Classification of Landscape Affected by Deforestation Using High-Resolution Remote Sensing Data and Deep-Learning Techniques
Abstract
:1. Introduction
2. Methodology
2.1. Method
2.2. Study Area and Dataset
2.2.1. Satellite Image Preprocessing
2.2.2. AI Learning Dataset Construction
3. Result
3.1. Hyperparameter Tuning
3.2. Classification of Deforested Land
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Wide Fund for Nature Home Page. Available online: https://wwf.panda.org/our_work/forests/importance_forests/ (accessed on 17 June 2020).
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest Monitoring using Landsat Time Series Data: A Review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Yang, J.; Su, J.; Chen, F.; Xie, P.; Ge, Q. A local land use competition cellular automata model and its application. ISPRS Int. J. Geo-Inf. 2016, 5, 106. [Google Scholar] [CrossRef] [Green Version]
- He, B.J.; Zhao, Z.Q.; Shen, L.D.; Wang, H.B.; Li, L.G. An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustain. Cities Soc. 2019, 44, 416–427. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, Q.; Gao, S.; Yang, C. Seasonal variation of the spatially non-stationary association between land surface temperature and urban landscape. Remote Sens. 2019, 11, 1016. [Google Scholar] [CrossRef] [Green Version]
- American Forest Home Page. Available online: https://www.americanforests.org/blog/much-forests-worth/ (accessed on 21 July 2016).
- USDA Forest Service and NY State Department of Environmental Conservation Home Page. Available online: https://www.dec.ny.gov/lands/40243.html (accessed on 20 June 2020).
- Croitoru, L. Valuing the Non-Timber Forest Products in the Mediterranean Region. Ecol. Econ. 2007, 63, 768–775. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, R.H.; Youn, H.J.; Lee, S.W.; Choi, H.T.; Kim, J.J.; Park, C.R.; Kim, K.D. Valuation of Nonmarket Forest Resources. Korean Inst. For. Recreat. Welf. 2012, 16, 9–18. [Google Scholar]
- Kuvan, Y. Mass Tourism Development and Deforestation in Turkey. Anatolia 2010, 21, 155–168. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An Assessment of Deforestation and Forest Degradation Drivers in Developing Countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Clerici, N.; Armenteras, D.; Kareiva, P.; Botero, R.; Ramírez-Delgado, J.; Forero-Medina, G.; Ochoa, J.; Pedraza, C.; Schneider, L.; Lora, C. Deforestation in Colombian Protected Areas Increased during Post-Conflict Periods. Sci. Rep. 2020, 10, 4971. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Myint, S.W.; Hutchins, M. The Assessment of Deforestation, Forest Degradation, and Carbon Release in Myanmar 2000–2010. In Environmental Change in the Himalayan Region; Springer: Berlin/Heidelberg, Germany, 2019; pp. 47–64. [Google Scholar]
- Korea Forest Service Home Page. Available online: http://forest.go.kr (accessed on 29 August 2019).
- Fuller, D.O. Tropical Forest Monitoring and Remote Sensing: A New Era of Transparency in Forest Governance? Singap. J. Trop. Geogr. 2006, 27, 15–29. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Azofeifa, G.A.; Harriss, R.C.; Skole, D.L. Deforestation in Costa Rica: A quantitative analysis using remote sensing imagery 1. Biotropica 2001, 33, 378–384. [Google Scholar] [CrossRef]
- Mertens, B.; Sunderlin, W.D.; Ndoye, O.; Lambin, E.F. Impact of Macroeconomic Change on Deforestation in South Cameroon: Integration of Household Survey and Remotely-Sensed Data. World Dev. 2000, 28, 983–999. [Google Scholar] [CrossRef]
- Frohn, R.; McGwire, K.; Dale, V.; Estes, J. Using Satellite Remote Sensing Analysis to Evaluate a Socio-Economic and Ecological Model of Deforestation in Rondonia, Brazil. Remote Sens. 1996, 17, 3233–3255. [Google Scholar] [CrossRef]
- McCracken, S.D.; Brondizio, E.S.; Nelson, D.; Moran, E.F.; Siqueira, A.D.; Rodriguez-Pedraza, C. Remote Sensing and GIS at Farm Property Level: Demography and Deforestation in the Brazilian Amazon. Photogramm. Eng. Remote Sens. 1999, 65, 1311–1320. [Google Scholar]
- Chowdhury, R.R. Driving Forces of Tropical Deforestation: The Role of Remote Sensing and Spatial Models. Singap. J. Trop. Geogr. 2006, 27, 82–101. [Google Scholar] [CrossRef]
- Buchanan, G.M.; Butchart, S.H.; Dutson, G.; Pilgrim, J.D.; Steininger, M.K.; Bishop, K.D.; Mayaux, P. Using Remote Sensing to Inform Conservation Status Assessment: Estimates of Recent Deforestation Rates on New Britain and the Impacts upon Endemic Birds. Biol. Conserv. 2008, 141, 56–66. [Google Scholar] [CrossRef]
- Achard, F.; Estreguil, C. Forest Classification of Southeast Asia using NOAA AVHRR Data. Remote Sens. Environ. 1995, 54, 198–208. [Google Scholar] [CrossRef]
- Desclée, B.; Bogaert, P.; Defourny, P. Forest Change Detection by Statistical Object-Based Method. Remote Sens. Environ. 2006, 102, 1–11. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine Learning in Geosciences and Remote Sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Carreiras, J.; Pereira, J.; Shimabukuro, Y.E. Land-Cover Mapping in the Brazilian Amazon using SPOT-4 Vegetation Data and Machine Learning Classification Methods. Photogramm. Eng. Remote Sens. 2006, 72, 897–910. [Google Scholar] [CrossRef] [Green Version]
- Papa, J.P.; FalcãO, A.X.; De Albuquerque, V.H.C.; Tavares, J.M.R. Efficient Supervised Optimum-Path Forest Classification for Large Datasets. Pattern Recognit. 2012, 45, 512–520. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Beier, C. Machine Learning Approaches for Forest Classification and Change Analysis using Multi-Temporal Landsat TM Images Over Huntington Wildlife Forest. GISci. Remote Sens. 2013, 50, 361–384. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hafemann, L.G.; Oliveira, L.S.; Cavalin, P. Forest Species Recognition using Deep Convolutional Neural Networks. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 1103–1107. [Google Scholar]
- Bragilevsky, L.; Bajic, I.V. Deep Learning for Amazon Satellite Image Analysis. In Proceedings of the 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 21–23 August 2017; pp. 1–5. [Google Scholar]
- Xu, E.; Zeng, O. Predicting Amazon Deforestation with Satellite Images. Available online: http://cs231n.stanford.edu/reports/2017/pdfs/916.pdf (accessed on 30 June 2020).
- Shah, U.; Khawad, R.; Krishna, K.M. Detecting, Localizing, and Recognizing Trees with a Monocular MAV: Towards Preventing Deforestation. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1982–1987. [Google Scholar]
- Lobo Torres, D.; Queiroz Feitosa, R.; Nigri Happ, P.; La Rosa, L.E.C.; Marcato, J., Jr.; Martins, J.; Olã Bressan, P.; Gonçalves, W.N.; Liesenberg, V. Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery. Sensors 2020, 20, 563. [Google Scholar] [CrossRef] [Green Version]
- De Bem, P.P.; de Carvalho, J.; Osmar, A.; Fontes, G.R.; Trancoso, G.R.A. Change Detection of Deforestation in the Brazilian Amazon using Landsat Data and Convolutional Neural Networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef] [Green Version]
- Andersson, V. Semantic Segmentation: Using Convolutional Neural Networks and Sparse Dictionaries. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139367 (accessed on 25 June 2020).
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Cao, R.; Qiu, G. Urban Land use Classification Based on Aerial and Ground Images. In Proceedings of the 2018 International Conference on Content-Based Multimedia Indexing (CBMI), La Rochelle, France, 4–6 September 2018; pp. 1–6. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar]
- Audebert, N.; Le Saux, B.; Lefèvre, S. Joint Learning from Earth Observation and Openstreetmap Data to Get Faster Better Semantic Maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 67–75. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Liu, J.; Wang, X.; Wang, T. Classification of Tree Species and Stock Volume Estimation in Ground Forest Images using Deep Learning. Comput. Electron. Agric. 2019, 166, 105012. [Google Scholar] [CrossRef]
- Stoian, A.; Poulain, V.; Inglada, J.; Poughon, V.; Derksen, D. Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems. Remote Sens. 2019, 11, 1986. [Google Scholar] [CrossRef] [Green Version]
- Soni, A.; Koner, R.; Villuri, V.G.K. M-UNet: Modified U-Net Segmentation Framework with Satellite Imagery. In Proceedings of the Global AI Congress, Kolkata, India, 12–14 September 2019; pp. 47–59. [Google Scholar]
- Chavez, P.S. Image-Based Atmospheric Corrections-Revisited and Improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1035. [Google Scholar]
- Zhang, Y.; Mishra, R.K. A Review and Comparison of Commercially Available Pan-Sharpening Techniques for High Resolution Satellite Image Fusion. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 182–185. [Google Scholar]
- Ghorbanzadeh, O.; Blaschke, T. Optimizing Sample Patches Selection of CNN to Improve the mIOU on Landslide Detection. In Proceedings of the GISTAM, Heraklion, Greece, 3–5 May 2019; pp. 33–40. [Google Scholar]
- Kirillov, A.; Girshick, R.; He, K.; Dollár, P. Panoptic Feature Pyramid Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 6399–6408. [Google Scholar]
- López-Fandiño, J.; Garea, A.S.; Heras, D.B.; Argüello, F. Stacked Autoencoders for Multiclass Change Detection in Hyperspectral Images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1906–1909. [Google Scholar]
- Martins, F.F.; Zaglia, M.C. Application of Convolutional Neural Network to Pixel-Wise Classification in Deforestation Detection using PRODES Data. In Proceedings of the Geoinfo, São José dos Campos, Brazil, 11–13 November 2019; pp. 57–65. [Google Scholar]
- Ortega, M.; Bermudez, J.; Happ, P.; Gomes, A.; Feitosa, R. Evaluation of Deep Learning Techniques for Deforestation Detection in the Amazon Forest. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Gao, B.; Woo, W.L.; Yang, Y. Temporal and Spatial Deep Learning Network for Infrared Thermal Defect Detection. NDT E Int. 2019, 108, 102164. [Google Scholar] [CrossRef]
- Singh, V.K.; Rashwan, H.A.; Abdel-Nasser, M.; Sarker, M.; Kamal, M.; Akram, F.; Pandey, N.; Romani, S.; Puig, D. An Efficient Solution for Breast Tumor Segmentation and Classification in Ultrasound Images using Deep Adversarial Learning. arXiv 2019, arXiv:1907.00887. [Google Scholar]
- Zhang, X.; Wu, B.; Zhu, L.; Tian, F.; Zhang, M. Land use Mapping in the Three Gorges Reservoir Area Based on Semantic Segmentation Deep Learning Method. arXiv 2018, arXiv:1804.00498. [Google Scholar]
- Rastogi, K.; Bodani, P.; Sharma, S.A. Automatic Building Footprint Extraction from very High-Resolution Imagery using Deep Learning Techniques. Geocarto Int. 2020, 1–14. [Google Scholar] [CrossRef]
- Han, Z.; Dian, Y.; Xia, H.; Zhou, J.; Jian, Y.; Yao, C.; Wang, X.; Li, Y. Comparing Fully Deep Convolutional Neural Networks for Land Cover Classification with High-Spatial-Resolution Gaofen-2 Images. ISPRS Int. J. Geo-Inf. 2020, 9, 478. [Google Scholar] [CrossRef]
- Li, R.; Zheng, S.; Duan, C. Land Cover Classification from Remote Sensing Images Based on Multi-Scale Fully Convolutional Network. arXiv 2020, arXiv:2008.00168. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Data | Contents | Source | |
---|---|---|---|
Base data | Satellite image | KOMPSAT-3 (0.7 m) | Korea Aerospace Research Institute (KARI) (Korea) |
Land cover map | Subdivided land cover maps (1:5000) Forest areas, building, paddy field, field, cemetery, road, facility cultivation area, grassland, bare land, waters | Ministry of Environment Environmental Geographic Information Service (Korea) www.egis.me.go.kr/ | |
Digital forest type map | Forests/non-forests and subdivided base data inside forests (1:5000) Softwood, hardwood, bare land, grassland, field, waters | Korea Forest Service (Korea) www.forest.go.kr/ | |
Reference data | Digital map | Reference data for classification of non-forest areas (1:5000) | Ministry of Land, Infrastructure, and Transport National Spatial Data Infrastructure Portal www.nsdi.go.kr/ |
Mountain area change DB | Reference of attributes in classifying vegetation correlation and use in making floor plan | Korea Forestry Promotion Institute www.Kofpi.or.kr (Korea) | |
Softwood DB | Coniferous forests DB analyzed using multi-time images | Korea Forestry Promotion Institute (Korea) www.Kofpi.or.kr |
Classification | Item | Color (RGB Composition) | Note | |
---|---|---|---|---|
Forest area | Softwood | 255/0/0 | Where coniferous forests take up at least 75% of all stands | |
Hardwood | 0/255/0 | Where deciduous forests take up at least 75% of all stands | ||
Non-forest area | Paddy field | 0/0/255 | Land where rice is cultivated using water | |
Field | 255/255/0 | Land where crops other than rice are cultivated without water | ||
Facility cultivation area | 255/0/255 | Greenhouse cultivation plot made of vinyl or glass, including ginseng field | ||
Grassland | 0/255/255 | Land covered in herbaceous plants | ||
Cemetery | 255/128/128 | Cemetery or land including grassland formed around cemetery | ||
Golf course | 128/255/128 | |||
Ski resort | 128/128/255 | |||
Building | 255/255/128 | Artificial establishments (residential, commercial, industrial facilities) | ||
Road | 255/128/255 | Including roads, parking lots, airstrips, railroads, etc. | ||
Waters | 128/255/255 | Areas with standing water such as rivers/streams, lakes, reservoirs, seas, etc. | ||
Bare land | 0/0/0 | Bare ground not covered in vegetation |
Hyperparameter | Iteration | Batch Size | Patch Size | Learning Rate | |
---|---|---|---|---|---|
Model | |||||
SegNet | 100,000 | 100 | 256 × 256 | 1 × 10 power −5 | |
U-Net | 300,000 | 1 | 256 × 256 | 1 × 10 power −5 |
MIoU | FIoU | Accuracy | |
---|---|---|---|
SegNet | 14.0 | 41.4 | 63.3 |
U-Net | 25.4 | 61.6 | 74.8 |
Class | Soft Wood | Hardwood | Paddy Field | Field | Facility Cultivation |
U-Net | 92.6 | 61.0 | 21.2 | 84.2 | 50.7 |
SegNet | 84.4 | 73.3 | 11.5 | 64.1 | 0 |
Grassland | Cemetery | Building | Road | Bare Land | |
U-Net | 21.3 | 14.2 | 28.7 | 28.3 | 13.8 |
SegNet | 0 | 0 | 0 | 0 | 54.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Han, K.-J.; Lee, K.; Lee, K.-J.; Oh, K.-Y.; Lee, M.-J. Classification of Landscape Affected by Deforestation Using High-Resolution Remote Sensing Data and Deep-Learning Techniques. Remote Sens. 2020, 12, 3372. https://doi.org/10.3390/rs12203372
Lee S-H, Han K-J, Lee K, Lee K-J, Oh K-Y, Lee M-J. Classification of Landscape Affected by Deforestation Using High-Resolution Remote Sensing Data and Deep-Learning Techniques. Remote Sensing. 2020; 12(20):3372. https://doi.org/10.3390/rs12203372
Chicago/Turabian StyleLee, Seong-Hyeok, Kuk-Jin Han, Kwon Lee, Kwang-Jae Lee, Kwan-Young Oh, and Moung-Jin Lee. 2020. "Classification of Landscape Affected by Deforestation Using High-Resolution Remote Sensing Data and Deep-Learning Techniques" Remote Sensing 12, no. 20: 3372. https://doi.org/10.3390/rs12203372
APA StyleLee, S. -H., Han, K. -J., Lee, K., Lee, K. -J., Oh, K. -Y., & Lee, M. -J. (2020). Classification of Landscape Affected by Deforestation Using High-Resolution Remote Sensing Data and Deep-Learning Techniques. Remote Sensing, 12(20), 3372. https://doi.org/10.3390/rs12203372