Precipitation Enhancement Experiments in Catchment Areas of Dams: Evaluation of Water Resource Augmentation and Economic Benefits
Abstract
:1. Introduction
2. Data and Research Methods
3. Results
4. Discussions
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chin, D.A. Water-Resources Engineering; Prentice-Hall: Upper Saddle River, NJ, USA, 2000; pp. 1–18. [Google Scholar]
- Oki, T.; Entekhabi, D.; Harrold, T. The global water cycle. Geophys. Monogr. Ser. 2004, 150, 414. [Google Scholar]
- Durack, P.J. Ocean salinity and the global water cycle. Oceanography 2015, 28, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Shiklomanov, I.A.; Rodda, J.C. World Water Resources at the Beginning of the Twenty-First Century; Cambridge University Press: Cambridge, UK, 2003; pp. 1–22. [Google Scholar]
- White, W.R. World Water: Resources, Usage and the Role of Man-Made Reservoirs; Foundation for Water Research: Marlow, UK, 2010; p. 60. [Google Scholar]
- WWDR. The United Nations World Water Development Report 2020: Water and Climate Change; UNESCO Publishing: Paris, France, 2020; pp. 1–219. [Google Scholar]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change; IPCC: Secretariat, Geneva, 2008; pp. 1–210.
- EPA. Safe and Sustainable Water Resource: Strategic Research Action Plan 2016–2019; No. EPA 601/K-5/004; United States Environmental Protection Agency: Washington, DC, USA, 2015; pp. 1–44.
- UN. Water for People Water for Life: The United Nations World Water Development Report; UNESCO Publishing: Oxford, UK, 2003; pp. 1–36. [Google Scholar]
- Cincotta, R.P.; Engelman, R.; Anastasion, D. The Security Demographic: Population and Civil Conflict after the Cold War; Population Action International: Washington, DC, USA, 2003; pp. 1–101. [Google Scholar]
- OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction; OECD Publishing: Paris, France, 2012; pp. 1–51. [Google Scholar]
- Ligtvoet, W.; Hilderink, H.; Bouwman, A.; Puijenbroek, P.; Lucas, P.; Witmer, M. Towards a world of cities in 2050—An outlook on water-related challenges. In Background Report to the UN-Habitat Global Report; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2014; pp. 1–72. [Google Scholar]
- Hunter, S.M. Optimizing Cloud Seeding for Water and Energy in California; A PIER Final Project Report Prepared for California Energy Commission, CEC-500-2007-008; U.S. Bureau of Reclamation: Denver, CO, USA, 2007; pp. 1–33.
- KWRC. Water and Climate Change; No. 11-B500001-000080-10; Korea Water Resources Corporation: Daejon, Korea, 2020; pp. 1–230.
- Petheram, C.; McMahon, T.A. Dams, dam costs and damnable cost overruns. J. Hydrol. X 2019, 3, 100026. [Google Scholar] [CrossRef]
- Bruintjes, R.T. A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc. 1999, 80, 805–820. [Google Scholar] [CrossRef] [Green Version]
- DRI. Report on the Nevada State Cloud Seeding Program; No. 2368-00019; Desert Research Institute: Reno, NV, USA, 2006; pp. 1–69. [Google Scholar]
- Acharya, A.; Piechota, T.C.; Stephen, H.; Tootle, G. Modeled streamflow response under cloud seeding in the North Platte River watershed. J. Hydrol. 2011, 409, 305–314. [Google Scholar] [CrossRef]
- Korneev, V.P.; Potapov, E.I.; Shchukin, G.G. Environmental aspects of cloud seeding. Russ. Meteorol. Hydrol. 2017, 42, 477–483. [Google Scholar] [CrossRef]
- WMO. Peer Review Report on Global Precipitation Enhancement Activities; WWRP 2018-1; WWRP: Geneva, Switzerland, 2018; pp. 1–129. [Google Scholar]
- Chien, S.S.; Hong, D.L.; Lin, P.H. Ideological and volume politics behind cloud water resource governance–Weather modification in China. Geoforum 2017, 85, 225–233. [Google Scholar] [CrossRef]
- Rasmussen, R.M.; Tessendorf, S.A.; Xue, L.; Weeks, C.; Ikeda, K.; Landolt, S.; Breed, D.; Deshler, T.; Lawrence, B. Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling. J. Appl. Meteorol. Clim. 2018, 57, 2639–2660. [Google Scholar] [CrossRef] [Green Version]
- Bangsund, D.; Leistritz, F.L. Economic Impacts of Cloud Seeding on Agricultural Crops in North Dakota; Report for North Dakota Atmospheric Resource Board; Bismarck, ND, USA, 2009; pp. 1–37. Available online: http://www.texasweathermodification.com/NEW/CloudSeeding.EconImpact.Final_2009.pdf (accessed on 11 November 2020).
- Tessendorf, S.A.; French, J.R.; Friedrich, K.; Geerts, B.; Rauber, R.M.; Rasmussen, R.M.; Xue, L.; Ikeda, K.; Blestrud, D.R.; Kunker, M.L.; et al. A transformational approach to winter orographic weather modification research: The SNOWIE Project. Bull. Am. Meteor. Soc. 2019, 100, 71–92. [Google Scholar] [CrossRef]
- Choi, I.C.; Shin, H.J.; Nguyen, T.T.; Tenhunen, J. Water policy reforms in South Korea: A historical review and ongoing challenges for sustainable water governance and management. Water 2017, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.Y.; Lee, S.I. Total discharge estimation in the Korean Peninsula using multi-satellite products. Water 2017, 9, 532. [Google Scholar]
- Bae, H.; Ji, H.; Lim, Y.J.; Ryu, Y.; Kim, M.H.; Kim, B.J. Characteristics of drought propagation in South Korea: Relationship between meteorological, agricultural, and hydrological droughts. Nat. Hazards 2019, 99, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.Y.; Koh, D.C.; Yoon, Y.Y.; Kwon, H.I.; Heo, J.; Ha, K.; Yun, S.T. Using stable isotopes and tritium to delineate groundwater flow systems and their relationship to streams in the Geum River basin, Korea. J. Hydrol. 2019, 573, 267–280. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agric. For. Meteorol. 2017, 237, 257–269. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, J.H.; Chung, E.; Woo, N.C. Assessment of groundwater drought in the Mangyeong river basin, Korea. Sustainability 2018, 10, 831. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.H.; Lee, J.K.; Oh, J.H.; Jo, J.W.; Cho, Y. The probabilistic drought prediction using the improved surface water supply index in the Korean peninsula. Hydrol. Res. 2019, 50, 393–415. [Google Scholar] [CrossRef] [Green Version]
- Gardner-Outlaw, T.; Engelman, R. Sustaining Water, Easing Scarcity: A Second Update; Population Action International: Washington, DC, USA, 1997; p. 8. [Google Scholar]
- Lee, C.; Chang, K.H.; Jung, J.W.; Cha, J.W.; Choi, Y.J.; Kim, K. Strategy for the meteorological and environmental airborne observations over the Korean Peninsula. Asia-Pac. J. Atmos. Sci. 2011, 47, 91–96. [Google Scholar] [CrossRef]
- Cha, J.W.; Jung, W.; Chae, S.; Ko, A.R.; Ro, Y.; Chang, K.H.; Seo, S.; Ha, J.C.; Park, D.; Hwang, H.J.; et al. Analysis of results and techniques about precipitation enhancement by aircraft seeding in Korea. Atmosphere 2019, 29, 481–499. [Google Scholar]
- Kim, B.Y.; Cha, J.W.; Ko, A.R.; Jung, W.; Ha, J.C. Analysis of the occurrence frequency of seedable clouds on the Korean Peninsula for precipitation enhancement experiments. Remote Sens. 2020, 12, 1487. [Google Scholar] [CrossRef]
- MoLIT. The 4th Long-Term Comprehensive Plan of Water Resources (2001~2020); No. 11-1613000-001716-13; Ministry of Land, Infrastructure and Transport: Seoul, Korea, 2016; pp. 1–131.
- Kim, H.D.; Kang, G.S.; Lee, D.K.; Jin, K.W.; Seo, S.B.; Oh, H.J.; Ryu, J.H.; Lambert, H.; Laine, I.; Meyer, P.; et al. COMS, the new eyes in the sky for geostationary remote sensing. Remote Sens. Adv. Tech. Platf. 2012, 235–268. [Google Scholar] [CrossRef]
- Kim, B.Y.; Lee, K.T.; Jee, J.B.; Zo, I.S. Retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI data. Remote Sens. Environ. 2018, 204, 498–508. [Google Scholar] [CrossRef]
- Kim, B.Y.; Lee, K.T. Using the Himawari-8 AHI multi-channel to improve the calculation accuracy of outgoing longwave radiation at the top of the atmosphere. Remote Sens. 2019, 11, 589. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.; Yoon, J.; Kim, J.; Ro, Y. Evaluation of the gap filler radar as an implementation of the 1.5 km CAPPI data in Korea. Meteorol. Appl. 2016, 23, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ruan, Z.; Zheng, J.; Gao, W. Comparing and merging observation data from Ka-band cloud radar, C-band frequency-modulated continuous wave radar and ceilometer systems. Remote Sens. 2017, 9, 1282. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.Y.; Lee, K.T. Radiation component calculation and energy budget analysis for the Korean Peninsula region. Remote Sens. 2018, 10, 1147. [Google Scholar] [CrossRef] [Green Version]
- Young, K.C. Microphysical Processes in Clouds; Oxford University Press: Oxford, UK, 1993; pp. 1–427. [Google Scholar]
- Guo, X.; Zheng, G. Advances in weather modification from 1997 to 2007 in China. Adv. Atmos. Sci. 2009, 26, 240–252. [Google Scholar] [CrossRef]
- Orville, H.D. A review of cloud modeling in weather modification. Bull. Am. Meteor. Soc. 1996, 77, 1535–1556. [Google Scholar] [CrossRef] [Green Version]
- Woodley, W.L.; Rosenfeld, D.; Silverman, B.A. Results of on-top glaciogenic cloud seeding in Thailand. Part I: The demonstration experiment. J. Appl. Meteorol. 2003, 42, 920–938. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Axisa, D.; Woodley, W.L.; Lahav, R. A quest for effective hygroscopic cloud seeding. J. Appl. Meteorol. Clim. 2010, 49, 1548–1562. [Google Scholar] [CrossRef]
- Koshida, T.; Murakami, M.; Yoshida, K.; Fujibe, F.; Takahashi, K. Assessment of clouds suitable for summertime precipitation augmentation over Shikoku Island. SOLA 2012, 8, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Solak, M.E.; Yorty, D.P.; Griffith, D.A. Estimations of downwind cloud seeding effects in Utah. J. Weather Mod. 2003, 35, 52–58. [Google Scholar]
- DeFelice, T.P.; Golden, J.; Griffith, D.; Woodley, W.; Rosenfeld, D.; Breed, D.; Solak, M.; Boe, B. Extra area effects of cloud seeding—An updated assessment. Atmos. Res. 2014, 135, 193–203. [Google Scholar] [CrossRef]
- Wang, W.; Yao, Z.; Guo, J.; Tan, C.; Jia, S.; Zhao, W.; Zhang, P.; Gao, L. The extra-area effect in 71 cloud seeding operations during winters of 2008–14 over Jiangxi Province, East China. J. Meteorol. Res. 2019, 33, 528–539. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, L.; Wang, Z.; Caojin; Lou, L.; Li, H.G. The effect and economic benefit analysis of generating electricity test of artificial enhancement of precipitation in Dong Jiang Reservior of Human Province. In Proceedings of the 7th WMO Scientific Conference on Weather Modification, Chiang Mai, Thailand, 17–22 February 1999; WMP Report No. 31, WMO/TD-N936. Volume 1, pp. 179–182. [Google Scholar]
- Lee, C.; Chang, K.H.; Cha, J.W.; Jung, J.W.; Jeong, J.Y.; Yang, H.Y.; Seo, S.K.; Bae, J.Y.; Kang, S.Y.; Choi, Y.J.; et al. Estimation for the economic benefit of weather modification (Precipitation enhancement and fog dissipation). Atmosphere 2010, 20, 187–194. [Google Scholar]
- Maki, T.; Morita, O.; Nishiyama, K.; Suzuki, Y.; Wakimizu, K. An artificial rainfall experiment based on the seeding of liquid carbon dioxide by aircraft on December 27, 2013, at Saijo, Ehime, in the Inland Sea of Japan. J. Agric. Meteorol. 2015, 71, 245–255. [Google Scholar] [CrossRef] [Green Version]
- NIMS. Support to Use of Meteorological Information and Value Creation (IV); No. 11-1360620-000081-01; National Institute of Meteorological Sciences: Seogwipo, Korea, 2016; pp. 1–99. [Google Scholar]
- NIMS. Development and Application of Technology for Atmospheric Observation (II)—Development of Application Technology on Atmospheric Research Aircraft; No. 11-1360620-000122-10; National Institute of Meteorological Sciences: Seogwipo, Korea, 2018; pp. 1–122. [Google Scholar]
- NIMS. Development and Application of Technology for Atmospheric Observation (III)—Development of Application Technology on Atmospheric Research Aircraft; No. 11-1360620-000122-10; National Institute of Meteorological Sciences: Seogwipo, Korea, 2019; pp. 1–126. [Google Scholar]
- NIMS. Operational Performance Report of Atmospheric Aircraft in 2018; No. 11-1360620-000148-10; National Institute of Meteorological Sciences: Seogwipo, Korea, 2019; pp. 1–97. [Google Scholar]
- NIMS. Operational Performance Report of Atmospheric Aircraft ‘NARA’ in 2019; No. 11-1360620-000148-10; National Institute of Meteorological Sciences: Seogwipo, Korea, 2020; pp. 1–119. [Google Scholar]
- Silverman, B.A. A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement. Bull. Am. Meteor. Soc. 2001, 82, 903–924. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Yu, X.; Dai, J. Satellite-retrieved microstructure of AgI seeding tracks in supercooled layer clouds. J. Appl. Meteorol. 2005, 44, 760–767. [Google Scholar] [CrossRef]
- Flossmann, A.I.; Manton, M.; Abshaev, A.; Bruintjes, R.; Murakami, M.; Prabhakaran, T.; Yao, Z. Review of advances in precipitation enhancement research. Bull. Am. Meteor. Soc. 2019, 100, 1465–1480. [Google Scholar] [CrossRef]
- Czys, R.R.; Changnon, S.A.; Gabriel, K.R.; Petersen, M.S.; Scott, R.W.; Westcott, N.E. Results from the 1989 Exploratory Cloud Seeding Experiment in Illinois; Bulletin No. 72; Illinois State Water Survey: Champaign, IL, USA, 1993; pp. 1–154. [Google Scholar]
- WMO. Regional Seminar on Cloud Physics and Weather Modification; WMP No. 42, WMO-TD No. 1227; World Meteorological Organization: Damascus, Syria, 2003; pp. 1–213. [Google Scholar]
- Breed, D.; Rasmussen, R.; Weeks, C.; Boe, B.; Deshler, T. Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteorol. Clim. 2014, 53, 282–299. [Google Scholar] [CrossRef]
- Ćurić, M.; Lompar, M.; Romanic, D.; Zou, L.; Liang, H. Three-Dimensional Modelling of Precipitation Enhancement by Cloud Seeding in Three Different Climate Zones. Atmosphere 2019, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Geerts, B.; Boe, B. The extra-area effect of orographic cloud seeding: Observational evidence of precipitation enhancement downwind of the target mountain. J. Appl. Meteorol. Clim. 2016, 55, 1409–1424. [Google Scholar] [CrossRef]
- NIMS. Principle and Application Technology of Precipitation Enhancement; No. 11-1360620-000133-01; National Institute of Meteorological Sciences: Seogwipo, Korea, 2018; pp. 1–91. [Google Scholar]
- Masaki, S.; Kikuro, T.; Koji, N. Model analysis of radar echo split observed in an artificial cloud seeding experiment. J. Meteorol. Res. 2016, 30, 386–400. [Google Scholar] [CrossRef]
- Chae, S.; Chang, K.H.; Seo, S.; Jeong, J.Y.; Kim, B.J.; Kim, C.K.; Yum, S.S.; Kim, J. Numerical Simulations of airborne glaciogenic cloud seeding using the WRF model with the modified Morrison scheme over the Pyeongchang Region in the winter of 2016. Adv. Meteorol. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pokharel, B.; Geerts, B.; Jing, X. The impact of ground-based glaciogenic seeding on a shallow stratiform cloud over the Sierra Madre in Wyoming: A multi-sensor study of the 3 March 2012 case. Atmos. Res. 2018, 214, 74–90. [Google Scholar] [CrossRef]
- Ryoo, K.S.; Cha, K.U.; Kim, J.S.; Park, J.H. Economic effects of rainfall in dam operations. In Proceedings of the Korean Society of Civil Engineers Conference, Gangwon, Korea, 21–23 October 2009; pp. 3426–3429. [Google Scholar]
- Jung, W.J.; Lee, G.B.; Lim, S.T.; Kim, J.G. Analysis for energy production and water supply ratio of hydropower-plant through providing power system ancillary service. In Proceedings of the Korean Institute of Electrical Engineers Conference, Gangwon, Korea, 20–22 July 2011; pp. 250–251. [Google Scholar]
- Houze, R.A., Jr. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, 1–47. [Google Scholar] [CrossRef]
- Qian, W.; Kang, H.S.; Lee, D.K. Distribution of seasonal rainfall in the East Asian monsoon region. Appl. Clim. 2002, 73, 151–168. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, H.D.; Wang, B. Interdecadal variation of Changma (Korean summer monsoon rainy season) retreat date in Korea. Int. J. Clim. 2020, 40, 1348–1360. [Google Scholar] [CrossRef]
- Byun, H.R.; Lee, D.K. Defining three rainy seasons and the hydrological summer monsoon in Korea using available water resources index. J. Meteorol. Soc. Jpn. Ser. Ii. 2002, 80, 33–44. [Google Scholar] [CrossRef]
- Pan, Z.; Gong, W.; Mao, F.; Li, J.; Wang, W.; Li, C.; Min, Q. Macrophysical and optical properties of clouds over East Asia measured by CALIPSO. J. Geophys. Res. Atmos. 2015, 120, 11653–11668. [Google Scholar] [CrossRef]
- Wang, T.; Fetzer, E.J.; Wong, S.; Kahn, B.H.; Yue, Q. Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications. J. Geophys. Res. Atmos. 2016, 121, 11620–11635. [Google Scholar] [CrossRef]
- Cai, H.; Feng, X.; Chen, Q.; Sun, Y.; Wu, Z.; Tie, X. Spatial and temporal features of the frequency of cloud occurrence over China based on CALIOP. Adv. Meteorol. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Baik, J.; Choi, M. Spatio-temporal variability of remotely sensed precipitation data from COMS and TRMM: Case study of Korean peninsula in East Asia. Adv. Space Res. 2015, 56, 1125–1138. [Google Scholar] [CrossRef]
- French, J.R.; Friedrich, K.; Tessendorf, S.A.; Rauber, R.M.; Geerts, B.; Rasmussen, R.M.; Xue, L.; Kunkel, M.L.; Blestrud, D.R. Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA 2018, 115, 1168–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, J.; Tomine, K.; Wakimizu, K.; Nishiyama, K. Artificial cloud seeding using liquid carbon dioxide: Comparisons of experimental data and numerical analyses. J. Appl. Meteorol. Clim. 2011, 50, 1417–1431. [Google Scholar] [CrossRef]
- Kim, C.K.; Yum, S.S.; Park, Y.S. A numerical study of winter orographic seeding experiments in Korea using the Weather Research and Forecasting model. Meteorol. Atmos. Phys. 2016, 128, 23–38. [Google Scholar] [CrossRef]
- Joiner, J.; Vasilkov, A.; Bhartia, P.K.; Wind, G.; Platnick, S.; Menzel, W.P. Detection of multilayer and vertically extended clouds using the A-Train sensors. Atmos. Meas. Tech. 2010, 3, 233–247. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanyam, K.V.; Kumar, K.K. CloudSat observations of multi layered clouds across the globe. Clim. Dyn. 2017, 49, 327–341. [Google Scholar] [CrossRef]
- MOE. A Research on Pilot Project and System Management Plan of Environmental Flow; No. 11-1480000-001514-01; Ministry of Environment: Sejong, Korea, 2017; pp. 1–261.
- Joo, H.; Kim, D.; Kim, J.; Bae, Y.; Kim, H.S. On Utilization of Inactive Storage in Dam during Drought Period. J. Wet. Res. 2018, 20, 353–362. [Google Scholar]
- Park, J.H.; Sung, M.H.; Jung, H.M.; Park, T.S.; Kwak, Y.C.; Choi, W.Y.; Boem, J.; Jeung, M.; Yoo, S.H.; Yoon, K.S. A economic feasibility study on environmental ecology flow supply plan using agricultural reservoir-focused on Dongbok river. J. Korean Soc. Agric. Eng. 2019, 61, 33–47. [Google Scholar]
- Cho, Y.H.; Park, S.Y.; Na, J.M.; Kim, T.W.; Lee, J.H. Hydrological and ecological alteration of river dynamics due to multipurpose dams. J. Wet. Res. 2019, 21, 16–27. [Google Scholar]
- Cho, H.; Cho, H.J.; Cho, K.H. Effects of hydrogeomorphology and watershed land cover on water quality in Korean reservoirs. Ecol. Resil. Infrastruct. 2019, 6, 79–88. [Google Scholar]
- KWRC. Effect of Water Intake Installation Location on Water Quality Impact Utilizing Water Supply Reserve for Multi-Purpose Dam; No. KIWE-WRRC-00-00; Korea Water Resources Corporation: Daejon, Korea, 2019; pp. 1–82.
- Kwon, O.S.; Kang, H.J.; Kim, Y.G. Electricity demand and the impact of pricing reform: An analysis with household expenditure data. Enviro. Resour. Econ. Rev. 2014, 23, 409–434. [Google Scholar] [CrossRef]
- BOR. Draft Upper San Joaquin River Basin Storage Investigation Feasibility Report; U.S. Department of the Interior Bureau of Reclamation: Denver, CO, USA, 2014; pp. 1–52.
- Carolus, J.F.; Hanley, N.; Olsen, S.B.; Pedersen, S.M. A bottom-up approach to environmental cost-benefit analysis. Ecol. Econ. 2018, 152, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.A.; Solak, M.E. A cloud seeding program to enhance hydroelectric power production from the El Cajon Drainage, Honduras. In Proceedings of the 7th WMO Scientific Conference on Weather Modification, Chiang Mai, Thailand, 17–22 February 1999; pp. 131–134. [Google Scholar]
- Woodley, W.L.; Rosenfeld, D.; Kukamjanaset, W.; Sudhikoses, P.; Ruangsuttinaruparp, S.; Khantiganan, W. The Thailand cold-cloud seeding experiment: 1. physical-statistical design. In Proceedings of the 7th WMO Scientific Conference on Weather Modification, Chiang Mai, Thailand, 17–22 February 1999; pp. 16–22. [Google Scholar]
- Long, A.B. Review of downwind extra-area effects of precipitation enhancement. J. Weather Mod. 2001, 33, 24–45. [Google Scholar]
- WMO. Programme on Physics and Chemistry of Clouds and Weather Modification Research; WMP Report No. 35; World Meteorological Organization: Mazatlan, Mexico, 1999; pp. 1–68. [Google Scholar]
- Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res. Atmos. 2018, 113, D11102. [Google Scholar] [CrossRef]
- Ouyang, W.; Guo, B.; Cai, G.; Li, Q.; Han, S.; Liu, B.; Liu, X. The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Sci. Total Environ. 2015, 505, 306–314. [Google Scholar] [CrossRef]
- Sinkevich, A.; Kim, J.Y.; Suh, A.S.; Chung, H.S. Losses in the Korean economy due to lack of routine cloud seeding. Asia-Pac. J. Atmos. Sci. 2001, 37, 283–294. [Google Scholar]
- Bangsund, D.; Hodur, N. Economic Impacts of Cloud Seeding on Agricultural Crops in North Dakota; Agribusiness and Applied Economics Report, No. 1187-2019-2730; North Dakota State University: Fargo, ND, USA, 2019; pp. 1–52. [Google Scholar]
- Wang, F.; Li, Z.; Jiang, Q.; Wang, G.; Jia, S.; Duan, J.; Zhou, Y. Evaluation of hygroscopic cloud seeding in liquid-water clouds: A feasibility study. Atmos. Chem. Phys. 2019, 19, 14967–14977. [Google Scholar] [CrossRef] [Green Version]
No. | Dam Name | Year of Completion | Location (Lat., Lon.) | Drainage Area (km2) | Total Storage (106 m3) | Electricity Generation Capacity (106 W) | Net Head (m) |
---|---|---|---|---|---|---|---|
1 | Seomjin River (SJ) | 1965 | 35.54°N, 127.11°E | 763 | 466 | 35 | 152 |
2 | Soyang River (SY) | 1973 | 37.95°N, 127.81°E | 2703 | 2900 | 200 | 90 |
3 | Andong (AD) | 1977 | 36.58°N, 128.77°E | 1584 | 1248 | 92 | 57 |
4 | Daecheong (DC) | 1980 | 36.48°N, 127.48°E | 3204 | 1490 | 90 | 39 |
5 | Chungju (CJ) | 1985 | 37.01°N, 127.99°E | 6648 | 2750 | 412 | 58 |
6 | Hapcheon (HC) | 1989 | 35.53°N, 128.03°E | 925 | 700 | 101 | 95 |
7 | Juam (JA) | 1991 | 35.06°N, 127.24°E | 1010 | 457 | 1.4 | 36 |
8 | Juam (Isa stream, IS) | 1991 | 34.95°N, 127.42°E | 135 | 250 | 23 | 69 |
9 | Imha (IH) | 1992 | 36.54°N, 128.88°E | 1361 | 595 | 51 | 48 |
10 | Buan (BA) | 1996 | 35.68°N, 126.56°E | 59 | 42 | 0.2 | 20 |
11 | Boryeong (BR) | 1998 | 36.25°N, 126.65°E | 164 | 117 | 0.7 | 33 |
12 | Nam River (NR) | 1999 | 35.16°N, 128.04°E | 2285 | 309 | 14 | 16 |
13 | Hoengseong (HS) | 2000 | 37.54°N, 128.03°E | 209 | 87 | 1.4 | 95 |
14 | Yongdam (YD) | 2001 | 35.94°N, 127.52°E | 930 | 815 | 24 | 147 |
15 | Miryang (MY) | 2001 | 35.48°N, 128.93°E | 95 | 74 | 1.3 | 67 |
16 | Jangheung (JH) | 2006 | 34.75°N, 126.88°E | 193 | 191 | 0.8 | 41 |
17 | Gunwi (GW) | 2011 | 36.12°N, 128.80°E | 88 | 49 | 0.5 | 33 |
18 | Buhang (BH) | 2014 | 35.98°N, 128.00°E | 82 | 54 | 0.6 | 40 |
19 | Bohyeon Mountain (BM) | 2014 | 36.13°N, 128.95°E | 33 | 22 | 0.2 | 43 |
20 | Seongdeok (SD) | 2016 | 36.24°N, 128.96°E | 41 | 28 | 0.2 | 40 |
21 | Yeongju (YJ) | 2016 | 36.72°N, 128.66°E | 500 | 180 | 5.0 | 29 |
Year | No. | Date (Mon./Day) | Experiment Area | Experiment Environmental Condition (wind dir., T, H) | Seeding Material | Num. of Flares | Precipitation Enhancement |
---|---|---|---|---|---|---|---|
2018 | 1 | 1/30 | Pyeongchang | W, −15.0 °C, 2.0 km | AgI | 10 | 0.1 cm (S) |
2 | 3/21 | Pyeongchang | NE, −7.6 °C, 2.0 km | AgI | 16 | 1.2 cm (S) | |
3 | 3/29 | West Sea | SE, 9.6 °C, 0.6 km | CaCl2 | 19 | - | |
4 | 9/19 | Pyeongchang | W, 5.9 °C, 2.3 km | CaCl2 | 12 | 0.5 mm (R) | |
5 | 10/4 | East Sea | SE, 7.7 °C, 1.8 km | CaCl2 | 11 | 0.5 mm (R) | |
6 | 10/17 | Pyeongchang | SW, −3.0 °C, 2.4 km | AgI | 18 | 0.5 mm (R) | |
7 | 10/18 | Pyeongchang | NE, −3.5 °C, 2.4 km | AgI | 17 | - | |
8 | 11/7 | Pyeongchang | SW, −3.2 °C, 2.7 km | AgI | 11 | 0.5 mm (R) | |
9 | 11/21 | Wonju | SW, −9.2 °C, 3.0 km | AgI | 20 | - | |
10 | 12/3 | Wonju | SW, 3.7 °C, 2.1 km | CaCl2 | 24 | 1.0 mm (R) | |
11 | 12/4 | Wonju | W, −3.5 °C, 3.0 km | AgI | 14 | - | |
12 | 12/11 | Pyeongchang | SW, −10.9 °C, 3.0 km | AgI | 23 | 1.5 cm (S) | |
2019 | 1 | 1/25 | West Sea | NW, −7.1 °C, 1.5 km | AgI | 24 | Detect * |
2 | 4/10 | Gangneung | NW, −6.8 °C, 2.7 km | AgI | 24 | 0.1 mm (R) | |
3 | 6/27 | Pyeongchang | W, 11.4 °C, 2.0 km | CaCl2 | 24 | 3.5 mm (R) | |
4 | 6/28 | Pyeongchang | SW, 8.2 °C, 2.5 km | CaCl2 | 24 | - | |
5 | 8/27 | West Sea | SE, 19.2 °C, 0.7 km | CaCl2 | 24 | - | |
6 | 10/24 | Pyeongchang | SW, −11.9 °C, 4.8 km | AgI | 24 | 0.1 mm (R) | |
7 | 11/24 | West Sea | SW, −1.7 °C, 2.8 km | AgI | 19 | 3.0 mm (R) ** | |
8 | 11/25 | Pyeongchang | E, −6.5 °C, 1.9 km | AgI | 20 | 1.5 cm (S) ** | |
9 | 11/28 | Pyeongchang | SE, −7.5 °C, 1.9 km | AgI | 14 | 1.2 cm (S) ** | |
10 | 12/1 | West Sea | SW, −2.5 °C, 1.6 km | AgI | 19 | 0.3 mm (R) ** | |
11 | 12/2 | West Sea | NW, −7.2 °C, 1.2 km | AgI | 12 | 0.5 mm (R) ** | |
12 | 12/3 | West Sea | NW, −6.8 °C, 1.6 km | AgI | 16 | 6.0 mm (R) ** | |
13 | 12/7 | West Sea | NW, −5.8 °C, 1.5 km | AgI | 16 | - | |
14 | 12/17 | West Sea | NW, 0.6 °C, 0.9 km | CaCl2 | 10 | - | |
15 | 12/18 | East Sea | W, −3.7 °C, 1.2 km | AgI | 4 | 0.5 mm (R) ** |
Dam Name | Benefit/Cost Ratio | ||||
---|---|---|---|---|---|
SJ | 84.04 | 47.18 | 36.86 | 7.99 | 1.46 (0.89–2.04) |
SY | 75.21 | 51.39 | 23.82 | 8.70 | 1.20 (0.73–1.68) |
AD | 64.49 | 49.86 | 14.63 | 8.44 | 1.06 (0.65–1.48) |
DC | 56.52 | 47.13 | 9.39 | 7.98 | 0.99 (0.60–1.37) |
CG | 65.90 | 50.84 | 15.06 | 8.61 | 1.07 (0.65–1.48) |
HC | 71.16 | 47.78 | 23.37 | 8.09 | 1.22 (0.74–1.70) |
JA | 55.74 | 47.02 | 8.72 | 7.96 | 0.97 (0.59–1.36) |
IS | 28.68 | 21.14 | 7.54 | 7.98 | 0.50 (0.30–0.70) |
IH | 61.74 | 49.42 | 12.32 | 8.37 | 1.03 (0.62–1.43) |
BA | 10.23 | 9.29 | 0.94 | 8.00 | 0.18 (0.11–0.25) |
BR | 30.15 | 25.82 | 4.33 | 8.02 | 0.52 (0.32–0.73) |
NR | 51.19 | 47.29 | 3.90 | 8.01 | 0.89 (0.54–1.24) |
HS | 43.40 | 35.54 | 7.87 | 8.64 | 0.70 (0.42–0.97) |
YD | 82.54 | 46.96 | 35.57 | 7.95 | 1.44 (0.88–2.01) |
MY | 20.13 | 14.97 | 5.16 | 7.97 | 0.35 (0.21–0.49) |
JH | 36.90 | 30.53 | 6.37 | 8.04 | 0.64 (0.39–0.89) |
GW | 16.54 | 14.13 | 2.41 | 8.20 | 0.28 (0.17–0.39) |
GB | 15.83 | 13.15 | 2.68 | 8.15 | 0.27 (0.16–0.38) |
BH | 6.41 | 5.24 | 1.17 | 8.17 | 0.11 (0.07–0.15) |
SD | 8.11 | 6.74 | 1.38 | 8.29 | 0.14 (0.08–0.19) |
YG | 56.29 | 48.93 | 7.36 | 8.29 | 0.95 (0.57–1.32) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-Y.; Cha, J.W.; Jung, W.; Ko, A.-R. Precipitation Enhancement Experiments in Catchment Areas of Dams: Evaluation of Water Resource Augmentation and Economic Benefits. Remote Sens. 2020, 12, 3730. https://doi.org/10.3390/rs12223730
Kim B-Y, Cha JW, Jung W, Ko A-R. Precipitation Enhancement Experiments in Catchment Areas of Dams: Evaluation of Water Resource Augmentation and Economic Benefits. Remote Sensing. 2020; 12(22):3730. https://doi.org/10.3390/rs12223730
Chicago/Turabian StyleKim, Bu-Yo, Joo Wan Cha, Woonseon Jung, and A-Reum Ko. 2020. "Precipitation Enhancement Experiments in Catchment Areas of Dams: Evaluation of Water Resource Augmentation and Economic Benefits" Remote Sensing 12, no. 22: 3730. https://doi.org/10.3390/rs12223730
APA StyleKim, B. -Y., Cha, J. W., Jung, W., & Ko, A. -R. (2020). Precipitation Enhancement Experiments in Catchment Areas of Dams: Evaluation of Water Resource Augmentation and Economic Benefits. Remote Sensing, 12(22), 3730. https://doi.org/10.3390/rs12223730