Spatio-Temporal Dynamics of Algae and Macrophyte Cover in Urban Lakes: A Remote Sensing Analysis of Bellandur and Varthur Wetlands in Bengaluru, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Bellandur–Varthur Lake System
2.3. Data Acquisition and Pre-Processing
2.4. Classification of Wetland Cover
- (i) Macrophytes: Water surface areas within the defined lake boundaries covered with visible floating-leaf and emergent macrophytes, including plants in a state of decay. This may also include small shares of either foam-covered surfaces or undefined materials.
- (ii) Algae: Phytoplankton of various greenish shades that was visually definable and possible to distinguish from differently colored open water. This likely included microorganisms of the classes Bacillariophyceae, Chlorophyceae, Euglenophyceae and Cyanophyceae, and blooms of blue–green algae (cyanobacteria; Mahapatra et al., 2018).
- (iii) Open water: Water surface without any cover and without clear visual signs of phytoplankton propagation.
2.5. Post-Processing and Space-Time Analysis
2.5.1. Seasonal Analysis
2.5.2. Multi-Annual Analysis
3. Results
3.1. Wetland Cover
3.2. Seasonal Dynamics
3.2.1. Inter-Annual Seasonal Trends
3.2.2. Average Seasonal Cover
3.3. Long-Term Dynamics
4. Discussion
4.1. Classification and Identification Process
4.2. Lake Surface Dynamics
4.2.1. Seasonal Dynamics
4.2.2. Inter-Annual Dynamics
4.2.3. Wetland Comparison with Regard to Nutrient Loads
4.3. Differences in Cover Analysis
4.4. Macrophyte Ecology
4.5. Wetland Morphology
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Macrophytes [%] | Algae [%] | Open Water [%] | |||||||
---|---|---|---|---|---|---|---|---|---|
Image Date | Bellandur | Varthur | Bellandur | Varthur | Bellandur | Varthur | Satellite or Provider | Sensor Resolution/Classified Resolution | Method |
10-Mar-2002 | 29.6% | 29.4% | 65.5% | 32.9% | 4.9% | 37.7% | QB02 | 2.4 m/1 m | RGB MLM |
26-Apr-2003 | 36.5% | 60.9% | 48.4% | 10.0% | 15.0% | 29.1% | QB02 | 2.4 m/1 m | RGB MLM |
21-Feb-2004 | 36.9% | 33.3% | 61.1% | 31.3% | 2.0% | 35.5% | QB02 | 2.4 m/1 m | RGB MLM |
13-Apr-2008 | 58.7% | 52.4% | 15.5% | 13.2% | 25.8% | 34.4% | QB02 | 2.4 m/1 m | RGB MLM |
13-Apr-2009 | 72.3% | 97.5% | 22.8% | 1.5% | 4.8% | 1.0% | GE01 | 1.65 m/1 m | RGB MLM |
23-Jan-2010 | 45.3% | 41.1% | 53.2% | 22.6% | 1.4% | 36.3% | WV02 | 1.85 m/1 m | RGB MLM |
11-Mar-2011 | 53.4% | 59.6% | 39.5% | 14.4% | 7.1% | 26.1% | WV02 | 1.85 m/1 m | RGB MLM |
5-Oct-2012 | 47.1% | 43.4% | 46.1% | 9.1% | 6.9% | 47.5% | GE01 | 1.65 m/1 m | RGB MLM |
18-Nov-2012 | 39.5% | 41.9% | 54.8% | 35.1% | 5.7% | 23.1% | Maxar | NA | RGB MLM |
11-Jan-2013 | 50.9% | 42.7% | 36.0% | 28.2% | 13.1% | 29.1% | WV02 | 1.85 m/1 m | RGB MLM |
19-Nov-2013 | 48.3% | 34.3% | 49.1% | 18.3% | 2.6% | 47.4% | WV02 | 1.85 m/1 m | RGB MLM |
26-Feb-2014 | 46.3% | 58.7% | 48.3% | 20.4% | 5.4% | 20.9% | Pléiades | 2.8 m/1 m | RGB MLM |
6-Apr-2015 | 68.4% | 82.3% | 27.5% | 17.3% | 4.1% | 0.5% | GE01 | 1.65 m/1 m | RGB MLM |
1-Sep-2015 | 56.7% | 37.3% | 37.0% | 38.8% | 6.3% | 23.9% | WV02 | 1.85 m/1 m | RGB MLM |
3-Feb-2016 | 62.7% | 58.0% | 35.7% | 23.2% | 1.6% | 18.7% | WV02 | 1.85 m/1 m | RGB MLM |
31-Mar-2016 | 68.2% | 69.6% | 23.4% | 22.3% | 8.4% | 8.1% | WV02 | 1.85 m/1 m | RGB MLM |
3-Apr-2016 | 67.7% | 72.9% | 26.7% | 10.3% | 5.6% | 16.8% | WV03 | 1.24 m/1 m | RGB MLM |
10-Nov-2016 | 52.3% | 56.4% | 41.6% | 10.5% | 6.1% | 33.1% | Pléiades | 2.8 m/1 m | RGB MLM |
17-Jan-2017 | 67.4% | 67.9% | 31.9% | 30.6% | 0.7% | 1.5% | WV02 | 1.85 m/1 m | RGB MLM |
23-Jan-2017 | 65.6% | 66.4% | 28.7% | 20.8% | 5.7% | 12.8% | WV02 | 1.85 m/1 m | RGB MLM |
16-Feb-2017 | 66.5% | 69.5% | 32.3% | 25.4% | 1.3% | 5.1% | WV02 | 1.85 m/1 m | RGB MLM |
26-Mar-2017 | 86.0% | 86.8% | 2.1% | 6.4% | 11.9% | 6.8% | WV02 | 1.85 m/1 m | RGB MLM |
10-Dec-2017 | 56.4% | 58.6% | 21.1% | 39.3% | 22.5% | 2.1% | WV03 | 1.24 m/1 m | RGB MLM |
1-Mar-2018 | 61.7% | 74.0% | 16.7% | 22.4% | 21.6% | 3.6% | WV03 | 1.24 m/1 m | RGB MLM |
27-Oct-2018 | 58.8% | 53.4% | 33.3% | 43.7% | 7.9% | 2.9% | WV03 | 1.24 m/1 m | RGB MLM |
11-Nov-2018 | 57.1% | 56.8% | 37.5% | 36.3% | 5.4% | 6.9% | WV02 | 1.85 m/1 m | RGB MLM |
14-Dec-2018 | 56.2% | 58.4% | 37.3% | 41.5% | 6.5% | 0.1% | WV02 | 1.85 m/1 m | RGB MLM |
7-Jan-2019 | 58.0% | 58.9% | 37.9% | 29.3% | 4.0% | 11.8% | WV02 | 1.85 m/1 m | RGB MLM |
18-Jan-2019 | 60.0% | 59.1% | 38.7% | 40.9% | 1.3% | 0.0% | WV02 | 1.85 m/1 m | RGB MLM |
6-Feb-2019 | 66.0% | 64.1% | 23.0% | 28.0% | 11.0% | 7.9% | WV02 | 1.85 m/1 m | RGB MLM |
6-Feb-2019 | 68.3% | 68.1% | 22.4% | 25.0% | 9.3% | 6.9% | WV02 | 2 m/2.8 m | MS MLM |
20-Mar-2019 | 82.3% | 81.2% | 2.9% | 14.6% | 14.8% | 4.2% | WV03 | 1.24 m/1 m | RGB MLM |
20-Mar-2019 | 83.3% | 84.9% | 2.7% | 11.4% | 14.0% | 3.7% | Sentinel-2 | 10 m/10 m | MS MLM |
20-Mar-2019 | 82.0% | 82.0% | 5.0% | 14.1% | 13.1% | 3.9% | WV03 | 1.24 m/1 m | RGB HD |
Appendix B
Appendix C
References
- Martínez-Arroyo, A.; Jáuregui, E. On the environmental role of urban lakes in Mexico City. Urban Ecosyst. 2000, 4, 145–166. [Google Scholar] [CrossRef]
- Naselli-Flores, L. Urban lakes: Ecosystems at risk, worthy of the best care. In Proceedings of the Taal2007: The 12th World Lake Conference, Jaipur, Rajasthan, India, 28 October–2 November 2007; Ministry of Environment, Government of India: New Delhi, India, 2008; Volume 1333, p. 1337. [Google Scholar]
- He, C.; Tian, J.; Shi, P.; Hu, D. Simulation of the spatial stress due to urban expansion on the wetlands in Beijing, China using a GIS-based assessment model. Landsc. Urban Plan. 2011, 101, 269–277. [Google Scholar] [CrossRef]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H.; Sudhira, H.; Katti, M.; Schewenius, M. Sub-regional assessment of India: Effects of urbanization on land use, biodiversity and ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 65–74. [Google Scholar]
- Nagendra, H. Nature in the City: Bengaluru in the Past, Present, and Future; Oxford University Press: New Delhi, India, 2016; ISBN 0-19-908968-X. [Google Scholar]
- Parikh, J.; Sandal, G.; Jindal, P. Climate resilient cities: Vulnerability profiling of twenty Indian cities. In Development in India; Springer: New Delhi, India, 2016; pp. 351–365. [Google Scholar]
- Sudhira, H.; Nagendra, H. Local assessment of Bangalore: Graying and greening in Bangalore–impacts of urbanization on ecosystems, ecosystem services and biodiversity. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 75–91. [Google Scholar]
- Ramachandra, T.; Vinay, S.; Mahapatra, D.; Varghese, S.; Aithal, B. Water Situation in Bengaluru; ENVIS Technical Report 114; Environmental Information System, CES, Indian Institute of Science: Bangalore, India, 2016. [Google Scholar]
- Dittrich, C. Bangalore: Globalisation and fragmentation in India’s hightech-capital. Asien 2007, 103, 45–58. [Google Scholar]
- Hettiarachchi, M.; Morrison, T.H.; Wickramsinghe, D.; Mapa, R.; De Alwis, A.; McAlpine, C.A. The eco-social transformation of urban wetlands: A case study of Colombo, Sri Lanka. Landsc. Urban Plan. 2014, 132, 55–68. [Google Scholar] [CrossRef]
- Ramachandra, T.; Rajinikanth, R.; Ranjini, V. Economic valuation of wetlands. J. Environ. Biol. 2005, 26, 439. [Google Scholar]
- Ramachandra, T.; Mahapatra, D.M.; Vinay, S.; Varghese, S.; Asulabha, K.; Bhat, S.; Aithal, B.H. Bellandur and Varthur Lakes Rejuvenation Blueprint; ENVIS Technical Report 116; Environmental Information System, CES, Indian Institute of Science: Bangalore, India, 2017. [Google Scholar]
- Narayana, R. Kempe Gowdas of Bengalooru (Bangalore). Available online: http://www.myvpa.org/about2.htm (accessed on 20 September 2019).
- Goldman, M. Speculating on the next world city. Worlding Cities Asian Exp. Art Being Glob. 2011, 31, 229–258. [Google Scholar] [CrossRef]
- Ramachandra, T.; Aithal, B.H. Bengaluru’s reality: Towards unlivable status with unplanned urban trajectory. Curr. Sci. 2016, 110, 2207–2208. [Google Scholar]
- Unnikrishnan, H.; Mundoli, S.; Nagendra, H. Down the drain: The tragedy of the disappearing urban commons of Bengaluru. South Asian Water Stud. 2016, 5, 7–11. [Google Scholar]
- Unnikrishnana, H.; Mundoli, S.; Nagendra, H. Making water flow in Bengaluru: Planning for the resilience of water supply in a semi-arid city. J. Sustain. Urban. Plan. Prog. 2017, 2, 68–78. [Google Scholar]
- Ramachandra, T.; Asulabha, K.; Sincy, V.; Vinay, S.; Aithal, B.; Bhat, S.; Mahapatra, D. Pathetic Status of Wetlands in Bangalore: Epitome of Inefficient and Uncoordinated Governance; Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2015. [Google Scholar]
- Lele, S.; Sengupta, M.B. From lakes as urban commons to integrated lake-water governance: The case of Bengaluru’s urban water bodies. SAWAS South Asian Water Stud. 2018, 8, 5–26. [Google Scholar]
- Bhat, S.; Ramachandra, T.; Mahesh, M. Macrophytes of Bangalore Wetlands; ENVIS Technical Report 126; Energy & Wetlands Research Group, CES, Indian Institute of Science: Bangalore, India, 2017. [Google Scholar]
- Mahapatra, D.M.; Joshi, N.; Ramachandra, T. Insights to bioprocess and treatment competence of urban wetlands. J. Environ. Manag. 2018, 206, 1179–1191. [Google Scholar] [CrossRef]
- Visser, N. India’s Bellandur Lake Is So Polluted It Caught Fire. Available online: http://www.huffingtonpost.com/2015/05/19/indialake-pollution-fire_n_7315038.html (accessed on 20 November 2019).
- Swamy, R. Bengaluru’s Bellandur Lake Catches Fire Again, Toxic Smoke over IT City’s Suburb. Available online: http://indiatoday.intoday.in/story/bengaluru-bellandurlake-fire-pollution/1/884948.html (accessed on 20 November 2019).
- Ramachandra, T. Spatial analysis and characterisation of lentic ecosystems: A Case Study of Varthur Lake, Bangalore. Int. J. Ecol. Dev. Winter 2008, 9, 39–56. [Google Scholar]
- Chandrashekar, J.; Nagaraja, B.; Somashekar, R. Socio-economic status and environmental perception of inhabitants of bellandur lake area, bangalore: A case study. Electron. J. Environ. Sci. 2011, 4, 143–148. [Google Scholar]
- Bharath, J.; Umesch, Y. Why Bellandur Lake Clean-Up Exercise Could Snap Many Human Linkages. Available online: https://economictimes.indiatimes.com/news/politics-and-nation/why-bellandur-lake-clean-up-exercise-could-snap-many-human-linkages/articleshow/58411010.cms (accessed on 20 November 2019).
- Varalakshmi, L.; Ganeshamurthy, A. Heavy Metal Contamination of Water Bodies, Soils and Vegetables in Peri Urban Areas of Bangalore City of India. In Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; Symposium 4.2. 2 Soil and Water-Global Change. International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur: Vienna, Austria, 2010; pp. 37–40. [Google Scholar]
- Chanakya, H.; Karthick, P.; Ramachandra, T. Nitrogen and carbon flows through Bellandur Lake–Role of Bellandur lake as a natural wetland treating Bangalore wastewater. In Environmental Education for Ecosystem Conservation; Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2008; pp. 25–32. ISBN 81-85589-69-0. [Google Scholar]
- Mahapatra, D.M.; Chanakya, H.; Ramachandra, T. Assessment of treatment capabilities of Varthur lake, Bangalore, India. Int. J. Environ. Technol. Manag. 2011, 14, 84–102. [Google Scholar] [CrossRef] [Green Version]
- Vishwanath, S. Cities Must Respect River Basins. Available online: http://www.thehindu.com/life-and-style/homes-andgardens/cities-must-respect-riverbasins/article19232543.ece (accessed on 20 November 2019).
- Brucet, S.; Poikane, S.; Lyche-Solheim, A.; Birk, S. Biological assessment of European lakes: Ecological rationale and human impacts. Freshw. Biol. 2013, 58, 1106–1115. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Lodge, D.M. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 1986, 26, 341–370. [Google Scholar] [CrossRef]
- Søndergaard, M.; Johansson, L.S.; Lauridsen, T.L.; Jørgensen, T.B.; Liboriussen, L.; Jeppesen, E. Submerged macrophytes as indicators of the ecological quality of lakes. Freshw. Biol. 2010, 55, 893–908. [Google Scholar] [CrossRef]
- Verma, R.; Singh, S.; Raj, K.G. Assessment of changes in water-hyacinth coverage of water bodies in northern part of Bangalore city using temporal remote sensing data. Curr. Sci. 2003, 84, 795–804. [Google Scholar]
- Mahapatra, D.M.; Chanakya, H.; Ramachandra, T. Varthur Lake: Past, Present and Future. In Proceedings of the Lake 2010: Wetlands, Biodiversity and Climate Change, Bangalore, India, 22–24 December 2010. [Google Scholar]
- Mahapatra, D.M.; Chanakya, H.; Ramachandra, T. Role of macrophytes in sewage fed urban lake. Inst. Integr. Omics Appl. Biotechnol. 2011, 2, 1–9. [Google Scholar]
- Ramachandra, T.; Ahalya, N.; Payne, M. Status of Varthur Lake: Opportunities for Restoration and Sustainable Management; Technical Report 102; Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2003. [Google Scholar]
- Ramachandra, T.; Mahapatra, D.M.; Bhat, S.P.; Asulabha, K.; Varghese, S.; Aithal, B.H. Integrated Wetlands Ecosystem: Sustainable Model to Mitigate Water Crisis in Bangalore; ENVIS Technical Report 76; Environmental Information System, CES, Indian Institute of Science: Bangalore, India, 2014. [Google Scholar]
- Ramachandra, T.; Sincy, V.; Asulabha, K.; Mahapatra, D.M.; Bhat, S.P.; Aithal, B.H. Optimal Treatment of Domestic Wastewater through Constructed Wetlands. J. Biodivers. 2018, 9, 81–102. [Google Scholar]
- Jayanth, K. Biological control of water hyacinth in India by release of the exotic weevil Neochetina bruchi. Curr. Sci. 1988, 57, 968–970. [Google Scholar]
- Venugopal, G. Monitoring the effects of biological control of water hyacinths using remotely sensed data: A case study of Bangalore, India. Singap. J. Trop. Geogr. 1998, 19, 91–105. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote sensing techniques to assess water quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Malthus, T.J. Bio-optical modeling and remote sensing of aquatic macrophytes. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017; pp. 263–308. [Google Scholar] [CrossRef]
- Sowmya, D.; Hegde, V.S.; Suhas, J.; Hegdekatte, R.V.; Shenoy, P.D.; Venugopal, K. Land Use/Land Cover Classification of Google Earth Imagery. In Proceedings of the 2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Dehradun, India, 18–19 December 2017; pp. 10–13. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Q.; Xing, Y.; Wu, S.; Yin, Y.; Liu, S.; Cui, C. Automatic classification method of ETM+ remote sensing images based on Google Earth. Acta Agric. Jiangxi 2012, 24, 158–163. [Google Scholar]
- Ramachandra, T.; Kumar, U. Wetlands of greater Bangalore, India: Automatic delineation through pattern classifiers. Electron. Green J. 2008. [Google Scholar] [CrossRef]
- Gautam, V.K.; Gaurav, P.K.; Murugan, P.; Annadurai, M. Assessment of surface water Dynamicsin Bangalore using WRI, NDWI, MNDWI, supervised classification and KT transformation. Aquat. Procedia 2015, 4, 739–746. [Google Scholar] [CrossRef]
- Chandramouli, C. Census of India 2011: Rural Urban Distribution of Population; Registrar General and Census Commissioner, Ministry of Home Affairs: New Delhi, India, 2011.
- Ramachandra, T.; Aithal, B.H. Bangalore. In The Wiley Blackwell Encyclopedia of Urban and Regional Studies; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 1–21. [Google Scholar] [CrossRef]
- Ravindrababu, B.; Rajegowda, M.; Janardhanagowda, N.; Girish, J. Weekly, monthly and seasonal rainfall at Bengaluru in Karnataka. J. Agrometeorol. 2010, 12, 263–265. [Google Scholar]
- Sudhira, H.; Ramachandra, T.; Subrahmanya, M.B. Bangalore. Cities 2007, 24, 379–390. [Google Scholar] [CrossRef]
- Ramachandra, T.; Asulabha, K.; Sincy, V.; Bhat, S.; Aithal, B. Wetlands: Treasure of Bangalore; ENVIS Technical Report 101; Energy & Wetlands Research Group, CES, Indian Institute of Science: Bangalore, India, 2016. [Google Scholar]
- Ramachandra, T.; Mahapatra, D.M.; Asulabha, K.; Varghese, S. Foaming or algal bloom in water bodies of India: Remedial measures–restrict phosphate (P) based detergents. Energy 2017. [Google Scholar] [CrossRef]
- Mahapatra, D.M.; Chanakya, H.; Ramachandra, T. C: N ratio of Sediments in a sewage fed Urban Lake. Int. J. Geol. 2011, 5, 86–92. [Google Scholar]
- Foody, G.M.; Campbell, N.; Trodd, N.; Wood, T. Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm. Eng. Remote Sens. 1992, 58, 1335–1341. [Google Scholar]
- Dube, T.; Gumindoga, W.; Chawira, M. Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques. Afr. J. Aquat. Sci. 2014, 39, 89–95. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Bengaluru Climate. Available online: https://en.climate-data.org/asia/india/karnataka/bengaluru-4562/ (accessed on 1 March 2020).
- Ramachandra, T.; Solanki, M. Ecological assessment of lentic water bodies of Bangalore. Minist. Sci. Technol. 2007, 25, 96. [Google Scholar]
- Valk, V. Valorization of Water Hyacinth as a Renewable Source of Animal Feed and Biogas: A Business Case for Lake Victoria, Kenya; Section for Resource Engineering and Centre for Crops Systems Analysis, Wageningen University: Wageningen, The Netherlands, 2015. [Google Scholar]
- Ehrenfeld, J.G. Exotic invasive species in urban wetlands: Environmental correlates and implications for wetland management. J. Appl. Ecol. 2008, 45, 1160–1169. [Google Scholar] [CrossRef]
- Becker, B.L.; Lusch, D.P.; Qi, J. A classification-based assessment of the optimal spectral and spatial resolutions for Great Lakes coastal wetland imagery. Remote Sens. Environ. 2007, 108, 111–120. [Google Scholar]
- Bolpagni, R.; Bresciani, M.; Laini, A.; Pinardi, M.; Matta, E.; Ampe, E.M.; Giardino, C.; Viaroli, P.; Bartoli, M. Remote sensing of phytoplankton-macrophyte coexistence in shallow hypereutrophic fluvial lakes. Hydrobiologia 2014, 737, 67–76. [Google Scholar] [CrossRef]
- Murugan, P.; Sivakumar, R.; Pandiyan, R.; Annadurai, M. Comparison of in-situ hyperspectral and Landsat ETM+ data for chlorophyll-a mapping in case-II water (Krishnarajapuram Lake, Bangalore). J. Indian Soc. Remote Sens. 2016, 44, 949–957. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, Y.; Ma, R.; Loiselle, S.; Li, J.; Hu, M. A MODIS-based novel method to distinguish surface cyanobacterial scums and aquatic macrophytes in Lake Taihu. Remote Sens. 2017, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Laba, M.; Blair, B.; Downs, R.; Monger, B.; Philpot, W.; Smith, S.; Sullivan, P.; Baveye, P.C. Use of textural measurements to map invasive wetland plants in the Hudson River National Estuarine Research Reserve with IKONOS satellite imagery. Remote Sens. Environ. 2010, 114, 876–886. [Google Scholar] [CrossRef]
- Chabot, D.; Dillon, C.; Shemrock, A.; Weissflog, N.; Sager, E.P. An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 294. [Google Scholar]
- Visser, F.; Wallis, C. Object-based Analysis and Multispectral Low-altitude Remote Sensing for Low-cost Mapping of Chalk Stream Macrophytes. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 37, I-4/C7. [Google Scholar]
- Heblinski, J.; Schmieder, K.; Heege, T.; Agyemang, T.K.; Sayadyan, H.; Vardanyan, L. High-resolution satellite remote sensing of littoral vegetation of Lake Sevan (Armenia) as a basis for monitoring and assessment. Hydrobiologia 2011, 661, 97–111. [Google Scholar] [CrossRef]
- Zhao, D.; Lv, M.; Jiang, H.; Cai, Y.; Xu, D.; An, S. Spatio-temporal variability of aquatic vegetation in Taihu Lake over the past 30 years. PLoS ONE 2013, 8, e66365. [Google Scholar] [CrossRef] [Green Version]
- University of Agricultural Sciences Bangalore Weather Data. Weather Report for Individual Month. Available online: https://uasbangalore.edu.in/index.php/research/agromoterology (accessed on 15 September 2019).
- Sorensen, H.A. Managing urban lakes: An integrating experience. Int. J. Water Resour. Dev. 1996, 12, 437–446. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Qin, B.; Shi, K.; Deng, J.; Zhou, Y. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Sci. Rep. 2016, 6, 23867. [Google Scholar] [CrossRef]
- Gersberg, R.M.; Elkins, B.; Lyon, S.R.; Goldman, C.R. Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res. 1986, 20, 363–368. [Google Scholar] [CrossRef]
- Scheffer, M.; Szabo, S.; Gragnani, A.; Van Nes, E.H.; Rinaldi, S.; Kautsky, N.; Norberg, J.; Roijackers, R.M.; Franken, R.J. Floating plant dominance as a stable state. Proc. Natl. Acad. Sci. USA 2003, 100, 4040–4045. [Google Scholar] [CrossRef] [Green Version]
- Sand-Jensen, K.; Riis, T.; Vestergaard, O.; Larsen, S.E. Macrophyte decline in Danish lakes and streams over the past 100 years. J. Ecol. 2000, 88, 1030–1040. [Google Scholar] [CrossRef]
- Qingxin, Y. Ecological functions of aquatic vegetation in East Taihu Lake and its reasonable regulation. J. Lake Sci. 1998, 10, 67–72. [Google Scholar]
- Vereecken, H.; Baetens, J.; Viaene, P.; Mostaert, F.; Meire, P. Ecological management of aquatic plants: Effects in lowland streams. Hydrobiologia 2006, 570, 205–210. [Google Scholar] [CrossRef]
- Visalakshy, P.G.; Jayanth, K. Effect of Silt Coverage of Water Hyacinth Roots on Pupation of Neochetina eichhorniae Warner and N. bruchi Hustache (Coleoptera: Curculionidae). Biocontrol Sci. Technol. 1996, 6, 11–14. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bareuther, M.; Klinge, M.; Buerkert, A. Spatio-Temporal Dynamics of Algae and Macrophyte Cover in Urban Lakes: A Remote Sensing Analysis of Bellandur and Varthur Wetlands in Bengaluru, India. Remote Sens. 2020, 12, 3843. https://doi.org/10.3390/rs12223843
Bareuther M, Klinge M, Buerkert A. Spatio-Temporal Dynamics of Algae and Macrophyte Cover in Urban Lakes: A Remote Sensing Analysis of Bellandur and Varthur Wetlands in Bengaluru, India. Remote Sensing. 2020; 12(22):3843. https://doi.org/10.3390/rs12223843
Chicago/Turabian StyleBareuther, Mischa, Michael Klinge, and Andreas Buerkert. 2020. "Spatio-Temporal Dynamics of Algae and Macrophyte Cover in Urban Lakes: A Remote Sensing Analysis of Bellandur and Varthur Wetlands in Bengaluru, India" Remote Sensing 12, no. 22: 3843. https://doi.org/10.3390/rs12223843
APA StyleBareuther, M., Klinge, M., & Buerkert, A. (2020). Spatio-Temporal Dynamics of Algae and Macrophyte Cover in Urban Lakes: A Remote Sensing Analysis of Bellandur and Varthur Wetlands in Bengaluru, India. Remote Sensing, 12(22), 3843. https://doi.org/10.3390/rs12223843