Rapid Determination of Nutrient Concentrations in Hass Avocado Fruit by Vis/NIR Hyperspectral Imaging of Flesh or Skin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sample Collection and Preparation
2.3. Imaging System and Spectral Profile Extraction
2.4. Determination of Fatty Acid Composition
2.5. Determination of Mineral Nutrient Concentrations
2.6. Model Development
3. Results
3.1. Reflectance
3.2. Predicting the Proportions of Fatty Acids and Concentrations of Nutrients from Flesh Images
3.3. Predicting the Proportions of Fatty Acids and Concentrations of Nutrients from Skin Images
3.4. Relationship between Mineral Nutrient Concentrations of the Flesh and the Skin
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Le Lagadec, D.; Campbell, T.; Hofman, P. Development and Commercial Application of an Avocado Fruit Robustness Test; Horticulture Australia Limited: Sydney, Australia, 2010. [Google Scholar]
- Patel, K.K.; Kar, A.; Jha, S.N.; Khan, M.A. Machine vision system: A tool for quality inspection of food and agricultural products. J. Food Sci. Technol. 2012, 49, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Arpaia, M.L.; Boreham, D.; Hofshi, R. Development of a new method for measuring minimum maturity of avocados. Calif. Avocado Soc. Yearb. 2001, 85, 153–178. [Google Scholar]
- Magwaza, L.S.; Tesfay, S.Z. A review of destructive and non-destructive methods for determining avocado fruit maturity. Food Bioprocess. Technol. 2015, 8, 1995–2011. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R.; Guyer, D.E. Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Comput. Electron. Agric. 2006, 53, 60–70. [Google Scholar] [CrossRef]
- ElMasry, G.; Wang, N.; ElSayed, A.; Ngadi, M. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J. Food Eng. 2007, 81, 98–107. [Google Scholar] [CrossRef]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.H.; Tahmasbian, I.; Zhou, J.; Nevenimo, T.; Hannet, G.; Walton, D.; Randall, B.; Gama, T.; Wallace, H.M. A non-destructive determination of peroxide values, total nitrogen and mineral nutrients in an edible tree nut using hyperspectral imaging. Comput. Electron. Agric. 2018, 151, 492–500. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Xu, Z.; Boyd, S.; Zhou, J.; Esmaeilani, R.; Che, R.; Bai, S.H. Laboratory-based hyperspectral image analysis for predicting soil carbon, nitrogen and their isotopic compositions. Geoderma 2018, 330, 254–263. [Google Scholar] [CrossRef]
- Cutting, J.G.M.; Wolstenholme, B.N. Maturity and water loss effects on avocado (Persea americana Mill.) postharvest physiology in cool environments. J. Hortic. Sci. 1992, 67, 569–575. [Google Scholar] [CrossRef]
- Hofman, P.J.; Bower, J.; Woolf, A. Harvesting, packing, postharvest technology, transport and processing. In The Avocado: Botany, Production and Uses; Schaffer, B., Wolstenholme, B.N., Whiley, A.W., Eds.; CABI: Oxfordshire, UK, 2013; pp. 489–540. [Google Scholar]
- Witney, G.W.; Hofman, P.J.; Wolstenholme, B.N. Effect of cultivar, tree vigour and fruit position on calcium accumulation in avocado fruits. Sci. Hortic. 1990, 44, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Alcobendas, R.; Mirás-Avalos, J.M.; Alarcón, J.J.; Nicolás, E. Effects of irrigation and fruit position on size, colour, firmness and sugar contents of fruits in a mid-late maturing peach cultivar. Sci. Hortic. 2013, 164, 340–347. [Google Scholar] [CrossRef]
- Trad, M.; Gaaliche, B.; Renard, C.M.G.C.; Mars, M. Inter- and intra-tree variability in quality of figs. Influence of altitude, leaf area and fruit position in the canopy. Sci. Hortic. 2013, 162, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, C.P.; Bernal, E.; Velásquez, M.A.; Cartagena, V.; Régulo, J. Fatty acid content of avocados (Persea americana Mill. cv. Hass) in relation to orchard altitude and fruit maturity stage. Agron. Colomb. 2015, 33, 220–227. [Google Scholar] [CrossRef]
- Hu, H.; Brown, P.H.; Labavitch, J.M. Species variability in boron requirement is correlated with cell wall pectin. J. Exp. Bot. 1996, 47, 227–232. [Google Scholar] [CrossRef]
- Matoh, T.; Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 1998, 111, 179–190. [Google Scholar] [CrossRef]
- Eaks, I.L. Effect of calcium on ripening, respiratory rate, ethylene production, and quality of avocado fruit. J. Am. Soc. Hortic. Sci. 1985, 110, 145–148. [Google Scholar]
- Kochhar, S.P.; Henry, C.J.K. Oxidative stability and shelf-life evaluation of selected culinary oils. Int. J. Food Sci. Nutr. 2009, 60, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Pedreschi, R.; Muñoz, P.; Robledo, P.; Becerra, C.; Defilippi, B.G.; van Eekelen, H.; Mumm, R.; Westra, E.; de Vos, R.C.H. Metabolomics analysis of postharvest ripening heterogeneity of ‘Hass’ avocadoes. Postharvest Biol. Technol. 2014, 92, 172–179. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Pereira, J.A.; Seabra, R.M.; Oliveira, B.P.P. Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in Portugal. J. Agric. Food Chem. 2003, 51, 7698–7702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buranasompob, A.; Tang, J.; Powers, J.R.; Reyes, J.; Clark, S.; Swanson, B.G. Lipoxygenase activity in walnuts and almonds. LWT Food Sci. Technol. 2007, 40, 893–899. [Google Scholar] [CrossRef]
- Bai, S.H.; Brooks, P.; Gama, R.; Nevenimo, T.; Hannet, G.; Hannet, D.; Randall, B.; Walton, D.; Grant, E.; Wallace, H.M. Nutritional quality of almond, canarium, cashew and pistachio and their oil photooxidative stability. J. Food Sci. Technol. 2019, 56, 792–798. [Google Scholar] [CrossRef]
- Kader, A.A. Fruit maturity, ripening, and quality relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar] [CrossRef]
- Fulgoni, V.L.; Dreher, M.; Davenport, A.J. Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Nutr. J. 2013, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Duarte, P.F.; Chaves, M.A.; Borges, C.D.; Mendonça, C.R.B. Avocado: Characteristics, health benefits and uses. Cienc. Rural 2016, 46, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Lerman-Garber, I.; Ichazo-Cerro, S.; Zamora-González, J.; Cardoso-Saldaña, G.; Posadas-Romero, C. Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 1994, 17, 311–315. [Google Scholar] [CrossRef] [PubMed]
- López, L.R.; Frati, M.A.C.; Hernández, D.B.C.; Cervantes, M.S.; Hernández, L.M.H.; Juárez, C.; Morán, L.S. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch. Med. Res. 1996, 27, 519–523. [Google Scholar]
- Carranza-Madrigal, J.; Herrera-Abarca, J.E.; Alvizouri-Muñoz, M.; Alvarado-Jimenez, M.d.R.; Chavez-Carbajal, F. Effects of a vegetarian diet vs. a vegetarian diet enriched with avocado in hypercholesterolemic patients. Arch. Med. Res. 1997, 28, 537–541. [Google Scholar]
- Singh, H.; Sridhar, A.; Saini, S.S. Ultra-low-cost self-referencing multispectral detector for non-destructive measurement of fruit quality. Food Anal. Methods 2020, 13, 1879–1893. [Google Scholar] [CrossRef]
- Wang, Z.; Koirala, A.; Walsh, K.; Anderson, N.; Verma, B. In Field Fruit Sizing Using A Smart Phone Application. Sensors 2018, 18, 3331. [Google Scholar] [CrossRef] [Green Version]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Opara, U.L. Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. J. Food Eng. 2018, 217, 11–23. [Google Scholar] [CrossRef]
- ElMasry, G.; Wang, N.; Vigneault, C. Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biol. Technol. 2009, 52, 1–8. [Google Scholar] [CrossRef]
- Vélez Rivera, N.; Gómez-Sanchis, J.; Chanona-Pérez, J.; Carrasco, J.J.; Millán-Giraldo, M.; Lorente, D.; Cubero, S.; Blasco, J. Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst. Eng. 2014, 122, 91–98. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Karimi, Y.; Ramaswamy, H.; Prasher, S. Artificial neural network modeling of hyperspectral radiometric data for quality changes associated with avocados during storage. J. Food Process. Preserv. 2011, 35, 432–446. [Google Scholar] [CrossRef]
- Subedi, P.P.; Walsh, K.B. Assessment of avocado fruit dry matter content using portable near infrared spectroscopy: Method and instrumentation optimisation. Postharvest Biol. Technol. 2020, 161, 111078. [Google Scholar] [CrossRef]
- Hopkirk, G.; White, A.; Beever, D.J.; Forbes, S.K. Influence of postharvest temperatures and the rate of fruit ripening on internal postharvest rots and disorders of New Zealand ‘Hass’ avocado fruit. N. Z. J. Crop. Hortic. Sci. 1994, 22, 305–311. [Google Scholar] [CrossRef]
- Meir, S.; Naiman, D.; Akerman, M.; Hyman, J.Y.; Zauberman, G.; Fuchs, Y. Prolonged storage of ‘Hass’ avocado fruit using modified atmosphere packaging. Postharvest Biol. Technol. 1997, 12, 51–60. [Google Scholar] [CrossRef]
- Flitsanov, U.; Mizrach, A.; Liberzon, A.; Akerman, M.; Zauberman, G. Measurement of avocado softening at various temperatures using ultrasound. Postharvest Biol. Technol. 2000, 20, 279–286. [Google Scholar] [CrossRef] [Green Version]
- McGeehan, S.L.; Naylor, D.V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant. Anal. 1988, 19, 493–505. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata: Melbourne, Australia, 1992. [Google Scholar]
- Martinie, G.D.; Schilt, A.A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 1976, 48, 70–74. [Google Scholar] [CrossRef]
- Munter, R.C.; Grande, R.A. Plant tissue and soil extract analysis by ICP-atomic emission spectrometry. In Developments in Atomic Plasma Spectrochemical Analysis; Byrnes, R., Ed.; Heyden: London, UK, 1981; pp. 653–672. [Google Scholar]
- Bai, S.H.; Xu, C.-Y.; Xu, Z.; Blumfield, T.J.; Zhao, H.; Wallace, H.; Reverchon, F.; Van Zwieten, L. Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ. Sci. Pollut. Res. 2015, 22, 3803–3809. [Google Scholar] [CrossRef]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the IJCAI—International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; pp. 1137–1145. [Google Scholar]
- Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. J. Food Eng. 2016, 170, 8–15. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A 2007, 1158, 196–214. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-H.; Sun, D.-W. Partial Least Squares Regression (PLSR) Applied to NIR and HSI Spectral Data Modeling to Predict Chemical Properties of Fish Muscle. Food Eng. Rev. 2017, 9, 36–49. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Xu, Z.; Abdullah, K.; Zhou, J.; Esmaeilani, R.; Nguyen, T.T.N.; Bai, S.H. The potential of hyperspectral images and partial least square regression for predicting total carbon, total nitrogen and their isotope composition in forest litterfall samples. J. Soils Sediments 2017, 17, 2091–2103. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Anal. Chim. Acta 2012, 714, 57–67. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? Geosci. Model. Dev. Discuss. 2014, 7, 1525. [Google Scholar] [CrossRef] [Green Version]
- Tahmasbian, I.; Bai, S.H.; Wang, Y.; Boyd, S.; Zhou, J.; Esmaeilani, R.; Xu, Z. Using laboratory-based hyperspectral imaging method to determine carbon functional group distributions in decomposing forest litterfall. Catena 2018, 167, 18–27. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Ruano-Ramos, A.; Garcı́a-Ciudad, A.; Garcı́a-Criado, B. Near infrared spectroscopy prediction of mineral content in botanical fractions from semi-arid grasslands. Anim. Feed Sci. Technol. 1999, 77, 331–343. [Google Scholar] [CrossRef]
- Malmir, M.; Tahmasbian, I.; Xu, Z.; Farrar, M.B.; Bai, S.H. Prediction of soil macro-and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique. Geoderma 2019, 340, 70–80. [Google Scholar] [CrossRef]
- Cozzolino, D.; Moron, A. Exploring the use of near infrared reflectance spectroscopy (NIRS) to predict trace minerals in legumes. Anim. Feed Sci. Technol. 2004, 111, 161–173. [Google Scholar] [CrossRef]
- Louw, E.D.; Theron, K.I. Robust prediction models for quality parameters in Japanese plums (Prunus salicina L.) using NIR spectroscopy. Postharvest Biol. Technol. 2010, 58, 176–184. [Google Scholar] [CrossRef]
- Olarewaju, O.O.; Bertling, I.; Magwaza, L.S. Non-destructive evaluation of avocado fruit maturity using near infrared spectroscopy and PLS regression models. Sci. Hortic. 2016, 199, 229–236. [Google Scholar] [CrossRef]
- Kawano, S. New application of nondestructive methods for quality evaluation of fruits and vegetables in Japan (quality and its evaluation of horticultural products, for further development of horticulture in East Asia). J. Jpn. Soc. Hortic. Sci. 1998, 67, 1176–1179. [Google Scholar] [CrossRef] [Green Version]
- Polesello, A.; Giangiacomo, R.; Dull, G.G. Application of near infrared spectrophotometry to the nondestructive analysis of foods: A review of experimental results. Crit. Rev. Food Sci. Nutr. 1983, 18, 203–230. [Google Scholar] [CrossRef]
- Vašát, R.; Kodešová, R.; Borůvka, L.; Klement, A.; Jakšík, O.; Gholizadeh, A. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma 2014, 232–234, 208–218. [Google Scholar] [CrossRef]
- Dibi, W.G.; Bosson, J.; Zobi, I.C.; Tié, B.T.; Zoueu, J.T. Use of fluorescence and reflectance spectra for predicting okra (Abelmoschus esculentus) yield and macronutrient contents of leaves. Open J. Appl. Sci. 2017, 7, 537. [Google Scholar] [CrossRef] [Green Version]
- Kader, A.A. Increasing food availability by reducing postharvest losses of fresh produce. Acta Hortic. 2005, 682, 2169–2176. [Google Scholar] [CrossRef]
- Bustos, C.A.; Moors, E.H.M. Reducing post-harvest food losses through innovative collaboration: Insights from the Colombian and Mexican avocado supply chains. J. Clean. Prod. 2018, 199, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Pearson, T.A.; Wan, Y.; Hargrove, R.L.; Moriarty, K.; Fishell, V.; Etherton, T.D. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 1999, 70, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.L.; Davenport, A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Flesh Images | ||||||
---|---|---|---|---|---|---|
Variable | Set | Average | SD | Min | Max | CV |
Palmitic acid—C16:0 | Calibration | 31.59 | 2.95 | 22.06 | 38.81 | 0.09 |
Test | 31.56 | 2.68 | 26.07 | 36.59 | 0.08 | |
Palmitoleic acid—C16:1 cis | Calibration | 11.72 | 1.71 | 7.57 | 16.23 | 0.15 |
Test | 11.58 | 1.69 | 7.20 | 15.57 | 0.15 | |
Stearic acid—C18:0 | Calibration | 0.37 | 0.13 | 0.20 | 1.03 | 0.34 |
Test | 0.36 | 0.12 | 0.20 | 0.69 | 0.34 | |
Elaidic acid—C18:1 trans | Calibration | 7.19 | 0.85 | 5.45 | 10.06 | 0.12 |
Test | 7.07 | 0.68 | 5.70 | 9.08 | 0.10 | |
Oleic acid—C18:1 cis | Calibration | 40.16 | 2.96 | 32.50 | 49.83 | 0.07 |
Test | 39.94 | 3.09 | 34.03 | 46.43 | 0.08 | |
Linoleic acid—C18:2 | Calibration | 8.91 | 2.18 | 5.41 | 14.71 | 0.24 |
Test | 9.57 | 2.30 | 5.06 | 13.32 | 0.24 | |
UFA:SFA | Calibration | 2.14 | 0.27 | 1.51 | 3.44 | 0.13 |
Test | 2.22 | 0.34 | 1.65 | 3.12 | 0.16 | |
Oleic:Linoleic | Calibration | 4.68 | 1.32 | 2.32 | 8.62 | 0.36 |
Test | 4.70 | 1.26 | 2.65 | 7.12 | 0.27 | |
C | Calibration | 15.74 | 1.96 | 9.99 | 22.48 | 0.12 |
Test | 16.31 | 1.92 | 13.01 | 22.45 | 0.12 | |
N | Calibration | 0.18 | 0.07 | 0.03 | 0.54 | 0.40 |
Test | 0.18 | 0.07 | 0.04 | 0.42 | 0.38 | |
Al | Calibration | 3.28 | 4.63 | 0.12 | 22.15 | 1.41 |
Test | 3.56 | 5.07 | 0.40 | 21.00 | 1.42 | |
B | Calibration | 34.14 | 18.13 | 10.00 | 90.95 | 0.53 |
Test | 35.42 | 16.21 | 14.29 | 85.02 | 0.46 | |
Ca | Calibration | 132.42 | 55.81 | 58.19 | 409.51 | 0.42 |
Test | 113.02 | 46.87 | 42.48 | 334.47 | 0.41 | |
Cu | Calibration | 3.25 | 1.39 | 0.67 | 9.50 | 0.43 |
Test | 3.22 | 1.42 | 0.94 | 6.53 | 0.44 | |
Fe | Calibration | 10.20 | 5.73 | 2.96 | 32.27 | 0.56 |
Test | 10.10 | 5.66 | 3.54 | 27.96 | 0.56 | |
K | Calibration | 4993.74 | 1468.59 | 1215.16 | 9010.73 | 0.29 |
Test | 4818.52 | 1696.07 | 1367.11 | 11,239.99 | 0.35 | |
Mg | Calibration | 273.01 | 60.23 | 170.69 | 523.99 | 0.22 |
Test | 264.29 | 51.79 | 169.46 | 406.65 | 0.20 | |
Mn | Calibration | 2.48 | 1.10 | 0.90 | 7.17 | 0.44 |
Test | 2.30 | 0.69 | 1.10 | 4.09 | 0.30 | |
Na | Calibration | 136.42 | 54.20 | 57.73 | 308.93 | 0.40 |
Test | 150.95 | 66.35 | 77.22 | 452.60 | 0.44 | |
P | Calibration | 500.35 | 194.92 | 125.79 | 1283.55 | 0.39 |
Test | 495.27 | 163.57 | 256.18 | 1002.46 | 0.33 | |
S | Calibration | 307.37 | 124.76 | 16.35 | 700.31 | 0.41 |
Test | 342.90 | 129.02 | 30.08 | 632.42 | 0.42 | |
Zn | Calibration | 9.54 | 5.19 | 0.90 | 33.80 | 0.54 |
Test | 10.16 | 5.23 | 2.10 | 24.19 | 0.51 |
Skin Images | ||||||
---|---|---|---|---|---|---|
Variable | Set | Average | SD | Min | Max | CV |
Palmitic acid—C16:0 | Calibration | 31.96 | 3.19 | 22.06 | 39.76 | 0.10 |
Test | 31.35 | 2.92 | 26.18 | 38.26 | 0.09 | |
Palmitoleic acid—C16:1 cis | Calibration | 11.56 | 1.70 | 7.20 | 16.23 | 0.15 |
Test | 12.02 | 1.84 | 7.78 | 15.41 | 0.15 | |
Stearic acid—C18:0 | Calibration | 0.36 | 0.14 | 0.20 | 1.03 | 0.38 |
Test | 0.37 | 0.12 | 0.22 | 0.67 | 0.32 | |
Elaidic acid—C18:1 trans | Calibration | 7.21 | 0.86 | 5.67 | 10.06 | 0.12 |
Test | 7.04 | 0.77 | 5.45 | 9.46 | 0.11 | |
Oleic acid—C18:1 cis | Calibration | 39.84 | 3.00 | 32.50 | 49.83 | 0.08 |
Test | 40.03 | 2.99 | 34.14 | 46.87 | 0.07 | |
Linoleic acid—C18:2 | Calibration | 8.99 | 2.28 | 5.06 | 14.71 | 0.25 |
Test | 9.05 | 2.45 | 5.93 | 13.21 | 0.27 | |
UFA:SFA | Calibration | 2.17 | 0.30 | 1.65 | 3.44 | 0.14 |
Test | 2.01 | 0.33 | 1.50 | 2.62 | 0.16 | |
Oleic:Linoleic | Calibration | 4.76 | 1.33 | 2.32 | 7.80 | 0.28 |
Test | 4.76 | 1.33 | 2.65 | 8.62 | 0.28 | |
C | Calibration | 15.93 | 2.02 | 9.99 | 22.48 | 0.13 |
Test | 15.62 | 1.54 | 11.32 | 17.95 | 0.10 | |
N | Calibration | 0.18 | 0.07 | 0.05 | 0.54 | 0.39 |
Test | 0.15 | 0.04 | 0.04 | 0.23 | 0.27 | |
Al | Calibration | 5.06 | 10.39 | 0.05 | 97.47 | 2.05 |
Test | 4.8 | 5.19 | 0.23 | 20.82 | 1.08 | |
B | Calibration | 36.72 | 18.18 | 10.00 | 90.95 | 0.49 |
Test | 33.13 | 18.03 | 10.65 | 80.33 | 0.54 | |
Ca | Calibration | 138.00 | 64.29 | 42.48 | 409.51 | 0.47 |
Test | 112.14 | 51.95 | 51.23 | 311.83 | 0.46 | |
Cu | Calibration | 3.32 | 1.64 | 0.67 | 12.44 | 0.49 |
Test | 2.95 | 0.99 | 1.44 | 4.81 | 0.34 | |
Fe | Calibration | 11.14 | 7.49 | 2.96 | 52.02 | 0.67 |
Test | 10.85 | 6.55 | 4.36 | 27.89 | 0.60 | |
K | Calibration | 4950.61 | 1598.92 | 1215.16 | 11,239.99 | 0.32 |
Test | 4928.92 | 1414.16 | 2097.53 | 8087.00 | 0.29 | |
Mg | Calibration | 273.92 | 60.73 | 169.46 | 523.99 | 0.22 |
Test | 276.61 | 76.75 | 170.69 | 575.30 | 0.28 | |
Mn | Calibration | 2.45 | 1.07 | 0.90 | 7.13 | 0.44 |
Test | 2.53 | 0.86 | 1.20 | 4.47 | 0.34 | |
Na | Calibration | 138.54 | 58.91 | 57.73 | 452.60 | 0.43 |
Test | 135.28 | 55.37 | 65.46 | 306.46 | 0.41 | |
P | Calibration | 500.10 | 194.81 | 186.15 | 1183.64 | 0.39 |
Test | 502.73 | 189.14 | 125.79 | 1283.55 | 0.38 | |
S | Calibration | 319.26 | 137.90 | 16.35 | 781.23 | 0.43 |
Test | 330.25 | 124.79 | 107.65 | 621.70 | 0.38 | |
Zn | Calibration | 10.15 | 5.65 | 0.90 | 33.80 | 0.56 |
Test | 9.25 | 5.11 | 1.84 | 23.25 | 0.55 |
Flesh Images | Wavelength | Outlier | Calibration Set | Validation Set | Test Set | |||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Transformation | LV | Reduction | Removal | RMSEC | R2 | RMSEV | R2 | R2 | RPD |
Palmitic acid—C16:0 | 1st Der | 6 | Y | Y | 1.50 | 0.73 | 1.74 | 0.65 | 0.78 | 2.10 |
Palmitoleic acid—C16:1 cis | OSC | 3 | Y | Y | 0.72 | 0.78 | 0.81 | 0.73 | 0.57 | 1.42 |
Stearic acid—C18:0 | OSC | 1 | N | N | 0.12 | 0.15 | 0.12 | 0.13 | 0.03 | 1.01 |
Elaidic acid—vC18:1 trans | MSC + OSC | 2 | N | N | 0.61 | 0.47 | 0.66 | 0.40 | 0.36 | 1.25 |
Oleic acid—C18:1 cis | SNV + 1st Der | 10 | N | Y | 1.77 | 0.64 | 2.37 | 0.37 | 0.60 | 1.26 |
Linoleic acid—C18:2 | OSC | 7 | N | N | 0.74 | 0.89 | 0.94 | 0.81 | 0.87 | 2.62 |
UFA:SFA | MSC + OSC | 5 | Y | N | 0.12 | 0.80 | 0.13 | 0.75 | 0.79 | 2.11 |
Oleic:Linoleic | 1st Der | 6 | Y | Y | 0.67 | 0.73 | 0.76 | 0.65 | 0.67 | 1.63 |
C | 2nd Der | 5 | N | N | 1.40 | 0.48 | 1.83 | 0.12 | 0.35 | 1.44 |
N | 1st Der | 7 | N | N | 0.04 | 0.70 | 0.05 | 0.42 | 0.004 | 0.77 |
Al | SNV + OSC | 7 | Y | Y | 1.98 | 0.79 | 2.46 | 0.68 | 0.72 | 1.89 |
B | OSC | 6 | N | N | 9.29 | 0.74 | 11.10 | 0.63 | 0.61 | 1.51 |
Ca | OSC | 7 | N | N | 37.37 | 0.55 | 42.12 | 0.43 | 0.53 | 1.71 |
Cu | SNV | 16 | Y | Y | 0.82 | 0.64 | 1.06 | 0.41 | 0.63 | 1.63 |
Fe | MSC + OSC | 9 | Y | Y | 2.91 | 0.72 | 3.71 | 0.54 | 0.67 | 1.70 |
K | OSC | 3 | Y | Y | 687.51 | 0.77 | 755.73 | 0.72 | 0.74 | 1.97 |
Mg | OSC | 12 | N | Y | 30.49 | 0.74 | 38.88 | 0.59 | 0.58 | 1.40 |
Mn | 1st Der | 7 | Y | N | 0.84 | 0.41 | 0.90 | 0.33 | 0.29 | 0.83 |
Na | OSC | 4 | N | N | 0.67 | 0.52 | 0.77 | 0.37 | 0.15 | 0.77 |
P | OSC | 5 | N | Y | 118.09 | 0.63 | 127.19 | 0.58 | 0.59 | 1.43 |
S | OSC | 7 | Y | N | 76.91 | 0.61 | 89.84 | 0.48 | 0.63 | 1.58 |
Zn | OSC | 16 | N | Y | 3.20 | 0.62 | 4.18 | 0.35 | 0.62 | 1.58 |
Skin Images | Wavelength | Outlier | Calibration Set | Validation Set | Test Set | |||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Transformation | LV | Reduction | Removal | RMSEC | R2 | RMSEV | R2 | R2 | RPD |
Palmitic acid—C16:0 | OSC | 2 | N | N | 1.68 | 0.72 | 1.85 | 0.67 | 0.72 | 1.63 |
Palmitoleic acid—C16:1 cis | 2nd Der | 3 | Y | Y | 1.26 | 0.40 | 1.47 | 0.20 | 0.42 | 1.30 |
Stearic acid—C18:0 | OSC | 1 | N | N | 0.13 | 0.17 | 0.13 | 0.15 | 0.05 | 0.84 |
Elaidic acid—C18:1 trans | 1st Der | 6 | N | N | 0.65 | 0.42 | 0.78 | 0.18 | 0.31 | 1.17 |
Oleic acid—C18:1 cis | OSC | 3 | Y | Y | 1.91 | 0.61 | 2.27 | 0.46 | 0.33 | 1.13 |
Linoleic acid—C18:2 | OSC | 5 | N | Y | 0.78 | 0.88 | 0.95 | 0.83 | 0.88 | 2.79 |
UFA:SFA | SNV + OSC | 3 | Y | N | 0.17 | 0.69 | 0.18 | 0.64 | 0.62 | 1.48 |
Oleic:Linoleic | 2nd Der | 5 | Y | Y | 0.59 | 0.8 | 0.66 | 0.75 | 0.53 | 1.16 |
C | OSC | 1 | N | N | 1.67 | 0.30 | 1.70 | 0.29 | 0.12 | 0.93 |
N | SNV + OSC | 1 | N | N | 0.06 | 0.10 | 0.07 | 0.07 | 0.05 | 0.02 |
Al | 1st Der | 7 | N | N | 8.01 | 0.40 | 9.41 | 0.18 | 0.62 | 1.16 |
B | 3rd Der | 6 | N | Y | 9.96 | 0.70 | 13.11 | 0.48 | 0.60 | 1.55 |
Ca | OSC | 1 | N | N | 39.78 | 0.61 | 40.44 | 0.61 | 0.68 | 1.57 |
Cu | OSC | 1 | N | N | 1.38 | 0.27 | 1.40 | 0.26 | 0.32 | 1.15 |
Fe | 1st Der | 5 | Y | N | 6.08 | 0.37 | 6.89 | 0.20 | 0.52 | 1.41 |
K | OSC | 3 | Y | Y | 1007.58 | 0.60 | 1124.57 | 0.51 | 0.55 | 1.42 |
Mg | OSC | 7 | N | Y | 37.22 | 0.57 | 47.50 | 0.32 | 0.58 | 1.62 |
Mn | 4th Der | 2 | N | N | 0.91 | 0.28 | 0.99 | 0.16 | 0.19 | 1.08 |
Na | 2nd Der | 4 | N | N | 46.34 | 0.37 | 56.18 | 0.09 | 0.23 | 1.14 |
P | OSC | 7 | N | N | 131.63 | 0.55 | 154.34 | 0.40 | 0.15 | 1.01 |
S | 2nd Der | 4 | N | Y | 88.91 | 0.58 | 106.24 | 0.41 | 0.57 | 1.44 |
Zn | OSC | 10 | N | Y | 3.24 | 0.67 | 4.29 | 0.42 | 0.59 | 1.49 |
Nutrient | R | p |
---|---|---|
C | 0.26 | 0.22 |
N | 0.30 | 0.14 |
Al | 0.38 | 0.06 |
B | 0.48 | 0.02 |
Ca | 0.75 | <0.001 |
Cu | −0.03 | 0.90 |
Fe | −0.04 | 0.87 |
K | 0.27 | 0.20 |
Mg | 0.42 | 0.04 |
Mn | 0.64 | <0.001 |
Na | 0.71 | <0.001 |
P | 0.48 | 0.02 |
S | −0.03 | 0.89 |
Zn | 0.19 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kämper, W.; Trueman, S.J.; Tahmasbian, I.; Bai, S.H. Rapid Determination of Nutrient Concentrations in Hass Avocado Fruit by Vis/NIR Hyperspectral Imaging of Flesh or Skin. Remote Sens. 2020, 12, 3409. https://doi.org/10.3390/rs12203409
Kämper W, Trueman SJ, Tahmasbian I, Bai SH. Rapid Determination of Nutrient Concentrations in Hass Avocado Fruit by Vis/NIR Hyperspectral Imaging of Flesh or Skin. Remote Sensing. 2020; 12(20):3409. https://doi.org/10.3390/rs12203409
Chicago/Turabian StyleKämper, Wiebke, Stephen J. Trueman, Iman Tahmasbian, and Shahla Hosseini Bai. 2020. "Rapid Determination of Nutrient Concentrations in Hass Avocado Fruit by Vis/NIR Hyperspectral Imaging of Flesh or Skin" Remote Sensing 12, no. 20: 3409. https://doi.org/10.3390/rs12203409
APA StyleKämper, W., Trueman, S. J., Tahmasbian, I., & Bai, S. H. (2020). Rapid Determination of Nutrient Concentrations in Hass Avocado Fruit by Vis/NIR Hyperspectral Imaging of Flesh or Skin. Remote Sensing, 12(20), 3409. https://doi.org/10.3390/rs12203409