Ten-Year Assessment of IASI Radiance and Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. The IASI Instrument
2.1.1. IASI L1C Radiances
2.1.2. IASI L2 Temperatures
2.2. ERA5 Temperature Product
3. Results
3.1. Comparison of Operational and Reprocessed L1C Radiance Values
- Amazon rainforest (AMA): 3° S to 2° S, 65° W to 64° W;
- Indian Ocean (OCE): 28° S to 27° S, 72° E to 73° E;
- Western Europe (EUR): 47° N to 48° N, 5° E to 6° E;
- Greenland (GRO): 72° N to 73° N, 43° W to 42° E.
- A slight increase (at 700 and 1200 cm−1) or decrease (at 1700 cm−1) of positive differences in February 2017. After an investigation, we discovered that these differences are associated with the version 7.4 update (routine scan mirror reflectivity update);
- Positive differences in January 2011–April 2011 and in June 2015–July 2015 at all FoRs;
- Negative differences in May 2011–July 2012 and in August 2013–June 2014. The differences are larger at small FoRs.
- At 700 cm−1: Large positive and negative differences (± 0.03%, negative at both ends of the scan, positive in the middle) until 2013 in the tropical regions (AMA + OCE). In Greenland and to a lesser extent in Europe, there are seasonal variations of negative and positive differences. The differences decrease after 2013 because of a second change of the Instrument Point Spread Function (IPSF) (see Table 1);
- At 1200 cm−1: Small negative differences (~0.02%) until a decrease in 2010 (improvement of the spectral calibration). Very small differences after 2010. At this wavenumber, differences are larger in Greenland (~0.05%) than in the other regions;
- At 1700 cm−1: Mostly positive differences before 2013 (~0.2%). After 2013, differences are still positive, but a lot smaller. There are seasonal variations in Greenland between 2010 and 2013;
- At 2200 cm−1: Large negative differences before 2013 (~0.5%), and very small differences afterwards.
3.2. Comparison of L2 IASI and ERA5 Temperatures
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- GCOS. Report of the Twenty-Fifth Session of the Wmo-Ioc-Unep-Icsu Steering Comittee for Gcos, World Meteorological Organization; GCOS: Geneva, Switzerland, 2017. [Google Scholar]
- Tett, S.; Jones, G.S.; Stott, P.; Hill, D.C.; Mitchell, J.F.B.; Allen, M.R.; Ingram, W.J.; Johns, T.C.; Johnson, C.E.; Jones, A.; et al. Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res. Atmos. 2002, 107, 10–24. [Google Scholar] [CrossRef]
- Santer, B.D.; Solomon, S.; Wentz, F.J.; Fu, Q.; Po-Chedley, S.; Mears, C.; Painter, J.F.; Bonfils, C.J.W. Tropospheric Warming Over The Past Two Decades. Sci. Rep. 2017, 7, 2336. [Google Scholar] [CrossRef] [PubMed]
- Susskind, J.; Schmidt, G.A.; Lee, J.N.; Iredell, L. Recent global warming as confirmed by AIRS. Environ. Res. Lett. 2019, 14. [Google Scholar] [CrossRef]
- Shanbaum, C. Intergovernmental Panel on Climate Change Fifth Assessment Report: Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Aquila, V.; Swartz, W.H.; Waugh, D.W.; Colarco, P.R.; Pawson, S.; Polvani, L.M.; Stolarski, R.S. Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings. J. Geophys. Res. Atmos. 2016, 121, 8067–8082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaswamy, V.; Chanin, M.-L.; Angell, J.; Barnett, J.; Gaffen, D.; Gelman, M.; Keckhut, P.; Koshelkov, Y.; Labitzke, K.; Lin, J.-J.R.; et al. Stratospheric temperature trends: Observations and model simulations. Rev. Geophys. 2001, 39, 71–122. [Google Scholar] [CrossRef]
- Shine, K.P.; Bourqui, M.S.; Forster, P.M.; Hare, S.H.E.; Langematz, U.; Braesicke, P.; Grewe, V.; Ponater, M.; Schnadt, C.; Smith, C.A.; et al. A comparison of model-simulated trends in stratospheric temperatures. Q. J. R. Meteorol. Soc. 2003, 129, 1565–1588. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Seidel, D.J.; Randel, W.; Zou, C.-Z.; Butler, A.H.; Mears, C.A.; Ossó, A.; Long, C.; Lin, R. The mystery of recent stratospheric temperature trends. Nature 2012, 491, 692–697. [Google Scholar] [CrossRef]
- Seidel, D.J.; Berger, F.H.; Immler, F.; Sommer, M.; Vömel, H.; Diamond, H.J.; Dykema, J.; Goodrich, D.E.; Murray, W.; Peterson, T.; et al. Reference Upper-Air Observations for Climate: Rationale, Progress, and Plans. Bull. Am. Meteorol. Soc. 2009, 90, 361–369. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.-H.; Ho, Y.-S. Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Glob. Planet. Chang. 2011, 77, 13–20. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Zou, C.-Z.; Qian, H.; Wang, W.; Wang, L.; Long, C. Recalibration and merging of SSU observations for stratospheric temperature trend studies. J. Geophys. Res. Atmos. 2014, 119, 13–180. [Google Scholar] [CrossRef]
- Seidel, D.J.; Li, J.; Mears, C.A.; Moradi, I.; Nash, J.; Randel, W.; Saunders, R.; Thompson, D.W.; Zou, C.-Z. Stratospheric temperature changes during the satellite era. J. Geophys. Res. Atmos. 2016, 121, 664–681. [Google Scholar] [CrossRef]
- Hilton, F.; Armante, R.; August, T.; Barnet, C.; Bouchard, A.; Camy-Peyret, C.; Capelle, V.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; et al. Hyperspectral Earth Observation from IASI: Five Years of Accomplishments. Bull. Am. Meteorol. Soc. 2012, 93, 347–370. [Google Scholar] [CrossRef]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef] [Green Version]
- Clarisse, L.; R’Honi, Y.; Coheur, P.-F.; Hurtmans, D.; Clerbaux, C. Thermal infrared nadir observations of 24 atmospheric gases. Geophys. Res. Lett. 2011, 38, 38. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.; Ohring, G.; Butler, J.; Cao, C.; Datla, R.; Doelling, D.; Gärtner, V.; Hewison, T.; Iacovazzi, B.; Kim, D.; et al. The Global Space-Based Inter-Calibration System. Bull. Am. Meteorol. Soc. 2011, 92, 467–475. [Google Scholar] [CrossRef]
- Boynard, A.; Hurtmans, D.; Garane, K.; Goutail, F.; Hadji-Lazaro, J.; Koukouli, M.; Wespes, C.; Vigouroux, C.; Keppens, A.; Pommereau, J.-P.; et al. Validation of the IASI FORLI/EUMETSAT ozone products using satellite (GOME-2), ground-based (Brewer–Dobson, SAOZ, FTIR) and ozonesonde measurements. Atmos. Meas. Tech. 2018, 11, 5125–5152. [Google Scholar] [CrossRef] [Green Version]
- EUMETSAT. IASI L2 Metop-B–Validation Report; EUMETSAT: Darmstadt, Germany, 2013. [Google Scholar]
- George, M.; Clerbaux, C.; Bouarar, I.; Coheur, P.-F.; Deeter, M.; Edwards, D.P.; Francis, G.; Gille, J.C.; Hadji-Lazaro, J.; Hurtmans, D.; et al. An examination of the long-term CO records from MOPITT and IASI: Comparison of retrieval methodology. Atmos. Meas. Tech. 2015, 8, 4313–4328. [Google Scholar] [CrossRef] [Green Version]
- Van Damme, M.; Whitburn, S.; Clarisse, L.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F. Version 2 of the IASI NH3 neural network retrieval algorithm: Near-real-time and reanalysed datasets. Atmos. Meas. Tech. 2017, 10, 4905–4914. [Google Scholar] [CrossRef] [Green Version]
- EUMETSAT. IASI Level 1C Climate Data Record Release 1 — Metop-A; EUMETSAT: Darmstadt, Germany, 2018. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. Era5 Reanalysis Is in Production, Ecmwf Newsletter. Available online: https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production (accessed on 31 August 2019).
- Collard, A.D. Selection of IASI channels for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 2007, 133, 1977–1991. [Google Scholar] [CrossRef]
- Schlüssel, P.; Hultberg, T.H.; Phillips, P.L.; August, T.; Calbet, X. The operational IASI Level 2 processor. Adv. Space Res. 2005, 36, 982–988. [Google Scholar] [CrossRef]
- August, T.; Klaes, D.; Schlüssel, P.; Hultberg, T.; Crapeau, M.; Arriaga, A.; O’Carroll, A.; Coppens, D.; Munro, R.; Calbet, X. IASI on Metop-A: Operational Level 2 retrievals after five years in orbit. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1340–1371. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding—Theory and Practice; World Scientific Publishing: London, UK, 2000. [Google Scholar]
- Matricardi, M. RTIASI-4, a new version of the ECMWF fast radiative transfer model for infrared atmospheric sounding interferometer. ECMWF Tech. Memo. 2003, 425, 63. [Google Scholar]
- Saunders, R.W.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- EUMETSAT. IASI Level 2: Product Guide; EUMETSAT: Darmstadt, Germany, 2017. [Google Scholar]
- Hersbach, H.; De Rosnay, P.; Bell, B.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; Alonso-Balmaseda, M.; Balsamo, G.; Bechtold, P.; et al. Operational Global Reanalysis: Progress, Future Directions and Synergies with Nwp, Era5 Report Series. Available online: https://www.ecmwf.int/en/elibrary/18765-operational-global-reanalysis-progress-future-directions-and-synergies-nwp (accessed on 31 August 2019).
- Copernicus Climate Change Service (c3s): Era5: Fifth Generation of Ecmwf Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (cds). Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 31 August 2019).
- ECMWF. IFS DOCUMENTATION—CY43R1. Part IV: Physical Processes; ECMWF: Reading, UK, 22 November 2016. [Google Scholar]
- McLaren, A.; Fiedler, E.; Roberts-Jones, J.; Martin, M.; Mao, C.; Good, S. Quality Information Document Global Ocean OSTIA Near Real Time Level 4 Sea Surface Temperature Product SSTGLO-SST-L4-NRT-OBSERVATIONS-010-001, EU Copernicus Marine Service. 2016. Available online: https://resources.marine.copernicus.eu/documents/QUID/CMEMS-OSI-QUID-010-001.pdf (accessed on 24 July 2020).
- Bormann, N.; Bonavita, M.; Dragani, R.; Eresmaa, R.; Matricardi, M.; McNally, A. Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Q. J. R. Meteorol. Soc. 2016, 142, 1767–1780. [Google Scholar] [CrossRef]
- Brindley, H.; Bantges, R.J. The Spectral Signature of Recent Climate Change. Curr. Clim. Chang. Rep. 2016, 2, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.; Uppala, S. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q. J. R. Meteorol. Soc. 2009, 135, 1830–1841. [Google Scholar] [CrossRef]
- Clerbaux, C.; Crevoisier, C. New Directions: Infrared remote sensing of the troposphere from satellite: Less, but better. Atmos. Environ. 2013, 72, 24–26. [Google Scholar] [CrossRef]
- Crevoisier, C.; Clerbaux, C.; Guidard, V.; Phulpin, T.; Armante, R.; Barret, B.; Camy-Peyret, C.; Chaboureau, J.-P.; Coheur, P.-F.; Crépeau, L.; et al. Towards IASI-New Generation (IASI-NG): Impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables. Atmos. Meas. Tech. 2014, 7, 4367–4385. [Google Scholar] [CrossRef] [Green Version]
Date | L1 Update | IASI L1 PPF Software Version |
---|---|---|
19 February 2009 | Routine on-board radiometric calibration update | |
12 May 2009 | Routine scan mirror reflectivity update (param) | |
18 May 2010 | “Day-2 evolution” improvement of the spectral calibration (param+algo) | 5.0.2 |
7 February 2011 | Update of the spectral harmonization functions and routine scan mirror reflectivity update (param) → pixel 2 in line with the other pixels | 5.1 |
20 April 2011 | Routine on-board radiometric calibration update | |
18 July 2012 | Routine scan mirror reflectivity update (param) | |
16 May 2013 | Change of the Instrument Point Spread Function (IPSF) and internal geometrical offset between the sounder and the integrated imager (param) | 6.2 |
28 August 2013 | Routine on-board radiometric calibration update | 6.5 |
16 September 2013 | Routine scan mirror reflectivity update (param) | |
17 June 2014 | New change of the internal geometrical offset between the sounder and the integrated imager (param) | 7.0 |
24 June 2015 | Routine scan mirror reflectivity update (param) | |
5 August 2015 | Routine on-board radiometric calibration update (param) | 7.3 |
7 February 2017 | Routine scan mirror reflectivity update (param) | 7.4 |
Date | L2 update | IASI L2 PPF Software Version |
---|---|---|
27 November 2007 | Initial release of IASI/Metop-A L2 | 4.0 |
29 April 2008 | Major changes in cloud coverage, surface temperature, and temperature profiles. | 4.2 |
21 January 2009 | Surface temperature only provided for cloud-free observations | 4.3.2 |
14 September 2010 | Improved T profiles, but available for fewer observations. From this version onwards, temperature profiles and surface temperatures are provided for the same observations. Increased number of cloud-free observations | 5.0.6 |
2 December 2010 | Temperature information is now also provided for cloudy pixels (more than half of the IASI observations now have this info.). | 5.1 |
20 October 2011 | Improved cloud screening for temperature retrieval. Changed radiative transfer model to RTTOV-10. | 5.2.1 |
28 February 2012 | Major change in the cloud detection algorithm, more stringent, resulting in a decrease of the number of cloud-free observations. Temperature information is now provided for observations with a cloud coverage below 25% | |
8 March 2013 | Initial release of IASI/Metop-B L2 | |
30 September 2014 | Major update in the processing algorithm, improved all-sky retrievals with statistical algorithm upgrades, and synergistic exploitation of IASI with AMSU/MHS. Provision of full retrieval error covariance after OEM. Simplified cloudiness summary | 6.0.5 |
24 September 2015 | Updates to the surface temperature algorithms, biases in land surface temperature reduced. | 6.1.1 |
2 June 2016 | PWLR exploits information in adjacent channels and becomes PWLR3. + finer atmospheric clustering. Important improvements to the temperature retrieval algorithms | 6.2.2 |
20 June 2017 | Enhancements to other IASI L2 products and auxiliary information (CO, SST flags, dust flags…) | 6.3.2 |
11 April 2018 | Updated CO2 assumptions to contemporary values in OEM, bias in tropospheric temperature reduced. | 6.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouillon, M.; Safieddine, S.; Hadji-Lazaro, J.; Whitburn, S.; Clarisse, L.; Doutriaux-Boucher, M.; Coppens, D.; August, T.; Jacquette, E.; Clerbaux, C. Ten-Year Assessment of IASI Radiance and Temperature. Remote Sens. 2020, 12, 2393. https://doi.org/10.3390/rs12152393
Bouillon M, Safieddine S, Hadji-Lazaro J, Whitburn S, Clarisse L, Doutriaux-Boucher M, Coppens D, August T, Jacquette E, Clerbaux C. Ten-Year Assessment of IASI Radiance and Temperature. Remote Sensing. 2020; 12(15):2393. https://doi.org/10.3390/rs12152393
Chicago/Turabian StyleBouillon, Marie, Sarah Safieddine, Juliette Hadji-Lazaro, Simon Whitburn, Lieven Clarisse, Marie Doutriaux-Boucher, Dorothée Coppens, Thomas August, Elsa Jacquette, and Cathy Clerbaux. 2020. "Ten-Year Assessment of IASI Radiance and Temperature" Remote Sensing 12, no. 15: 2393. https://doi.org/10.3390/rs12152393