Application of a Nighttime Fog Detection Method Using SEVIRI Over an Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. SEVIRI Data
2.2.2. METAR Data
2.2.3. ERA5 Data
2.3. Fog/Low Clouds Detection
2.4. Low Cloud Detection
2.5. Verification
3. Results and Discussion
3.1. Histograms
3.2. Monthly Threshold Maps: ems(3.9)
3.3. Assessment Over Two Fog Seasons
3.4. Analysis of Fog Frequency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gultepe, I.; Sharman, R.; Williams, P.D.; Zhou, B.; Ellrod, G.; Minnis, P.; Trier, S.; Griffin, S.; Yum, S.S.; Gharabaghi, B.; et al. A Review of High Impact Weather for Aviation Meteorology. Pure Appl. Geophys. 2019, 176, 1869–1921. [Google Scholar] [CrossRef]
- Yousef, L.A.; Temimi, M.; Wehbe, Y.A. Total cloud cover climatology over the United Arab Emirates. Atmos. Sci. Lett. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Eyre, J.R.; Brownscombe, J.L.; Allam, R.J. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery. Meteorol. Mag. 1984, 113, 266–271. [Google Scholar]
- Turner, J.; Allam, R.J.; Maine, D.R. A case-study of the detection of fog at night using channels 3 and 4 on the Advanced Very High-Resolution Radiometer (AVHRR). Meteorol. Mag. 1986, 115, 285–290. [Google Scholar]
- Cermak, J.; Bendix, J. Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI data: A feasibility study. Pure Appl. Geophys. 2007, 164, 1179–1192. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res. 2008, 87, 279–292. [Google Scholar] [CrossRef]
- Nilo, S.T.; Romano, F.; Cermak, J.; Cimini, D.; Ricciardelli, E.; Cersosimo, A. Fog detection based on Meteosat Second Generation-Spinning enhanced visible and infrared imager high resolution visible channel. Remote Sens. 2018, 10, 541. [Google Scholar] [CrossRef] [Green Version]
- Cermak, J. Low clouds and fog along the South-Western African coast—Satellite-based retrieval and spatial patterns. Atmos. Res. 2012, 116, 15–21. [Google Scholar] [CrossRef]
- Andersen, H.; Cermak, J. First fully diurnal fog and low cloud satellite detection reveals life cycle in the Namib. Atmos. Meas. Tech. 2018, 11, 5461–5470. [Google Scholar] [CrossRef] [Green Version]
- Egli, S.; Thies, B.; Bendix, J. A hybrid approach for fog retrieval based on a combination of satellite and ground truth data. Remote Sens. 2018, 10, 628. [Google Scholar] [CrossRef] [Green Version]
- Calvert, C.; Pavolonis, M. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Low Cloud and Fog; University of Wisconsin-Madison Space Science and Engineering Center: Madison, WI, USA, 2010. [Google Scholar]
- Pavolonis, M.J.; Heidinger, A.K. Advancements in identifying cirrus and multilayered cloud systems from operational satellite imagers at night. Appl. Weather Satell. II 2005, 5658, 225. [Google Scholar] [CrossRef]
- Ouarda, T.B.M.J.; Charron, C.A. Evolution of the rainfall regime in the united arab emirates. J. Hydrol. 2014, 514, 258–270. [Google Scholar] [CrossRef] [Green Version]
- De Villiers, M.; Van Heerden, J. Fog at Abu Dhabi international airport. Weather 2007, 62, 209–214. [Google Scholar] [CrossRef] [Green Version]
- TS, M.; Temimi, M.; Ajayamohan, R.S.; Fonseca, R.; Weston, M.; Valappil, V. On the investigation of the typology of fog events in an arid environment and the link with climate patterns. Mon. Weather Rev. 2020. [Google Scholar] [CrossRef]
- Aldababseh, A.; Temimi, M. Analysis of the long-term variability of poor visibility events in the UAE and the link with climate dynamics. Atmosphere 2017, 8, 242. [Google Scholar] [CrossRef] [Green Version]
- Karagulian, F.; Temimi, M.; Ghebreyesus, D.; Weston, M.; Kondapalli, N.K.; Valappil, V.K.; Aldababesh, A.; Lyapustin, A.; Chaouch, N.; Hammadi, F.A.; et al. Analysis of a severe dust storm and its impact on air quality conditions using WRF-Chem modeling, satellite imagery, and ground observations. Air Qual. Atmos. Health 2019, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Elhakeem, A.; Elshorbagy, W.; Bleninger, T. Long-term hydrodynamic modeling of the Arabian Gulf. Mar. Pollut. Bull. 2015, 94, 19–36. [Google Scholar] [CrossRef]
- Sheppard, C.; Al-Husiani, M.; Al-Jamali, F.; Al-Yamani, F.; Baldwin, R.; Bishop, J.; Benzoni, F.; Dutrieux, E.; Dulvy, N.K.; Durvasula, S.R.V.; et al. The Gulf: A young sea in decline. Mar. Pollut. Bull. 2010, 60, 13–38. [Google Scholar] [CrossRef]
- Bartok, J.; Bott, A.; Gera, M. Fog Prediction for Road Traffic Safety in a Coastal Desert Region: Improvement of Nowcasting Skills by the Machine-Learning Approach. Bound.-Layer Meteorol. 2012, 157, 501–516. [Google Scholar] [CrossRef]
- Weston, M.; Chaouch, N.; Valappil, V.; Temimi, M.; Ek, M.; Zheng, W. Assessment of the Sensitivity to the Thermal Roughness Length in Noah and Noah-MP Land Surface Model Using WRF in an Arid Region. Pure Appl. Geophys. 2018. [Google Scholar] [CrossRef]
- Temimi, M.; Fonseca, R.M.; Nelli, N.R.; Valappil, V.K.; Weston, M.J.; Thota, M.S.; Wehbe, Y.; Yousef, L. On the analysis of ground-based microwave radiometer data during fog conditions. Atmos. Res. 2020, 231, 104652. [Google Scholar] [CrossRef]
- Chaouch, N.; Temimi, M.; Weston, M.; Ghedira, H. Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region. Atmos. Res. 2016, 187, 106–127. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate, Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://climate.copernicus.eu/climate-data-store (accessed on 4 May 2018).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hornyi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 17–24. [Google Scholar] [CrossRef]
- Cao, C.; Shao, X. Planck Function. Available online: https://ncc.nesdis.noaa.gov/data/planck.html (accessed on 26 September 2019).
- Ellrod, G.P. Estimation of low cloud base heights at night from satellite infrared and surface temperature data. Natl. Weather Dig. 2002, 26, 39–44. [Google Scholar]
- Dammann, K.; Mueller, J.; Hanson, C.; Gartner, V.; Flewin, J.; Williams, M. MSG level 1.5 image data format description. EumetsatDarmstadtTech 2005, 3, 1–129. [Google Scholar]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- EUMETSAT. Best Practices for RGB Compositing of Multi-Spectral Imagery; User Service Division, EUMETSAT: Darmstadt, Germany, 2009; p. 8. [Google Scholar]
- Weston, M.J.; Temimi, M.; Nelli, N.R.; Fonseca, R.M. On the Analysis of the Low-Level Double Temperature Inversion Over the United Arab Emirates : A Case Study During April 2019. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
METAR Fog Yes | METAR Fog No | |
---|---|---|
SEVIRI fog yes | Hits | False Alarms |
SEVIRI fog no | Misses | Correct Negative |
OMAA | OMDB | OMAL | OMDW | |
---|---|---|---|---|
Statistic | ems(3.9)—Low Cloud | ems(3.9)—Low Cloud | ems(3.9)—Low Cloud | ems(3.9)—Low Cloud |
Total Hits | 26 | 10 | 20 | 23 |
Total Miss | 6 | 2 | 4 | 7 |
Total False Alarms | 17 | 10 | 10 | 18 |
POD | 0.81 | 0.83 | 0.83 | 0.77 |
FAR | 0.40 | 0.50 | 0.33 | 0.44 |
Bias score | 1.34 | 1.66 | 1.25 | 1.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weston, M.; Temimi, M. Application of a Nighttime Fog Detection Method Using SEVIRI Over an Arid Environment. Remote Sens. 2020, 12, 2281. https://doi.org/10.3390/rs12142281
Weston M, Temimi M. Application of a Nighttime Fog Detection Method Using SEVIRI Over an Arid Environment. Remote Sensing. 2020; 12(14):2281. https://doi.org/10.3390/rs12142281
Chicago/Turabian StyleWeston, Michael, and Marouane Temimi. 2020. "Application of a Nighttime Fog Detection Method Using SEVIRI Over an Arid Environment" Remote Sensing 12, no. 14: 2281. https://doi.org/10.3390/rs12142281
APA StyleWeston, M., & Temimi, M. (2020). Application of a Nighttime Fog Detection Method Using SEVIRI Over an Arid Environment. Remote Sensing, 12(14), 2281. https://doi.org/10.3390/rs12142281