domain offset tracking applied to sentinel-1 images: A product performance comparison. Remote Sens. 2019, 11, 1322. [Google Scholar] [CrossRef] [Green Version]
- Uddin, K.; Matin, M.A.; Meyer, F.J. Operational flood mapping using multi-temporal Sentinel-1 SAR images: A case study from Bangladesh. Remote Sens. 2019, 11, 1581. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.N.; Yun, S.H.; Bhardwaj, A.; Hill, E.M. Urban flood detection with Sentinel-1Multi-Temporal Synthetic Aperture Radar (SAR) observations in a Bayesian framework: A case study for Hurricane Matthew. Remote Sens. 2019, 11, 1778. [Google Scholar] [CrossRef]
- Idowu, D.; Zhou, W. Performance evaluation of a potential component of an early flood warning system-a case study of the 2012 flood, lower Niger River Basin, Nigeria. Remote Sens. 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Ai, S.; Ding, X.; Tolle, F.; Wang, Z.; Zhao, X. Latest geodetic changes of Austre Lovénbreen and Pedersenbreen, Svalbard. Remote Sens. 2019, 11, 2890. [Google Scholar] [CrossRef] [Green Version]
- Sebastiá-Frasquet, M.T.; Aguilar-Maldonado, J.A.; Santamaría-Del-ángel, E.; Estornell, J. Sentinel 2 analysis of turbidity patterns in a coastal lagoon. Remote Sens. 2019, 11, 2926. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, A.; Lu, J.; Chen, X.; Chisenga, C.; Saleem, N.; Hassan, H. Operational monitoring and damage assessment of riverine flood-2014 in the lower chenab plain, Punjab, Pakistan, using remote sensing and gis techniques. Remote Sens. 2020, 12, 714. [Google Scholar] [CrossRef] [Green Version]
- Avian, M.; Bauer, C.; Schlögl, M.; Widhalm, B.; Gutjahr, K.H.; Paster, M.; Hauer, C.; Frießenbichler, M.; Neureiter, A.; Weyss, G.; et al. The status of earth observation techniques in monitoring high mountain environments at the example of pasterze glacier, austria: Data, methods, accuracies, processes, and scales. Remote Sens. 2020, 12, 1251. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Liu, D. Estimating daily inundation probability using remote sensing, riverine flood, and storm surge models: A case of hurricane harvey. Remote Sens. 2020, 12, 1495. [Google Scholar] [CrossRef]
Article | Remote Sensing Data and Methods | Event and/or Area of Interest |
---|---|---|
Paul 2019 [7] | Corona KH4-A/B declassified, Landsat-5/7/8, Sentinel-2, QuickBird and WorldView; SRTM and High Mountain Asia DEMs; red/SWIR band ratios, contrast-enhancement, DEM differencing | 2004, 2007 and 2016 glacier collapses and surges at Amney Machen mountain range (China) |
Benoudjit and Guida 2019 [8] | TerraSAR-X and Sentinel-1 SAR; Landsat-5 and Sentinel-2; iterative optimization through stochastic gradient descent, NDWI, supervised classifier, automated flood extent mapping | 2007 flood in Tewkesbury (UK) and 2015 flood in Mawlamyine (Myanmar) |
Amitrano et al. 2019 [9] | Sentinel-1 SAR; frequency-domain offset tracking | 2017 monitoring of Petermann, Nioghalvfjerdsfjorden and Jackobshavn Isbræ (Greenland) and Thwaites (Antarctica) glaciers |
Uddin et al. 2019 [10] | Sentinel-1 SAR; Landsat-8; SRTM; DEM; land use/land cover mapping in GEE; NDVI, NDWI, NDMI, BSI and NPCRI indices; LWM, GEOBIA, supervised image classification, machine learning | 2017 floods in whole country of Bangladesh |
Lin et al. 2019 [11] | Sentinel-1 SAR; King Air 350ER aerial photos; SPOT-6, WorldView and QuickBird; distribution normalization, Bayesian probability, probabilistic thresholding, classification | 2016 flood in Lumberton, North Carolina (USA) |
Idowu and Zhou 2019 [12] | GRACE; terrestrial water storage anomaly; precipitation data; flood potential index | 2012 flood in Lower Niger River Basin (Nigeria) |
Ai et al. 2019 [13] | GPS RTK; ArcticDEM, UAV photogrammetric DEMs; elevation changes estimation, interpolation methods, DEM generation | 2013–2015 mass changes at Austre Lovénbreen and Pedersenbreen glaciers (Svalbard) |
Sebastiá-Frasquet et al. 2019 [14] | Sentinel-2; precipitation and wind data; Secchi disk depth, suspended particulated matter; chlorophyll a concentration, turbidity mapping | 2017–2018 turbidity of Albufera de Valencia lagoon (Spain) |
Sajjad et al. 2020 [15] | Landsat-8; GPS data; Google Earth; supervised classification, land use/cover change detection, modified NDWI | 2014 flood in Lower Chenab plain (Pakistan) |
Avian et al. 2020 [16] | Terrestrial laser scanning; Sentinel-1 SAR; Sentinel-2; UAV photos; automatic cameras; DInSAR; SfM | 2001–2019 monitoring of Pasterze glacier (Austria) |
Liang and Liu 2020 [17] | Sentinel-1 SAR; Planet and DMCii imagery; riverine flood depth, storm surge water height, land cover; National Map 3D Elevation Program DEM; NDWI, data fusion, daily inundation probability, weight of evidence | 2017 inundations in Harris, Texas (USA) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cigna, F.; Xie, H. Imaging Floods and Glacier Geohazards with Remote Sensing. Remote Sens. 2020, 12, 3874. https://doi.org/10.3390/rs12233874
Cigna F, Xie H. Imaging Floods and Glacier Geohazards with Remote Sensing. Remote Sensing. 2020; 12(23):3874. https://doi.org/10.3390/rs12233874
Chicago/Turabian StyleCigna, Francesca, and Hongjie Xie. 2020. "Imaging Floods and Glacier Geohazards with Remote Sensing" Remote Sensing 12, no. 23: 3874. https://doi.org/10.3390/rs12233874
APA StyleCigna, F., & Xie, H. (2020). Imaging Floods and Glacier Geohazards with Remote Sensing. Remote Sensing, 12(23), 3874. https://doi.org/10.3390/rs12233874