Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): A Methodology to Determine Extreme Convective Initiation Regions Using Satellite Infrared Imagery
Abstract
:1. Introduction
2. Data and Methods
2.1. TRMM Extreme Rain Precipitation Features Selection
2.2. GOES-16 Extreme Convective Systems Selection
2.3. Ground Weather Radar Data
2.4. Backward Adaptive Brightness Temperature Threshold Technique to Determine Convective Initiation Area
3. Results
3.1. Implementation of BAB3T on ERPF Cases Studies over SESA
3.2. Convective Initiation Climatology
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Altinger de Schwarzkopf, M.L.; Rosso, L.C. Severe storms and tornadoes in Argentina. In Proceedings of the 12th Conference on Severe Local Storms, San Antonio, TX, USA, 12–15 January 1982; American Meteorological Society: San Antonio, TX, USA, 1982; pp. 59–62. [Google Scholar]
- Silva Dias, M.A. An increase in the number of tornado reports in Brazil. Weather Clim. Soc. 2011, 3, 209–217. [Google Scholar] [CrossRef]
- Matsudo, C.M.; Salio, P.V. Severe weather reports and proximity to deep convection over Northern Argentina. Atmos. Res. 2011, 100, 523–537. [Google Scholar] [CrossRef]
- Mezher, R.N.; Doyle, M.; Barros, V. Climatology of hail in Argentina. Atmos. Res. 2012, 114–115, 70–82. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Zuluaga, M.D.; Houze, R.A. Severe convection and lightning in subtropical South America. Geophys. Res. Lett. 2014, 41, 7359–7366. [Google Scholar] [CrossRef]
- Mulholland, J.P.; Nesbitt, S.W.; Trapp, R.J.; Rasmussen, K.L.; Salio, P.V.; Mulholland, J.P.; Nesbitt, S.W.; Trapp, R.J.; Rasmussen, K.L.; Salio, P.V. Convective Storm Life Cycle and Environments near the Sierras de Córdoba, Argentina. Mon. Weather Rev. 2018, 146, 2541–2557. [Google Scholar] [CrossRef]
- Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P.; Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P. Where are the most intense thunderstorms on Earth? Bull. Am. Meteorol. Soc. 2006, 87, 1057–1072. [Google Scholar] [CrossRef] [Green Version]
- Cecil, D.J. Passive Microwave Brightness Temperatures as Proxies for Hailstorms. J. Appl. Meteorol. Climatol. 2009, 48, 1281–1286. [Google Scholar] [CrossRef]
- Cecil, D.J.; Blankenship, C.B.; Cecil, D.J.; Blankenship, C.B. Toward a Global Climatology of Severe Hailstorms as Estimated by Satellite Passive Microwave Imagers. J. Clim. 2012, 25, 687–703. [Google Scholar] [CrossRef]
- Houze, R.A.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef]
- Ferraro, R.; Beauchamp, J.; Cecil, D.; Heymsfield, G. A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU). Atmos. Res. 2015, 163, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Bang, S.D.; Cecil, D.J.; Bang, S.D.; Cecil, D.J. Constructing a Multifrequency Passive Microwave Hail Retrieval and Climatology in the GPM Domain. J. Appl. Meteorol. Climatol. 2019, 58, 1889–1904. [Google Scholar] [CrossRef]
- Laing, A.G.; Fritsch, J.M.; Laing, A.G.; Fritsch, J.M. The Large-Scale Environments of the Global Populations of Mesoscale Convective Complexes. Mon. Weather Rev. 2000, 128, 2756–2776. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Cifelli, R.; Rutledge, S.A.; Nesbitt, S.W.; Cifelli, R.; Rutledge, S.A. Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features. Mon. Weather Rev. 2006, 134, 2702–2721. [Google Scholar] [CrossRef] [Green Version]
- Velasco, I.; Fritsch, J.M. Mesoscale convective complexes in the Americas. J. Geophys. Res. 1987, 92, 9591. [Google Scholar] [CrossRef]
- Machado, L.A.T.; Rossow, W.B.; Guedes, R.L.; Walker, A.W. Life Cycle Variations of Mesoscale Convective Systems over the Americas. Mon. Weather Rev. 1998, 126, 1630–1654. [Google Scholar] [CrossRef]
- Ferreira, R.N.; Rickenbach, T.M.; Herdies, D.L.; Carvalho, L.M.V.; Ferreira, R.N.; Rickenbach, T.M.; Herdies, D.L.; Carvalho, L.M.V. Variability of South American Convective Cloud Systems and Tropospheric Circulation during January–March 1998 and 1999. Mon. Weather Rev. 2003, 131, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, J.R.; Rossow, W.B.; Machado, L.A.T.; Pearl, C. Structural Characteristics of Convective Systems over South America Related to Cold-Frontal Incursions. Mon. Weather Rev. 2005, 133, 1045–1064. [Google Scholar] [CrossRef] [Green Version]
- Salio, P.; Nicolini, M.; Zipser, E.J.; Salio, P.; Nicolini, M.; Zipser, E.J. Mesoscale Convective Systems over Southeastern South America and Their Relationship with the South American Low-Level Jet. Mon. Weather Rev. 2007, 135, 1290–1309. [Google Scholar] [CrossRef] [Green Version]
- Anabor, V.; Stensrud, D.J.; de Moraes, O.L.L. Serial Upstream-Propagating Mesoscale Convective System Events over Southeastern South America. Mon. Weather Rev. 2008, 136, 3087–3105. [Google Scholar] [CrossRef]
- Vila, D.A.; Machado, L.A.T.; Laurent, H.; Velasco, I. Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation. Weather Forecast. 2008, 23, 233–245. [Google Scholar] [CrossRef]
- Durkee, J.D.; Mote, T.L. A climatology of warm-season mesoscale convective complexes in subtropical South America. Int. J. Climatol. 2009, 30, 418–431. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Houze, R.A., Jr. Convective Initiation near the Andes in Subtropical South America. Mon. Weather Rev. 2016, 144, 2351–2374. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Zipser, E.J. The Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements. J. Clim. 2003, 16, 1456–1475. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.J. Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res. 2005, 110, D23104. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.J.; Liu, C.; Zipser, E.J. “Warm Rain” in the Tropics: Seasonal and Regional Distributions Based on 9 years of TRMM Data. J. Clim. 2009, 22, 767–779. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.; Liu, C.; Zipser, E. Differences between the Surface Precipitation Estimates from the TRMM Precipitation Radar and Passive Microwave Radiometer Version 7 Products. J. Hydrometeorol. 2014, 15, 2157–2175. [Google Scholar] [CrossRef]
- Fiolleau, T.; Roca, R. Composite life cycle of tropical mesoscale convective systems from geostationary and low Earth orbit satellite observations: method and sampling considerations. Q. J. R. Meteorol. Soc. 2013, 139, 941–953. [Google Scholar] [CrossRef]
- Wilson, J.W.; Mueller, C.K. Nowcasts of Thunderstorm Initiation and Evolution. Weather Forecast. 1993, 8, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.J.; Cecil, D.J.; Nesbitt, S.W.; Sherwood, S. A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations. J. Appl. Meteorol. Climatol. 2008, 47, 2712–2728. [Google Scholar] [CrossRef]
- Iguchi, T.; Kozu, T.; Meneghini, R.; Awaka, J.; Okamoto, K.; Iguchi, T.; Kozu, T.; Meneghini, R.; Awaka, J.; Okamoto, K. Rain-Profiling Algorithm for the TRMM Precipitation Radar. J. Appl. Meteorol. 2000, 39, 2038–2052. [Google Scholar] [CrossRef]
- Brunner, J.C.; Ackerman, S.A.; Bachmeier, A.S.; Rabin, R.M.; Brunner, J.C.; Ackerman, S.A.; Bachmeier, A.S.; Rabin, R.M. A Quantitative Analysis of the Enhanced-V Feature in Relation to Severe Weather. Weather Forecast. 2007, 22, 853–872. [Google Scholar] [CrossRef]
- Bedka, K.; Brunner, J.; Dworak, R.; Feltz, W.; Otkin, J.; Greenwald, T.; Bedka, K.; Brunner, J.; Dworak, R.; Feltz, W.; et al. Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients. J. Appl. Meteorol. Climatol. 2010, 49, 181–202. [Google Scholar] [CrossRef]
- Dworak, R.; Bedka, K.; Brunner, J.; Feltz, W. Comparison between GOES-12 Overshooting-Top Detections, WSR-88D Radar Reflectivity, and Severe Storm Reports. Weather Forecast. 2012, 27, 684–699. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.K.; Cheng, K.Y.; Setvak, M.; Wang, C.K. The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO images. J. Geophys. Res. Atmos. 2016, 121, 3729–3738. [Google Scholar] [CrossRef] [Green Version]
- Sandmæl, T.N.; Homeyer, C.R.; Bedka, K.M.; Apke, J.M.; Mecikalski, J.R.; Khlopenkov, K. Evaluating the Ability of Remote Sensing Observations to Identify Significantly Severe and Potentially Tornadic Storms. J. Appl. Meteorol. Climatol. 2019, 58, 2569–2590. [Google Scholar] [CrossRef]
- Marion, G.; Trapp, R.; Nesbitt, S. Using Overshooting Top Area to Discriminate Potential for Large, Intense Tornadoes. Geophys. Res. Lett. 2019, 46, 12520–12526. [Google Scholar] [CrossRef]
- Trapp, R.J.; Kosiba, K.A.; Marquis, J.N.; Kumjian, M.R.; Nesbitt, S.W.; Wurman, J.; Salio, P.; Hence, D.A. Multiple-platform and multiple-Doppler radar observations of a supercell thunderstorm in South America during RELAMPAGO. Bull. Am. Meteorol. Soc. 2019, submitted. [Google Scholar]
- Fiolleau, T.; Roca, R. An Algorithm for the Detection and Tracking of Tropical Mesoscale Convective Systems Using Infrared Images From Geostationary Satellite. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4302–4315. [Google Scholar] [CrossRef]
- Maddox, R.A. Meoscale Convective Complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Aumann, H.H.; Gregorich, D.; DeSouza-Machado, S.M. AIRS observations of deep convective clouds. In Proceedings of the SPIE, San Diego, CA, USA, 13–17 August 2006; Volume 6301. [Google Scholar]
- Hoffmann, L.; Alexander, M.J. Occurrence frequency of convective gravity waves during the North American thunderstorm season. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Janowiak, J.E.; Joyce, R.J.; Yarosh, Y.; Janowiak, J.E.; Joyce, R.J.; Yarosh, Y. A Real-Time Global Half-Hourly Pixel-Resolution Infrared Dataset and Its Applications. Bull. Am. Meteorol. Soc. 2001, 82, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Cadena 3 Argentina. Fuerte Pedrea en Distintos Puntos del Interior de Córdoba. Available online: https://www.cadena3.com/noticia/noticias/fuerte-pedrea-en-distintos-puntos-del-interior-de-cordoba_23446 (accessed on 17 December 2019).
- La NUEVA Mañana. Fuerte Temporal en Oncativo, Bell Ville, Corralito y Marcos Juárez. Available online: https://lmdiario.com.ar/contenido/111559/fuerte-temporal-en-oncativo-bell-ville-corralito-y-marcos-juarez (accessed on 17 December 2019).
- Rosenfeld, D.; Woodley, W.L.; Krauss, T.W.; Makitov, V.; Rosenfeld, D.; Woodley, W.L.; Krauss, T.W.; Makitov, V. Aircraft Microphysical Documentation from Cloud Base to Anvils of Hailstorm Feeder Clouds in Argentina. J. Appl. Meteorol. Climatol. 2006, 45, 1261–1281. [Google Scholar] [CrossRef]
- Romatschke, U.; Houze, R.A., Jr. Extreme Summer Convection in South America. J. Clim. 2010, 23, 3761–3791. [Google Scholar] [CrossRef]
- Albrecht, R.I.; Goodman, S.J.; Buechler, D.E.; Blakeslee, R.J.; Christian, H.J. Where Are the Lightning Hotspots on Earth? Bull. Am. Meteorol. Soc. 2016, 97, 2051–2068. [Google Scholar] [CrossRef]
- Vidal, L. Convección Extrema Sobre Sudamérica: Estructura Interna, Ciclos de vida e Influencia de la Topografía en la Iniciación. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Buenos Aires, Argentina, 1 September 2014. [Google Scholar]
PCT [K] | PCT [K] | Ht40 [km] | Flashcount | VolRain [mm] | |
---|---|---|---|---|---|
99.9th Percentile | 93.0 | 191.8 | 15.5 | 557.8 | 329,026.7 |
99th Percentile | 166.8 | 244.9 | 12.8 | 215.6 | 29,132.9 |
95th Percentile | 237.2 | 265.7 | 9.8 | 71.4 | 2175.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cancelada, M.; Salio, P.; Vila, D.; Nesbitt, S.W.; Vidal, L. Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): A Methodology to Determine Extreme Convective Initiation Regions Using Satellite Infrared Imagery. Remote Sens. 2020, 12, 337. https://doi.org/10.3390/rs12020337
Cancelada M, Salio P, Vila D, Nesbitt SW, Vidal L. Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): A Methodology to Determine Extreme Convective Initiation Regions Using Satellite Infrared Imagery. Remote Sensing. 2020; 12(2):337. https://doi.org/10.3390/rs12020337
Chicago/Turabian StyleCancelada, Maite, Paola Salio, Daniel Vila, Stephen W. Nesbitt, and Luciano Vidal. 2020. "Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): A Methodology to Determine Extreme Convective Initiation Regions Using Satellite Infrared Imagery" Remote Sensing 12, no. 2: 337. https://doi.org/10.3390/rs12020337
APA StyleCancelada, M., Salio, P., Vila, D., Nesbitt, S. W., & Vidal, L. (2020). Backward Adaptive Brightness Temperature Threshold Technique (BAB3T): A Methodology to Determine Extreme Convective Initiation Regions Using Satellite Infrared Imagery. Remote Sensing, 12(2), 337. https://doi.org/10.3390/rs12020337