An Innovative Approach for Improving the Accuracy of Digital Elevation Models for Cultivated Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Topography Data Acquisition and Preprocessing
2.2.1. SRTM
2.2.2. DEM based on Optical Stereo Image Extraction (ZY3 DEM)
2.2.3. DEM based on Unmanned Aerial Vehicle (UAV DEM)
2.3. Remote Sensing Image Acquisition and Preprocessing
2.4. Methodology
2.4.1. Stepwise Linear Regression (SLR) Model
2.4.2. Back Propagation Neural Network (BPNN) Model
2.5. Assessment
3. Results
3.1. The Relationship between Topography and NDVI, PSR and PDI
3.2. Improving SRTM Data with the SLR and BPNN Models
3.3. Test Site Evaluation
4. Discussion
4.1. Comparison of SLR and BPNN Model Performance in Improving the SRTM DEM
4.2. Exploring the Relationship between Topography and the Crop Growth Mechanism
4.3. The Significance and Limitations of Research
5. Conclusions
- (1)
- The results show that topography affects the redistribution of surface matter (solar radiation, temperature, and soil moisture) and the growth of crops in cultivated land areas. The introduction of the PDI, PSR and NDVI in the growing period can improve the accuracy of SRTM data.
- (2)
- The result of nonlinear fitting was better than that of linear fitting, and a BPNN was the best method for improving the accuracy of SRTM data. At validation sites 2 and 3, the R22 of the BPNN was 0.940, R23 was 0.920, RMSE2 was 0.94 m, and RMSE3 was 1.23 m. The accuracy at the two sites was improved by 93% and 91% compared with that obtained with the original SRTM DEM, respectively, and the spatial resolution was reduced to 1/5 times that of the original SRTM.
- (3)
- At validation sites 2 and 3, the accuracy of the DEM obtained by the proposed method was higher than that of the ZY-3 DEM and SRTM_LOW. This finding reflects the characteristics of erosion gullies in the study area. The spatial pattern of the DEM obtained by the proposed method was similar to that of the UAV DEM, which was close to the real surface pattern. Thus, the proposed method is suitable for areas with erosion gullies and undulations in plains.
Author Contributions
Funding
Conflicts of Interest
References
- Gu, Z.; Xie, Y.; Gao, Y.; Ren, X.; Cheng, C.; Wang, S. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China. Sci. Total Environ. 2018, 637, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.; Morris, C.S.; Belz, J.E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Guo, W.; Huang, B.; Zhuo, M.; Li, D.; Li, Z.; Yuan, Z. Effects of soil properties, topography and landform on the understory biomass of a pine forest in a subtropical hilly region. Catena 2019, 176, 104–111. [Google Scholar] [CrossRef]
- Yang, Q.-Y.; Jiang, Z.-C.; Li, W.-J.; Li, H. Prediction of soil organic matter in peak-cluster depression region using kriging and terrain indices. Soil Tillage Res. 2014, 144, 126–132. [Google Scholar] [CrossRef]
- Bracke, M.S.; Miller, C.C.; Kim, J. Adding value to digitizing with GIS. Library Hi Tech. 2008, 26, 201–212. [Google Scholar] [CrossRef]
- Long, J.; Liu, Y.; Xing, S.; Qiu, L.; Huang, Q.; Zhou, B.; Shen, J.; Zhang, L. Effects of sampling density on interpolation accuracy for farmland soil organic matter concentration in a large region of complex topography. Ecol. Indic. 2018, 93, 562–571. [Google Scholar] [CrossRef]
- Wasklewicz, T.; Staley, D.M.; Reavis, K.; Oguchi, T. 3.6 Digital Terrain Modeling. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 130–161. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sens. Environ. 2018, 206, 231–239. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Jain, K.; Chatterjee, R.S. Generation of high-quality digital elevation models by assimilation of remote sensing-based DEMs. J. Appl. Remote Sens. 2019, 13. [Google Scholar] [CrossRef]
- Ajibola, I.I.; Mansor, S.; Pradhan, B.; Shafri, H.Z.M. Fusion of UAV-based DEMs for vertical component accuracy improvement. Measurement 2019, 147. [Google Scholar] [CrossRef]
- Wendi, D.; Liong, S.-Y.; Sun, Y.; Doan, C.D. An innovative approach to improve SRTM DEM using multispectral imagery and artificial neural network. J. Adv. Model. Earth Syst. 2016, 8, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Manry, M.T.J.N.N. Adaptive pattern recognition and neural networks. Neural Netw. 1991, 4, 124–126. [Google Scholar] [CrossRef]
- Zhong, W.; Deng, Y.; Tenreiro Machado, J.A.; Zhang, C.; Zhao, K.; Wang, X. Strength prediction of similar materials to ionic rare earth ores based on orthogonal test and back propagation neural network. Soft Comput. 2019, 23, 9429–9437. [Google Scholar] [CrossRef]
- Estes, L.D.; Reillo, P.R.; Mwangi, A.G.; Okin, G.S.; Shugart, H.H. Remote sensing of structural complexity indices for habitat and species distribution modeling. Remote Sens. Environ. 2010, 114, 792–804. [Google Scholar] [CrossRef]
- Guo, L.; Linderman, M.; Shi, T.; Chen, Y.; Duan, L.; Zhang, H. Exploring the Sensitivity of Sampling Density in Digital Mapping of Soil Organic Carbon and Its Application in Soil Sampling. Remote Sens. 2018, 10, 888. [Google Scholar] [CrossRef] [Green Version]
- Riihimäki, H.; Heiskanen, J.; Luoto, M. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. Int. J. Appl. Earth Obs. 2017, 56, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Western, A.W.; Zhou, S.L.; Grayson, R.B.; McMahon, T.A.; Bloschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Batlles, F.J.; Bosch, J.L.; Tovar-Pescador, J.; Martinez-Durban, M.; Ortega, R.; Miralles, I. Determination of atmospheric parameters to estimate global radiation in areas of complex topography: Generation of global irradiation map. Energy Convers. Manag. 2008, 49, 336–345. [Google Scholar] [CrossRef]
- Bosch, J.L.; Baffles, F.J.; Zarzalejo, L.F.; Lopez, G. Solar resources estimation combining digital terrain models and satellite images techniques. Renew. Energy 2010, 35, 2853–2861. [Google Scholar] [CrossRef]
- Stevenson, J.A.; Sun, X.; Mitchell, N.C. Despeckling SRTM and other topographic data with a denoising algorithm. Geomorphology 2010, 114, 238–252. [Google Scholar] [CrossRef]
- Dragut, L.; Blaschke, T.J.G. Automated classification of landform elements using object-based image analysis. Geomorphology 2006, 81, 330–344. [Google Scholar] [CrossRef]
- Skidmore, A.K. Terrain position as mapped from a gridded digital elevation model. Int. J. Geogr. Inf. Syst. 1990, 4, 33–49. [Google Scholar] [CrossRef]
- Dou, X.; Wang, X.; Liu, H.; Zhang, X.; Meng, L.; Pan, Y.; Yu, Z.; Cui, Y. Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China. Geoderma 2019, 356, 113896. [Google Scholar] [CrossRef]
- Zhan, Z.; Qin, Q.; Ghulan, A.; Wang, D. NIR-red spectra space based new method for soil moisture monitoring. Sci. China Earth Sci. 2007, 50, 283–289. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Xu, M.; Shao, S.; Wang, X.; Liu, W.; Wu, D.; Ma, Y.; Bao, Y.; Zhang, X.; et al. Hyper-temporal remote sensing data in bare soil period and terrain attributes for digital soil mapping in the Black soil regions of China. Catena 2020, 184, 104259. [Google Scholar] [CrossRef]
- Goulden, T.; Hopkinson, C.; Jamieson, R.; Sterling, S. Sensitivity of DEM, slope, aspect and watershed attributes to LiDAR measurement uncertainty. Remote Sens. Environ. 2016, 179, 23–35. [Google Scholar] [CrossRef]
- Blal, M.; Khelifi, S.; Dabou, R.; Sahouane, N.; Slimani, A.; Rouabhia, A.; Ziane, A.; Neçaibia, A.; Bouraiou, A.; Tidjar, B. A prediction models for estimating global solar radiation and evaluation meteorological effect on solar radiation potential under several weather conditions at the surface of Adrar environment. Measurement 2020, 152, 107348. [Google Scholar] [CrossRef]
- Miyasaka, T.; Kulkarni, A.; Kim, G.M.; Oz, S.; Jena, A.K. Perovskite Solar Cells: Can We Go Organic-Free, Lead-Free, and Dopant-Free? Adv. Energy Mater. 2020, 10. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.; Jin, S.; Pan, J.; Zhu, Q. Correction of ZY-3 image distortion caused by satellite jitter via virtual steady reimaging using attitude data. ISPRS J. Photogramm. 2016, 119, 108–123. [Google Scholar] [CrossRef]
- Ni, W.; Sun, G.; Ranson, K.J.; Pang, Y.; Zhang, Z.; Yao, W. Extraction of ground surface elevation from ZY-3 winter stereo imagery over deciduous forested areas. Remote Sens. Environ. 2015, 159, 194–202. [Google Scholar] [CrossRef]
- Maresma, A.; Chamberlain, L.; Tagarakis, A.; Kharel, T.; Godwin, G.; Czymmek, K.J.; Shields, E.; Ketterings, Q.M. Accuracy of NDVI-derived corn yield predictions is impacted by time of sensing. Comput. Electron. Agric. 2020, 169, 105236. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Li, J.; Lei, Y.; Li, C.; Manevski, K.; Shen, Y. Using NDVI percentiles to monitor real-time crop growth. Comput. Electron. Agric. 2019, 162, 357–363. [Google Scholar] [CrossRef]
- Shahabfar, A.; Ghulam, A.; Eitzinger, J. Drought monitoring in Iran using the perpendicular drought indices. Int. J. Appl. Earth Obs. 2012, 18, 119–127. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Zare, S.; Fallah Shamsi, S.R.; Abtahi, S.A. Weakly-coupled geo-statistical mapping of soil salinity to Stepwise Multiple Linear Regression of MODIS spectral image products. J. Afr. Earth Sci. 2019, 152, 101–114. [Google Scholar] [CrossRef]
- Vogl, T.P.; Mangis, J.K.; Rigler, A.K.; Zink, W.T.; Alkon, D.L. Accelerating the convergence of the back-propagation method. Biol. Cybern. 1988, 59, 257–263. [Google Scholar] [CrossRef]
- Gusarov, A.V. The response of water flow, suspended sediment yield and erosion intensity to contemporary long-term changes in climate and land use/cover in river basins of the Middle Volga Region, European Russia. Sci. Total Environ. 2020, 719. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Levy, G.J. Soil erosion-runoff relations on cultivated land: Insights from laboratory studies. Eur. J. Soil. Sci. 2019, 70, 686–696. [Google Scholar] [CrossRef]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Zhu, Q.; Lin, H. Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma 2011, 163, 45–54. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Blöschl, G.; Willgoose, G.R.; Mcmahon, T.A.J.W.R.R. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.-Z.; Liu, H.-B.; Li, H.-M.; Wu, W.; Zhong, B. The Relationship between NDVI and Terrain Factors-A Case Study of Chongqing. Procedia Environ. Sci. 2012, 12, 765–771. [Google Scholar] [CrossRef] [Green Version]
Details | Items | Specifications |
---|---|---|
RedEdge 3 camera | Imager size | 4.8 mm × 3.6 mm |
Imager resolution | 1280 × 960 pixels | |
Lens focal length | 5.5 mm | |
Spectral bands | Blue, green, red, red edge, near-infrared | |
Ground sample distance | 8.2 cm/pixel (per band) at 120 m (400 ft.) AGL (Above Ground Level) | |
Capture speed | 1 capture per second (all bands), 12-bit RAW | |
DJI M600 Pro UAV | Weight | 10 kg |
Dimensions | 1668 mm × 1518 mm × 727 mm | |
Max speed | 65 km/h (Windless environment) | |
Satellite positioning systems | GPS | |
Remote control operating frequency | 2.400 ← 2.483 GHz | |
Max operating distance | 5 km | |
Battery type | TB48S | |
Capacity | 5700 mAh |
Source | Name | Implication | References |
---|---|---|---|
SRTM | SRTM_LOW | SRTM processed by low-pass filter | [12,21] |
UAV DEM | Aspect | Downhill direction in which the value of a pixel changes most in the direction of its adjacent pixels. | [7,26] |
Slope | The maximum rate of change in the direction of a pixel to its adjacent pixel | [26,27] | |
Slope position | Reflect the geomorphological position of the slope | [22,23] | |
PSR | Reflect the sunshine on the whole surface of the study area | [28,29] | |
ZY3 DEM | -- | DEM based on Optical Stereo Image extraction | [30,31] |
SPOT-6 | NDVI | Reflect crop growth and nutritional information | [32,33] |
PDI | Reflect the moisture content of the soil | [25,34] |
UAV DEM | DNVI6 | DNVI7 | DNVI8 | DNVI9 | PSR6 | PSR7 | PSR8 | PSR9 | PDI6 | PDI7 | PDI8 | PDI9 | SRTM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UAV DEM | 1 | |||||||||||||
DNVI6 | −0.023 | 1 | ||||||||||||
DNVI7 | −0.327 ** | 0.143 ** | 1 | |||||||||||
DNVI8 | 0.162 ** | 0.157 ** | 0.903 ** | 1 | ||||||||||
DNVI9 | −0.498 ** | 0.142 ** | 0.270 ** | 0.460 ** | 1 | |||||||||
PSR6 | 0.228 ** | 0.368 ** | −0.024 | −0.231 ** | −0.311 ** | 1 | ||||||||
PSR7 | 0.263 ** | 0.393 ** | 0.008 | −0204 ** | −0.317 ** | 1.000 ** | 1 | |||||||
PSR8 | 0.245 ** | 0.384 ** | −0.008 | −0.218 ** | −0.314 ** | 0.999 ** | 1.000 ** | 1 | ||||||
PSR9 | 0.228 ** | 0.385 ** | −0.024 | −0.231 ** | −0.311 ** | 1.000 ** | 0.999 ** | 1.000 ** | 1 | |||||
PDI6 | 0.229 ** | 0.353 ** | −0.274 ** | −0.488 ** | −0.471 ** | 0.873 ** | 0.866 ** | 0.870 ** | 0.873 ** | 1 | ||||
PDI7 | 0.275 ** | 0.143 ** | 0.974 ** | 0.903 ** | 0.352 ** | −0.062 ** | −0.032 | −0.047 * | −0.062 ** | −0.318 ** | 1 | |||
PDI8 | 0.194 ** | 0.340 ** | 0.908 ** | 0.937 ** | 0.402 ** | 0.033 | 0.059 ** | 0.046 * | 0.033 | −0.255 ** | 0.913 *** | 1 | ||
PDI9 | −0.427 ** | 0.161 ** | 0.357 ** | 0.506 ** | 0.874 ** | −0.270 ** | −0.273 ** | −0.272 ** | −0.270 ** | −0.420 ** | 0.338 ** | 0.446 ** | 1 | |
SRTM | 0.923 ** | −0.007 | 0.280 ** | 0.106 ** | −0.533 ** | 0.332 ** | 0.362 ** | 0.346 ** | 0.332 ** | 0.310 ** | 0.229 ** | 0.167 ** | −0.452 ** | 1 |
CV | June | July | August | September | |
---|---|---|---|---|---|
NDVI | channel | 0.083 | 0.037 | 0.032 | 0.154 |
shady | 0.057 | 0.018 | 0.009 | 0.161 | |
ridge | 0.040 | 0.106 | 0.006 | 0.059 | |
sunny | 0.050 | 0.023 | 0.016 | 0.119 | |
a | 0.058 | 0.024 | 0.017 | 0.189 | |
PDI | channel | 0.152 | 0.069 | 0.064 | 0.065 |
shady | 0.065 | 0.047 | 0.029 | 0.061 | |
ridge | 0.034 | 0.026 | 0.018 | 0.036 | |
sunny | 0.056 | 0.057 | 0.042 | 0.058 | |
a | 0.094 | 0.054 | 0.041 | 0.066 | |
PSR | channel | 0.017 | 0.008 | 0.011 | 0.018 |
shady | 0.008 | 0.004 | 0.005 | 0.008 | |
ridge | 0.009 | 0.004 | 0.006 | 0.010 | |
sunny | 0.006 | 0.002 | 0.004 | 0.006 | |
a | 0.018 | 0.008 | 0.012 | 0.018 |
Unstandardized Coefficients | Normalized Coefficient | t | Significance | ||
---|---|---|---|---|---|
Beta | Standard Deviation | Beta | |||
Constant | −414.784 | ||||
SRTM | 0.715 | 0.008 | 0.814 | 94.425 | 0 |
PSR6 | −0.136 | 0.007 | −3.965 | −19.765 | 0 |
PSR7 | 0.182 | 0.010 | 3.760 | 18.641 | 0 |
NDVI6 | −17.674 | 1.228 | −0.113 | −14.398 | 0 |
NDVI7 | −3.532 | 0.251 | −0.103 | −14.079 | 0 |
NDVI9 | −2.610 | 0.847 | −0.022 | −3.081 | 0.01 |
Training Site | |||
---|---|---|---|
Model Type | R21 | RMSE1 | Bias1 |
SLR | 0.91 | 1.00 | 0.98 |
BPNN | 0.98 | 0.54 | 1.00 |
Model Type | Accuracy Verification of 2 | Accuracy Verification of 3 | ||||
---|---|---|---|---|---|---|
R22 | RMSE2 | Bias2 | R23 | RMSE3 | Bias3 | |
SLR | 0.90 | 2.68 | 0.95 | 0.90 | 2.59 | 0.98 |
BPNN | 0.94 | 0.94 | 1.01 | 0.920 | 1.23 | 1.01 |
SRTM | 0.86 | 15.25 | 0.93 | 0.85 | 14.95 | 0.93 |
SRTM_LOW | 0.87 | 15.25 | 0.93 | 0.85 | 14.95 | 0.93 |
ZY3 DEM | 0.88 | 5.01 | 0.97 | 0.88 | 3.41 | 0.98 |
SRTM | PSR6 | PSR7 | NDVI6 | NDVI9 | NDVI7 | |
---|---|---|---|---|---|---|
Tolerance | 48.3% | 0.1% | 0.1% | 59.8% | 69.1% | 69.3% |
VIF | 2.070 | 1098.460 | 1110.645 | 1.672 | 1.448 | 1.443 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Liu, H.; Jiang, B.; Meng, L.; Guan, H.; Xu, M.; Cui, Y.; Kong, F.; Yin, Y.; Wang, M. An Innovative Approach for Improving the Accuracy of Digital Elevation Models for Cultivated Land. Remote Sens. 2020, 12, 3401. https://doi.org/10.3390/rs12203401
Ma Y, Liu H, Jiang B, Meng L, Guan H, Xu M, Cui Y, Kong F, Yin Y, Wang M. An Innovative Approach for Improving the Accuracy of Digital Elevation Models for Cultivated Land. Remote Sensing. 2020; 12(20):3401. https://doi.org/10.3390/rs12203401
Chicago/Turabian StyleMa, Yuyang, Huanjun Liu, Baiwen Jiang, Linghua Meng, Haixiang Guan, Mengyuan Xu, Yang Cui, Fanchang Kong, Yue Yin, and MengPei Wang. 2020. "An Innovative Approach for Improving the Accuracy of Digital Elevation Models for Cultivated Land" Remote Sensing 12, no. 20: 3401. https://doi.org/10.3390/rs12203401
APA StyleMa, Y., Liu, H., Jiang, B., Meng, L., Guan, H., Xu, M., Cui, Y., Kong, F., Yin, Y., & Wang, M. (2020). An Innovative Approach for Improving the Accuracy of Digital Elevation Models for Cultivated Land. Remote Sensing, 12(20), 3401. https://doi.org/10.3390/rs12203401