A New Method for Automated Clearcut Disturbance Detection in Mediterranean Coppice Forests Using Landsat Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landsat Time Series (LTS) Data
2.3. Clearcut Reference Dataset
2.4. Raster Grid Validation Datasets
2.5. Two Thresholds Method
2.6. LandTrendr
2.7. Global Forest Change Map (GFC)
2.8. Accuracy Assessment
2.9. Clearcut Area Estimates
3. Results
3.1. Accuacy Assessment
3.2. Area Estimation
3.2.1. The Three Quadrats
3.2.2. Large Scale Clearcut Mapping and Area Estimation
4. Discussion
4.1. The Algorithm
4.2. Accuracy Assessment
4.3. Area Estimation
5. Conclusions
- TTM is the first algorithm specifically developed for Mediterranean conditions using Landsat TS to predict forest clearcuts in coppice forests that can be used for constructing accurate spatially explicit maps of forest harvesting areas and for operationally estimating sustainable forest management indicators in the framework of international agreements;
- TTM was easy to use, and its configuration is adjustable using a calibration dataset. TTM can be used for mapping and continuous reporting on forest clearcut disturbances in Mediterranean forests;
- LandTrendr for Mediterranean forests requires an accurate forest mask, otherwise the specific parametrization may result in commission errors due to spectral confusion with agricultural lands;
- The GFC substantially underestimates the area of clearcut disturbances in Mediterranean coppice forests.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Example of Calibration Dataset for 2010
Appendix B. Workflow Scheme of TTM Functionality
Appendix C. TP, TN, FN, FP of Clercut Forest Classes
Appendix D. Producer’s and Users’ Accuracy of “Not Disturbed Forests” for the Three Methods
TTM | LT | GFC | ||||
Year | PA | UA | PA | UA | PA | UA |
2001 | 1.00 | 0.94 | 0.99 | 0.94 | 0.99 | 1.00 |
2002 | 1.00 | 0.96 | 0.99 | 0.96 | 1.00 | 1.00 |
2003 | 1.00 | 0.98 | 0.99 | 0.98 | 1.00 | 1.00 |
2004 | 1.00 | 0.95 | 0.99 | 0.96 | 0.98 | 0.99 |
2005 | 1.00 | 0.95 | 0.99 | 0.95 | 1.00 | 1.00 |
2006 | 1.00 | 0.96 | 0.99 | 0.95 | 1.00 | 1.00 |
2007 | 1.00 | 0.98 | 0.99 | 0.98 | 1.00 | 1.00 |
2008 | 1.00 | 0.98 | 0.99 | 0.97 | 1.00 | 1.00 |
2009 | 0.99 | 0.93 | 1.00 | 0.96 | 1.00 | 0.99 |
2010 | 0.99 | 0.94 | 1.00 | 0.96 | 0.99 | 0.98 |
2011 | 1.00 | 0.95 | 1.00 | 0.96 | 1.00 | 0.99 |
2012 | 0.99 | 0.96 | 0.99 | 0.96 | 1.00 | 0.98 |
2013 | 0.99 | 0.95 | 0.99 | 0.96 | 0.98 | 0.98 |
References
- Barbati, A.; Marchetti, M.; Chirici, G.; Corona, P. European Forest Types and Forest Europe SFM indicators: Tools for monitoring progress on forest biodiversity conservation. For. Ecol. Manag. 2014, 321, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Galluzzi, M.; Giannetti, F.; Puletti, N.; Canullo, R.; Rocchini, D.; Bastrup, A.; Gherardo, B. A plot–level exploratory analysis of European forest based on the results from the BioSoil Forest Biodiversity project. Eur. J. For. Res. 2019. [Google Scholar] [CrossRef]
- Fotakis, D.G.; Sidiropoulos, E.; Myronidis, D.; Ioannou, K. Spatial genetic algorithm for multi-objective forest planning. For. Policy Econ. 2012, 21, 12–19. [Google Scholar] [CrossRef]
- Chirici, G.; McRoberts, R.E.; Winter, S.; Bertini, R.; Bröändli, U.-B.; Asensio, I.A.; Bastrup-Birk, A.; Rondeux, J.; Barsoum, N.; Marchetti, M. National forest inventory contributions to forest biodiversity monitoring. For. Sci. 2012, 58, 257–268. [Google Scholar] [CrossRef] [Green Version]
- FAO. State of the World’s Forests 2016. In Forests and Agriculture: Land-Use Challenges and Opportunities; FAO: Rome, Italy, 2016; Volume 45. [Google Scholar]
- Conservation on Biological Diversity (CBD). Indicators for the Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets. Available online: https://www.cbd.int/doc/strategic-plan/strategic-plan-indicators-en.pdf 2016 (accessed on 9 November 2020).
- European Environment Agency Streamlining European Biodiversity Indicators 2020: Building a Future on Lessons Learnt from the SEBI 2010 Process; European Environment Agency: Copenhagen, Denmark, 2012.
- FOREST EUROPE. State of Europe’s Forests 2015; Ministerial Conference on the Protection of Forests in Europe FOREST EUROPE Liaison Unit Madrid: Madrid, Spain, 2015; Available online: https://www.foresteurope.org/docs/fullsoef2015.pdf (accessed on 9 November 2020).
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Prepared by the National Greenhouse Gas Inventories Programme; IGES: Geneva, Switzerland, 2006. [Google Scholar]
- Kangas, A.; Maltamo, M. Forest Inventory. Methodology and Application; Springer: Berlin, Germany, 2006; ISBN 9781402043819. [Google Scholar]
- Macdicken, K.G. Forest Ecology and Management Global Forest Resources Assessment 2015: What, why and how? For. Ecol. Manag. 2015, 352, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Tomppo, E.; Katila, M.; Mäkisara, K.; Peräsaari, J. The Multi-Source National Forest Inventory of Finland—Methods and Results 2007. In Multi-Source National Forest Inventory; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2008; Volume 18. [Google Scholar]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P.; White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; et al. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. ISPRS Journal of Photogrammetry and Remote Sensing Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classi fi cation. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C.; Banskota, A.; Kayastha, N.; Falkowski, M.J.; Michael, A.; et al. Forest Monitoring Using Landsat Time Series Data: A Review. Can. J. Remote Sens. 2014, 8992, 362–384. [Google Scholar] [CrossRef]
- Fragoso-campón, L.; Quirós, E.; Mora, J.; Gutiérrez, J.A.; Durán-barroso, P. Accuracy Enhancement for Land Cover Classification Using LiDAR and Multitemporal Sentinel 2 Images in a Forested Watershed. Proceedings 2018, 2, 1280. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation. Remote Sens. Environ. 2011, 115, 1665–1679. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sens. Environ. 2008, 112, 955–969. [Google Scholar] [CrossRef]
- White, J.C.; Saarinen, N.; Wulder, M.A.; Kankare, V.; Hermosilla, T.; Coops, N.C.; Holopainen, M.; Hyyppä, J.; Vastaranta, M.; Service, C.F.; et al. Assessing spectral measures of post-harvest forest recovery with field plot data. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 102–114. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–854. [Google Scholar] [CrossRef] [Green Version]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Zald, H.S.J. Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sens. Environ. 2018, 209, 90–106. [Google Scholar] [CrossRef]
- Puletti, N.; Bascietto, M. Towards a tool for early detection and estimation of forest cuttings by remotely sensed data. Land 2019, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Bonney, M.T.; Danby, R.K.; Treitz, P.M. Landscape variability of vegetation change across the forest to tundra transition of central Canada. Remote Sens. Environ. 2018, 217, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Liu, D. Detecting change dates from dense satellite time series using a sub-annual change detection algorithm. Remote Sens. 2015, 7, 8705–8727. [Google Scholar] [CrossRef] [Green Version]
- Brooks, E.B.; Yang, Z.; Thomas, V.A.; Wynne, R.H. Edyn: Dynamic signaling of changes to forests using exponentially weighted moving average charts. Forests 2017, 8, 304. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Zhao, K.; Wulder, M.A.; Hu, T.; Bright, R.; Wu, Q.; Qin, H.; Li, Y.; Toman, E.; Mallick, B.; Zhang, X.; et al. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sens. Environ. 2019, 232, 111181. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Oswald, H.; Piussi, P.; Radoglou, K. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manage. 2000, 132, 97–109. [Google Scholar] [CrossRef]
- Chirici, G.; Giannetti, F.; Mazza, E.; Francini, S.; Travaglini, D.; Pegna, R.; White, J.C. Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series. Ann. For. Sci. 2020, 77, 40. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- White, J.C.; Saarinen, N.; Kankare, V.; Wulder, M.A.; Hermosilla, T. Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data. Remote Sens. Environ. 2018, 216, 262–275. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Tang, D.; Fan, H.; Yang, K.; Zhang, Y. Mapping forest disturbance across the China–Laos border using annual Landsat time series. Int. J. Remote Sens. 2019, 40, 2895–2915. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Fabbio, G. Coppice forests, or the changeable aspect of things, a review. Ann. Silvic. Res. 2016, 40, 108–132. [Google Scholar] [CrossRef]
- Mairota, P.; Buckley, P.; Suchomel, C.; Heinsoo, K.; Verheyen, K.; Hédl, R.; Terzuolo, P.G.; Sindaco, R.; Carpanelli, A. Integrating conservation objectives into forest management: Coppice management and forest habitats in Natura 2000 sites. IForest 2016, 9, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Morandini, R. Improvement of coppice forests in the Mediterranean region. In Procindigs of the Workshop Improvement of Coppice Forest in Mediterranean Region; Istituto Sperimentale per la Selvicoltrura: Arezzo, Italy, 1994. [Google Scholar]
- FAO and Plan Bleu. State of Mediterranean Forests 2018; FAO: Rome, Italy, 2018; ISBN 978-92-5-131047-2. [Google Scholar]
- FAO. Strategic framework on mediterranean forests. In Proceedings of the High Level Segment Third Mediterranean Forest Week, Tlemcen, Algeria, 21 March 2013. [Google Scholar]
- Tabacchi, G.; Di Cosmo, L.; Gasparini, P.; Morelli, S. Stima del Volume e della Fitomassa delle Principali Specie Forestali Italiene, Equazioni di Previsione, Tavole del Volume e Tavole della Fitomassa Arborea Epigea; Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di Ricerca per il Monitoraggio e la Pianificazione Forestale: Trento, Italy, 2011; ISBN 9788897081111. [Google Scholar]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Borghetti, M.; Chirici, G. Raw data from the Italian National Forest Inventory are on-line and publicly available. For. Riv. Selvic. Ecol. For. 2016, 13, 33–34. [Google Scholar] [CrossRef] [Green Version]
- Chirici, G.; Bottalico, F.; Giannetti, F.; Del Perugia, B.; Travaglini, D.; Nocentini, S.; Kutchartt, E.; Marchi, E.; Foderi, C.; Fioravanti, M.; et al. Assessing forest windthrow damage using single-date, post-event airborne laser scanning data. For. Int. J. For. Res. 2018, 1, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Chirici, G.; Giannetti, F.; McRoberts, R.E.; Travaglini, D.; Pecchi, M.; Maselli, F.; Chiesi, M.; Corona, P. Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101959. [Google Scholar] [CrossRef]
- Bottalico, F.; Travaglini, D.; Chirici, G.; Marchetti, M.; Marchi, E.; Nocentini, S.; Corona, P. Classifying silvicultural systems (coppices vs. high forests) in mediterranean oak forests by airborne laser scanning data. Eur. J. Remote Sens. 2014, 47, 437–460. [Google Scholar] [CrossRef] [Green Version]
- INFC Il disegno di Campionamento. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio; MiPAF—Direzione Generale per le Risorse Forestali Montane e Idriche, Corpo Forestale dello Stato, ISAFA: Trento, Italy; 36p, Available online: http://www.isafa.it/scientifica/2004 (accessed on 7 November 2020).
- Arma dei Carabinieri—Comando Unità per la Tutela Forestale Ambientale e Agroalimentare. Catasto Incendi. In Ufficio Logistico—2^ Sezione Sistemi Informativi Automatizzati e TLC; via Carducci 5—00187; Arma dei Carabinieri—Comando Unità per la Tutela Forestale Ambientale e Agroalimentare: Roma, Italy, 2018. [Google Scholar]
- Masek, J.G.; Vermote, E.F.; Saleous, N.; Wolfe, R.; Hall, F.G.; Huemmrich, F.; Gao, F.; Kutler, J.; Lim, T.K. LEDAPS Calibration, Reflectance, Atmospheric Correction Preprocessing Code, Version 2; ORNL DAAC: Oak Ridge, TE, USA, 2013. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hobart, G.W.; Luther, J.E.; Hermosilla, T.; Griffiths, P.; Coops, N.C.; Hall, R.J.; Hostert, P.; Dyk, A.; et al. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef] [Green Version]
- Arrigoni, P.V.; Raffaelli, M.; Rizzotto, M.; Selvi, F.; Foggi, B.; Viciani, D.; Lombardi, L.; Benesperi, R.; Ferretti, G.; Benucci, S.; et al. Carta Della Vegetazione Forestale Della Regione Toscana. Scala 1:250.000; SELCA, Firenze Editor, Regione Toscana, Giunta Regionale: Firenze, Italy, 1999. [Google Scholar]
- Wang, Y.; Ziv, G.; Adami, M.; Mitchard, E.; Batterman, S.A.; Buermann, W.; Schwantes Marimon, B.; Marimon Junior, B.H.; Matias Reis, S.; Rodrigues, D.; et al. Mapping tropical disturbed forests using multi-decadal 30 m optical satellite imagery. Remote Sens. Environ. 2019, 221, 474–488. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (Eds.) IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use; Institute for Global Environmental Strategies: Hayama, Japan, 2006; Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 9 November 2020).
LandTrendr Parametrers | Configuration |
---|---|
Index | NBR |
Recovery Threshold | 0.55 |
Max segment | 6 |
Spike Threshold | 0.9 |
Vertex Count Overshoot | 3 |
Prevent One Year Recovery | true |
Pval Threshold | 0.05 |
Best Model Proportion | 0.75 |
Min Observations Needed | 6 |
Map Class | Reference Class | Total | User’s Accuracy | |||
---|---|---|---|---|---|---|
CC | Undisturbed Forest | |||||
CC | (TP) | (FP) | ||||
Undisturbed Forest | (FN) | (FN) | ||||
Total | ||||||
Producer’s accuracy |
Census | Large Sample | Point Sample | |||
---|---|---|---|---|---|
Year | |||||
2001 | 675.7 | 673.4 | 1.55 | 669.4 | 21.0 |
2002 | 501.7 | 498.6 | 2.78 | 498.6 | 43.6 |
2003 | 365.8 | 366.1 | 0.20 | 413.3 | 32.4 |
2004 | 633.9 | 629.3 | 3.61 | 629.3 | 56.7 |
2005 | 673.7 | 676.0 | 1.49 | 676.0 | 23.4 |
2006 | 675.7 | 677.5 | 2.63 | 642.7 | 35.6 |
2007 | 300.4 | 301.6 | 3.01 | 284.7 | 43.8 |
2008 | 433.4 | 433.3 | 0.37 | 459.5 | 27.7 |
2009 | 753.0 | 753.6 | 1.47 | 753.6 | 23.0 |
2010 | 605.3 | 606.0 | 1.53 | 606.0 | 24.0 |
2011 | 572.9 | 572.2 | 2.46 | 572.2 | 38.7 |
2012 | 422.0 | 421.2 | 0.66 | 421.2 | 10.3 |
2013 | 576.9 | 575.7 | 2.17 | 575.7 | 34.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannetti, F.; Pegna, R.; Francini, S.; McRoberts, R.E.; Travaglini, D.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. A New Method for Automated Clearcut Disturbance Detection in Mediterranean Coppice Forests Using Landsat Time Series. Remote Sens. 2020, 12, 3720. https://doi.org/10.3390/rs12223720
Giannetti F, Pegna R, Francini S, McRoberts RE, Travaglini D, Marchetti M, Scarascia Mugnozza G, Chirici G. A New Method for Automated Clearcut Disturbance Detection in Mediterranean Coppice Forests Using Landsat Time Series. Remote Sensing. 2020; 12(22):3720. https://doi.org/10.3390/rs12223720
Chicago/Turabian StyleGiannetti, Francesca, Raffaello Pegna, Saverio Francini, Ronald E. McRoberts, Davide Travaglini, Marco Marchetti, Giuseppe Scarascia Mugnozza, and Gherardo Chirici. 2020. "A New Method for Automated Clearcut Disturbance Detection in Mediterranean Coppice Forests Using Landsat Time Series" Remote Sensing 12, no. 22: 3720. https://doi.org/10.3390/rs12223720
APA StyleGiannetti, F., Pegna, R., Francini, S., McRoberts, R. E., Travaglini, D., Marchetti, M., Scarascia Mugnozza, G., & Chirici, G. (2020). A New Method for Automated Clearcut Disturbance Detection in Mediterranean Coppice Forests Using Landsat Time Series. Remote Sensing, 12(22), 3720. https://doi.org/10.3390/rs12223720