Quantification of Erosion and Uplift in a Rising Orogen—A Large-Scale Perspective (Late Tortonian to Present): The Case of the Gibraltar Arc, Betic Cordillera, Southern Spain
Abstract
:1. Introduction
2. Geodynamic Setting
3. Methodology
3.1. Estimating the Amounts of Erosion Throughout the Gibraltar Arc
3.2. Calculating the Geophysical Relief and Isostatic Response
3.3. Calculating the Overall Uplift Model Since the Late Tortonian–Early Messinian
4. Results
4.1. Quantification of the Erosion and Distribution of the GR
4.2. Isostatic Uplift Calculation for the WCBC
4.3. Proxy-Based Uplift Model for the WCBC
5. Discussion
5.1. Denudation and GR Distribution for the Individual Fluvial Basins
5.2. Spatial and Temporal Evolution of the Isostatic Response to Erosional Unloading for the WCBC
5.3. Erosional Compensation in the WCBC
5.4. Regional Implications for the Iberian Peninsula
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahl, J.M.; Ehlers, T.A.; van der Pluijm, B.A. Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth Planet. Sci. Lett. 2007, 256, 147–161. [Google Scholar] [CrossRef]
- Herman, F.; Seward, D.; Valla, P.G.; Carter, A.; Kohn, B.; Willett, S.D.; Ehlers, T.A. Worldwide acceleration of mountain erosion under a cooling climate. Nature 2013, 504, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, S.; Tsutsumi, H.; Tagami, T. New approach to resolve the amount of Quaternary uplift and associated denudation of the mountain ranges in the Japanese Islands. Geosci. Front. 2016, 7, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.R.; Brandon, M.T. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett. 2002, 201, 481–489. [Google Scholar] [CrossRef]
- Montgomery, D.R. Predicting landscape-scale erosion rates using digital elevation models. Comptes Rendus Geosci. 2003, 335, 1121–1130. [Google Scholar] [CrossRef]
- Brook, E.; Brown, E.; Kurz, M.; Ackert, R.; Raisbeck, G.; Yiou, F. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Be and 26Al. Geology 1995, 23, 1063–1066. [Google Scholar] [CrossRef]
- Brown, E.; Stallard, R.; Larsen, M.; Raisbeck, G.; Yiou, F. Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico. Earth Planet. Sci. Lett. 1995, 129, 193–202. [Google Scholar] [CrossRef]
- Norton, K.; Blanckenburg, F.; DiBiase, R.; Schlunegger, F.; Kubik, P. Cosmogenic 10Be-derived denudation rates of the Eastern and Southern European Alps. Int. J. Earth Sci. 2011, 100, 1163–1179. [Google Scholar] [CrossRef]
- Olivetti, V.; Cyr, A.J.; Molin, P.; Faccenna, C.; Granger, D.E. Uplift history of the Sila Massif, southern Italy, deciphered from cosmogenic 10Be erosion rates and river longitudinal profile analysis. Tectonics 2012, 31, TC3007. [Google Scholar] [CrossRef]
- De Quay, G.S.; Roberts, G.G.; Rood, D.H.; Fernandes, V.M. Holocene uplift and rapid fluvial erosion of Iceland: A record of post-glacial landscape evolution. Earth Planet. Sci. Lett. 2019, 505, 118–130. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Dunne, T. Sediment budget for a small catchment in mountainous terrain. Z. Geomorphol. 1978, 29, 191–206. [Google Scholar]
- Khulemann, J.; Frisch, W.; Dunkl, I.; Székely, B. Quantifying tectonic versus erosive denudation by the sediment budget: The Miocene core complexes of the Alps. Tectonophysics 2001, 330, 1–23. [Google Scholar] [CrossRef]
- Walsh-Kennedy, S.; Aksu, A.E.; Hall, J.; Hiscott, R.N.; Yaltırak, C.; Çifçi, G. Source to sink: The development of the latest Messinian to Pliocene–Quaternary Cilicia and Adana Basins and their linkages with the onland Mut Basin, eastern Mediterranean. Tectonophysics 2014, 622, 1–21. [Google Scholar] [CrossRef]
- Menéndez, I.; Silva, P.G.; Martín-Betancor, M.; Pérez-Torrado, F.J.; Guillou, H.; Scaillet, S. Fluvial dissection, isostatic uplift, and geomorphological evolution of volcanic islands (Gran Canaria, Canary Islands, Spain). Geomorphology 2008, 102, 189–203. [Google Scholar] [CrossRef]
- Silva, P.G.; Ribó, A.; Martín-Betancour, M.; Huerta, P.; Perucha, M.A.; Zazo, C.; Goy, J.L.; Dabrio, C.J.; Bardají, T. Relief production, uplift and active tectonics in the Gibraltar arc (South Spain) from the Late Tortonian to the present. In Proceedings of the 2nd INQUA-IGCP-567, Corinto, Greece, 19–24 September 2011; Grützner, C., Pérez-López, R., Fernández Steeger, T., Papanikolaou, I., Reicherter, K., Silva, P.G., Vött, A., Eds.; pp. 227–230, ISBN 978-960-466-093-3. [Google Scholar]
- Fernández-Ibañez, F.; Pérez-Peña, J.V.; Azor, A.; Soto, J.I.; Azañon, J.M. Normal faulting driven by denudational isostatic rebound. Geology 2010, 38, 643–646. [Google Scholar] [CrossRef]
- Elez, J.; Silva, P.G.; Huerta, P.; Martínez-Graña, A. Isostatic compensation in the Western Betic Cordillera (South Spain) caused by erosional unloading from the Messinian to the present: The Emergence of an Orogen. Geogaceta 2018, 64, 103–106. [Google Scholar]
- Small, E.E.; Andersson, R.A. Pleistocene relief production in Laramide mountain ranges. Geology 1998, 26, 123–136. [Google Scholar] [CrossRef]
- Hsü, K.J.; Montadert, L.; Bernoulli, D.; Cita, M.B.; Erickson, A.; Garrison, R.E.; Kidd, R.B.; Mélières, F.; Müller, C.; Wright, R. History of the Mediterranean salinity crisis. Nature 1977, 267, 399–403. [Google Scholar] [CrossRef]
- Braga, J.C.; Martín, J.M.; Quesada, C. Patterns and average rates of late Neogene-Recent uplift of the Betic Cordillera, SE Spain. Geomorphology 2003, 50, 3–26. [Google Scholar] [CrossRef]
- Mattei, M.; Cifelli, F.; Martín Rojas, I.; Crespo Blanc, A.; Comas, M.; Faccenna, C.; Porreca, M. Neogene tectonic evolution of the Gibraltar Arc: New paleomagnetic constrains from the Betic chain. Earth Planet. Sci. Lett. 2016, 250, 522–540. [Google Scholar] [CrossRef]
- Martín, J.M.; Puga, J.; Aguirre, J.; Braga, J.C.; Betzler, C. Miocene Atlantic-Mediterranean seaways in the Betic Cordillera (southern Spain). Rev. Soc. Geológica España 2014, 27, 175–186, ISSN 0214-2708. [Google Scholar]
- Flecker, R.; Krijgsman, W.; Capella, W.; de Castro Martíns, C.; Dmitrieva, E.; Mayser, J.P.; Marzocchi, A.; Modestou, S.; Ochoa, D.; Simon, D.; et al. Evolution of the Late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change. Earth-Sci. Rev. 2015, 150, 365–392. [Google Scholar] [CrossRef] [Green Version]
- Blanc, P.L. Improved modelling of the Messinian Salinity Crisis and conceptual implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 349–372. [Google Scholar] [CrossRef]
- García-Castellanos, D.; Estrada, F.; Jiménez-Munt, I.; Gorini, C.; Fernández, M.; Vergés, J.; De Vicente, R. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 2009, 462, 778–781. [Google Scholar] [CrossRef]
- Micallef, A.; Camerlenghi, A.; Garcia-Castellanos, D.; Cunarro Otero, D.; Gutscher, M.A.; Barreca, G.; Spatola, D.; Facchin, L.; Geletti, R.; Krastel, S.; et al. Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Sci. Rep. 2018, 8(1078), 1–8. [Google Scholar] [CrossRef] [Green Version]
- Iribarren, L.; Vergés, J.; Fernandez, M. Sediment supply from the Betic–Rif orogen to basins through Neogene. Tectonophysics 2009, 475, 68–84. [Google Scholar] [CrossRef]
- Elez, J.; Silva, P.G.; Huerta, P.; Perucha, M.A.; Civis, J.; Roquero, E.; Rodríguez-Pascua, M.A.; Bardají, T.; Giner Robles, J.L.; Martínez Graña, A. Quantitative paleotopography and paleogeography around the Gibraltar Arc (South Spain) during the Messinian Salinity Crisis. Geomorphology 2016, 275, 26–45. [Google Scholar] [CrossRef]
- Govers, R.; Meijer, P.; Krijgsman, W. Regional isostatic response to Messinian Salinity Crisis events. Tectonophysics 2009, 463, 109–129. [Google Scholar] [CrossRef]
- Guerra-Merchán, A.; Francisco Serrano, J.; García-Aguilar, M.; Sanz de Galdeano, C.; Ortiz, J.E.; Torres, T.; Sánchez-Palencia, Y. The Late Cenozoic landscape development in the westernmost Mediterranean (southern Spain). Geomorphology 2019, 327, 456–471. [Google Scholar] [CrossRef]
- Sanz de Galdeano, C.; Alfaro, P. Tectonic significance of the present relief of the Betic Cordillera. Geomorphology 2004, 63, 175–190. [Google Scholar] [CrossRef]
- Dewey, J.F.; Helman, M.L.; Knott, S.D.; Turco, E.; Hutton, D.H.W. Kinematics of the western Mediterranean. In Alpine Tectonics, Special Publication of the Geological Society; Coward, M.P., Dietrich, D., Park, R.G., Eds.; Geological Society: London, UK, 1989; Volume 45, pp. 265–283. [Google Scholar] [CrossRef]
- Luján, M.; Crespo-Blanc, A.; Balanyá, J.C. The Flysch Trough thrust imbricate (Betic Cordillera): A key element of the Gibraltar Arc orogenic wedge. Tectonics 2006, 25, TC6001. [Google Scholar] [CrossRef]
- Crespo-Blanc, A.; Campos, J. Structure and kinematics of the South Iberian paleomargin and its relationship with the Flysch Trough units: Extensional tectonics within the Gibraltar Arc fold and thrust belt (western Betics). J. Struct. Geol. 2001, 23, 1615–1630. [Google Scholar] [CrossRef]
- Schoorl, J.M.; Veldkamp, A. Late Cenozoic landscape development and its tectonic implications for the Guadalhorce valley near Álora (Southern Spain). Geomorphology 2003, 50, 43–57. [Google Scholar] [CrossRef]
- Corbí, H.; Lancis, C.; García-García, F.; Pina, J.A.; Soria, J.M.; Tent-Manclús, J.E.; Viseras, C. Updating the marine biostratigraphy of the Granada Basin (central Betic Cordillera). Insight for the Late Miocene palaeogeographic evolution of the Atlantic–Mediterranean seaway. Geobios 2012, 45, 249–263. [Google Scholar] [CrossRef]
- Morales, J.; Serrano, I.; Jabaloy, A.; Galindo-Saldivar, J.; Zhao, D.; Torcal, F.; Vidal, F.; Gonzalez-Lodeiro, F. Active continental subduction beneath the Betic Cordillera and Alboran Sea. Geology 1999, 27, 735–738. [Google Scholar] [CrossRef]
- Balanyá, J.C.; Crespo-Blanc, A.; Díaz-Azpiroz, M.; Expósito, I.; Torcal, F.; Pérez-Peña, V.; Booth-Rea, G. Arc-parallel vs back-arc extension in the Western Gibraltar Arc: Is the Gibraltar forearc still active? Geol. Acta 2012, 10, 249–263. [Google Scholar] [CrossRef]
- Alia Medina, M.; Portero, J.M.; Martín Escorza, C. Evolución Geotectónica de la región de Ocaña (Toledo) durante el Neógeno y el Cuaternario. Boletín Real Socieda Hist. Nat. 1973, 71, 9–20. [Google Scholar]
- Aguirre, E.; Díaz Molina, M.; Pérez González, A. Datos Paleontológicos y fases tectónicas en el Neógeno de la Meseta Sur Española. Trab. Neógeno-Cuatern. 1979, 5, 7–29. [Google Scholar]
- Ruano, P.; da Silva Fernandes, R.M. Active Deformation in the Iberian Peninsula from Geodetic Techniques. In The Geology of Iberia: A Geodynamic Approach; Quesada, C., Oliveira, J.T., Eds.; Springer: Brandemburg, Germany, 2019; Volume 5, pp. 5–10. ISBN 978-3-030-10398-9. [Google Scholar]
- Hutchinson, M.F.; Xu, T.; Stein, J.A. A recent progress in the ANUDEM elevation gridding procedure. In Proceedings of the Geomorphometry 2011, Redlands, CA, USA, 7–9 September 2011; Hengl, T., Evans, I., Wilson, J., Gould, M., Eds.; pp. 19–22. [Google Scholar]
- Gilchrist, A.R.; Summerfield, M.A.; Cockburn, H.A.P. Landscape dissection, isostatic uplift, and the morphologic development of orogens. Geology 1994, 22, 963–966. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of fluctuating sea level since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Merchán, A.; Serrano, F.; Hlila, R.; El Kadiri, K.; Sanz de Galdeano, C.; Garcés, M. Tectono-sedimentary evolution of the peripheral basins of the Alboran Sea in the arc of Gibraltar during the latest Messinian-Pliocene. J. Geodyn. 2014, 77, 158–170. [Google Scholar] [CrossRef]
- Lechuga Manzano, I.; Gracia Prieto, F.J.; Suma, A.; De Cosmo, P.D. Fases de captura fluviokárstica e incisión del sistema Gaduares-Hundidero-Gato (Serranía de Ronda, provincias de Cádiz y Málaga). Comprendiendo el relieve: Del pasado al futuro. In Proceedings of the XV Reunión Nacional de Geomorfología, Málaga, Spain, 22–25 June 2016; Duran Valsero, J.J., Montes Santiago, M., Robador Moreno, A., Salazar Rincón, A., Eds.; pp. 631–638. [Google Scholar]
- Durán, J.J. Los Sistemas Kársticos de la Provincia de Málaga y su Evolución: Contribución al Conocimiento Paleoclimático del Cuaternario en el Mediterráneo Occidental. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 1996; 404p. [Google Scholar]
- Rodrigo Comino, J.; Senciales González, J.M. Las plataformas travertínicas y tobáceas de la provincia de Málaga (España). Baetica Estud. Artegeografía Hist. 2012, 34, 83–102, ISSN 0212-5099. [Google Scholar]
- Fernández-García, C.; Ruano, P. Caracterización de la geometría del Polje de Zafarraya a partir de prospección gravimétrica (Cordillera Bética). Geogaceta 2016, 59, 67–70. [Google Scholar]
- Hüsing, S.K.; Oms, O.; Agustí, J.; Garcés, M.; Kouwenhoven, T.J.; Krijgsman, W.; Zachariasse, W.J. On the late Miocene closure of the Mediterranean-Atlantic gateway through the Guadix basin (southern Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 167–179. [Google Scholar] [CrossRef]
- Calvache, M.L.; Viseras, C.; Fernandez, J. Controls on fan development-evidence from fan morphometry and sedimentology; Sierra Nevada, SE Spain. Geomorphology 1997, 21, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, P.; Galindo-Zaldívar, J.; Jabaloy, J.; López-Garrido, A.C.; Sanz de Galdeano, C. Evidence for the activity and paleoseismicity of the Padul fault (Betic Cordillera, southern Spain). Acta Geol. Hisp. 2001, 36, 283–295. [Google Scholar]
- Delgado, J.; Alfaro, P.; Galindo-Zaldivar, J.; Jabaloy, A.; López-Garrido, A.C.; Sanz de Galdeano, C. Structure of the Padul-Nigüelas Basin (S Spain) from H/V ratios of ambient noise: Application of the method to study peat and coarse sediments. Pure Appl. Geophys. 2002, 159, 2733–2749. [Google Scholar] [CrossRef]
- García Tortosa, F.J.; Sanz de Galdeano, C.; Alfaro, P.; Jiménez Espinosa, R.; Jiménez Millán, J.; Lorite Herrera, M. Nueva evidencia sobre la edad del tránsito endorreico-exorreico de la cuenca de Guadix-Baza. Geogaceta 2009, 44, 211–214. [Google Scholar]
- Struth, L.; García-Castellanos, D.; Viaplana-Muzas, M.; Vergés, J. Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: From endorheism to exorheism. Geomorphology 2018, 327, 554–571. [Google Scholar] [CrossRef]
- García-Castellanos, D.; Vergés, J.; Gaspar Escribano, J.; Cloething, S. Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). J. Geophys. Res. 2003, 108, 2347. [Google Scholar] [CrossRef]
- Casas-Sainz, A.M.; de Vicente, G. On the tectonic origin of Iberian topography. Tectonophysics 2009, 474, 214–235. [Google Scholar] [CrossRef] [Green Version]
- López-Fernández, C.; Llana-Fúnez, S.; Fernández-Viejo, G.; Domínguez-Cuesta, M.J.; Díaz-Díaz, L.M. Comprehensive characterization of elevated coastal platforms in the north Iberian margin: A new template to quantify uplift rates and tectonic patterns. Geomorphology 2020, 364, 107242. [Google Scholar] [CrossRef]
BASIN CODE | 2D Area (Km2) | Eroded Volume (Km3) | Mean Elevation (m) | Geophysical Relief (m) | Crustal Density (kg/m3) | Lithospheric Density (kg/m3) | Uplift (m) | |
---|---|---|---|---|---|---|---|---|
ATLANTIC SLOPE | 0 | 28.85 | 0.13 | 38.34 | 4.64 | 2.67 | 3.33 | 3.75 |
1 | 3394.51 | 702.80 | 286.90 | 207.04 | 2.67 | 3.33 | 167.51 | |
2 | 344.45 | 15.22 | 58.63 | 44.19 | 2.67 | 3.33 | 35.76 | |
3 | 89.86 | 0.95 | 21.16 | 10.59 | 2.67 | 3.33 | 8.57 | |
4 | 137.66 | 9.94 | 61.69 | 72.23 | 2.67 | 3.33 | 58.44 | |
5 | 17.61 | 0.64 | 72.71 | 36.19 | 2.67 | 3.33 | 29.28 | |
6 | 1285.63 | 220.51 | 131.11 | 171.52 | 2.67 | 3.33 | 138.77 | |
7 | 40.79 | 3.23 | 86.40 | 79.28 | 2.67 | 3.33 | 64.14 | |
8 | 39.58 | 5.04 | 162.72 | 127.35 | 2.67 | 3.33 | 103.04 | |
9 | 58.77 | 10.03 | 234.28 | 170.67 | 2.67 | 3.33 | 138.08 | |
10 | 23.55 | 1.66 | 209.04 | 70.63 | 2.67 | 3.33 | 57.15 | |
MEDITERRANEAN SLOPE | 11 | 17.57 | 1.09 | 201.25 | 62.18 | 2.78 | 3.33 | 52.38 |
12 | 313.28 | 62.90 | 221.69 | 200.78 | 2.78 | 3.33 | 169.14 | |
13 | 267.25 | 31.26 | 197.66 | 116.99 | 2.78 | 3.33 | 98.55 | |
14 | 1465.14 | 474.62 | 551.51 | 323.94 | 2.78 | 3.33 | 272.90 | |
15 | 34.26 | 2.62 | 250.14 | 76.56 | 2.78 | 3.33 | 64.50 | |
16 | 22.95 | 2.09 | 425.46 | 91.11 | 2.78 | 3.33 | 76.75 | |
17 | 27.90 | 2.70 | 421.68 | 96.62 | 2.78 | 3.33 | 81.39 | |
18 | 19.69 | 2.42 | 437.72 | 122.97 | 2.78 | 3.33 | 103.59 | |
19 | 64.69 | 13.59 | 515.88 | 210.01 | 2.78 | 3.33 | 176.92 | |
20 | 64.52 | 14.55 | 548.04 | 225.54 | 2.78 | 3.33 | 190.00 | |
21 | 47.84 | 9.18 | 580.02 | 191.93 | 2.78 | 3.33 | 161.69 | |
22 | 153.61 | 51.72 | 679.89 | 336.69 | 2.78 | 3.33 | 283.64 | |
23 | 25.53 | 3.44 | 545.24 | 134.59 | 2.78 | 3.33 | 113.38 | |
24 | 127.77 | 20.30 | 273.19 | 158.87 | 2.78 | 3.33 | 133.83 | |
25 | 3303.60 | 1151.55 | 515.56 | 348.57 | 2.78 | 3.33 | 293.65 | |
26 | 21.37 | 0.70 | 147.43 | 32.78 | 2.78 | 3.33 | 27.61 | |
27 | 180.92 | 28.54 | 546.32 | 157.77 | 2.78 | 3.33 | 132.91 | |
28 | 29.09 | 4.38 | 465.44 | 150.39 | 2.78 | 3.33 | 126.69 | |
29 | 33.23 | 5.00 | 398.98 | 150.31 | 2.78 | 3.33 | 126.62 | |
30 | 24.89 | 1.96 | 223.48 | 78.87 | 2.78 | 3.33 | 66.44 | |
31 | 759.30 | 271.79 | 674.20 | 357.95 | 2.78 | 3.33 | 301.55 | |
32 | 23.57 | 1.75 | 311.37 | 74.37 | 2.78 | 3.33 | 62.65 | |
33 | 62.59 | 10.87 | 690.05 | 173.74 | 2.78 | 3.33 | 146.36 | |
34 | 24.84 | 3.13 | 396.76 | 126.00 | 2.78 | 3.33 | 106.14 | |
35 | 47.42 | 7.40 | 569.81 | 156.10 | 2.78 | 3.33 | 131.50 | |
36 | 21.59 | 2.34 | 251.89 | 108.28 | 2.78 | 3.33 | 91.22 | |
37 | 53.10 | 13.16 | 745.80 | 247.90 | 2.78 | 3.33 | 208.84 | |
38 | 21.25 | 3.40 | 960.46 | 159.94 | 2.78 | 3.33 | 134.73 | |
39 | 18.22 | 3.17 | 628.96 | 173.90 | 2.78 | 3.33 | 146.50 | |
40 | 22.59 | 3.09 | 488.93 | 136.69 | 2.78 | 3.33 | 115.15 | |
41 | 19.54 | 2.38 | 370.43 | 121.83 | 2.78 | 3.33 | 102.64 | |
42 | 98.46 | 24.00 | 698.78 | 243.73 | 2.78 | 3.33 | 205.33 | |
43 | 1291.35 | 601.63 | 1262.91 | 465.89 | 2.78 | 3.33 | 392.48 | |
44 | 16.63 | 0.92 | 193.76 | 55.21 | 2.78 | 3.33 | 46.51 | |
45 | 47.61 | 5.94 | 451.11 | 124.77 | 2.78 | 3.33 | 105.11 | |
46 | 72.55 | 18.91 | 462.15 | 260.63 | 2.78 | 3.33 | 219.56 | |
47 | 23.71 | 2.66 | 570.90 | 112.04 | 2.78 | 3.33 | 93.54 | |
48 | 115.22 | 20.96 | 817.44 | 181.92 | 2.78 | 3.33 | 153.25 | |
49 | 17.63 | 1.49 | 429.59 | 84.62 | 2.78 | 3.33 | 71.28 | |
Total | Area (km2) | Eroded Volume (km3) | Mean elevation (m) | Mean Geophysical Relief (m) | Mean Crustal Density (kg/m3) | Lithospheric Density (kg/m3) | Uplift (m) | |
14463.54 | 3853.76 | 265.00 | 152.55 | 2.76 | 3.33 | 133.33 |
BASIN CODE AND PALEOGEOGRAPHIC DOMAIN FOR DIVIDED BASINS | AREA (KM2) | ERODED VOLUME (KM3) | MEAN ELEVATION (M) | GEOPHYSICAL RELIEF (M) | CRUSTAL DENSITY (KG/M3) | LITHOSPHERIC DENSITY (KG/M3) | UPLIFT (M) |
---|---|---|---|---|---|---|---|
14 ATLANTIC | 302.16 | 79.35 | 256.38 | 262.61 | 2.78 | 3.18 | 221.23 |
14 MEDITERRANEAN | 1162.98 | 395.27 | 337.66 | 339.88 | 2.78 | 3.18 | 286.32 |
25 ATLANTIC | 1915.32 | 538.51 | 612.96 | 281.16 | 2.78 | 3.18 | 236.85 |
25 MEDITERRANEAN | 1384.43 | 611.99 | 380.30 | 442.06 | 2.78 | 3.18 | 372.40 |
31 ATLANTIC | 169.11 | 31.61 | 1116.13 | 186.89 | 2.78 | 3.18 | 157.44 |
31 MEDITERRANEAN | 588.90 | 240.01 | 546.21 | 407.55 | 2.78 | 3.18 | 343.33 |
BY PALEOGEOGRAPHIC DOMAIN FOR THE WHOLE WCBC | |||||||
ATLANTIC DOMAIN | 7847.86 | 1619.63 | 359.17 | 123.21 | 2.67 | 3.18 | 99.69 |
MEDITERRANEAN DOMAIN | 10428.00 | 2189.82 | 596.76 | 182.44 | 2.78 | 3.18 | 153.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elez, J.; Silva, P.G.; Martínez-Graña, A.M. Quantification of Erosion and Uplift in a Rising Orogen—A Large-Scale Perspective (Late Tortonian to Present): The Case of the Gibraltar Arc, Betic Cordillera, Southern Spain. Remote Sens. 2020, 12, 3492. https://doi.org/10.3390/rs12213492
Elez J, Silva PG, Martínez-Graña AM. Quantification of Erosion and Uplift in a Rising Orogen—A Large-Scale Perspective (Late Tortonian to Present): The Case of the Gibraltar Arc, Betic Cordillera, Southern Spain. Remote Sensing. 2020; 12(21):3492. https://doi.org/10.3390/rs12213492
Chicago/Turabian StyleElez, Javier, Pablo G. Silva, and Antonio M. Martínez-Graña. 2020. "Quantification of Erosion and Uplift in a Rising Orogen—A Large-Scale Perspective (Late Tortonian to Present): The Case of the Gibraltar Arc, Betic Cordillera, Southern Spain" Remote Sensing 12, no. 21: 3492. https://doi.org/10.3390/rs12213492
APA StyleElez, J., Silva, P. G., & Martínez-Graña, A. M. (2020). Quantification of Erosion and Uplift in a Rising Orogen—A Large-Scale Perspective (Late Tortonian to Present): The Case of the Gibraltar Arc, Betic Cordillera, Southern Spain. Remote Sensing, 12(21), 3492. https://doi.org/10.3390/rs12213492