Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Climate Regions
3.2. Nonparametric Quantile Mapping and Bias Corrections
3.3. Low-Pass Quantile Mapping Filter
3.4. Evaluation Metrics
4. Results
4.1. Spatial Evaluations
4.2. Temporal Evaluations
5. Summary and Conclusions
- The QM bias correction approach is an effective method for the bias correction of satellite-based precipitation products upon availability of the ground-based precipitation observations.
- The QM method can be trained on historical data to effectively bias-correct future remotely sensed observations.
- The CCS have poor performances in representing the precipitation rates and patterns in the Northern part of Iran (CR6), and QM is not effective in bias-correcting the CCS in this region due to its orographic and climatic conditions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsu, K.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Stocker, E.; Bolvin, D.T.; Nelkin, E.J. Analysis of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and post-real time. In Proceedings of the 12th Conference on Satellite Meteorology and Oceanography, Long Beach, CA, USA, 9–13 February 2003. [Google Scholar]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Gonzalez Miralles, D.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A quasi-global precipitation time series for drought monitoring. USA Geol. Surv. Data Ser. 2014, 832, 1–12. [Google Scholar]
- Chen, K.; Guo, S.; Wang, J.; Qin, P.; He, S.; Sun, S.; Naeini, M.R. Evaluation of GloFAS-Seasonal Forecasts for Cascade Reservoir Impoundment Operation in the Upper Yangtze River. Water 2019, 11, 2539. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi, A. Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. An assessment of satellite-derived rainfall products relative to ground observations over East Africa. Remote Sens. 2017, 9, 430. [Google Scholar] [CrossRef]
- Tang, L.; Tian, Y.; Yan, F.; Habib, E. An improved procedure for the validation of satellite-based precipitation estimates. Atmos. Res. 2015, 163, 61–73. [Google Scholar] [CrossRef]
- Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Nguyen, P.; Hsu, K.; Sorooshian, S.; Braithwaite, D. PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks. J. Hydrometeorol. 2019, 20, 2273–2289. [Google Scholar] [CrossRef]
- Serrat-Capdevila, A.; Merino, M.; Valdes, J.B.; Durcik, M. Evaluation of the performance of three satellite precipitation products over Africa. Remote Sens. 2016, 8, 836. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.P. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 2016, 30. [Google Scholar] [CrossRef]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. Bayesian Bias Correction of Satellite Rainfall Estimates for Climate Studies. Remote Sens. 2018, 10, 1074. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef]
- Sohn, B.J.; Han, H.-J.; Seo, E.-K. Validation of satellite-based high-resolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. J. Appl. Meteorol. Climatol. 2010, 49, 701–714. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104, 70–97. [Google Scholar] [CrossRef]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Thorstensen, A.R. The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Cressman, K.; Connor, S.J. Evaluating detection skills of satellite rainfall estimates over desert locust recession regions. J. Appl. Meteorol. Climatol. 2010, 49, 1322–1332. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens. 2013, 34, 8156–8171. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of satellite-based precipitation products over sparsely gauged African river basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.S.; Xue, X.; Zhang, X. Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef]
- Dinku, T.; Ruiz, F.; Connor, S.J.; Ceccato, P. Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteorol. Climatol. 2010, 49, 1004–1014. [Google Scholar] [CrossRef]
- Javanmard, S.; Yatagai, A.; Nodzu, M.I.; BodaghJamali, J.; Kawamoto, H. Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM 3B42 over Iran. Adv. Geosci. 2010, 25. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.-S.; Nasrollahi, N.; Hsu, K.-L.; Sorooshian, S. Evaluation of satellite-based precipitation estimation over Iran. J. Arid Environ. 2013, 97. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.-S.; Akbari Asanjan, A.; Hsu, K.-L.; Sorooshian, S. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmos. Res. 2017, 193. [Google Scholar] [CrossRef]
- Fang, G.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.; Akbari Asanjan, A.; Chavoshian, A.; Hsu, K.; Sorooshian, S. Assessment of seven CMIP5 model precipitation extremes over Iran based on a satellite-based climate data set. Int. J. Climatol. 2019, 39, 3505–3522. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Osorio, J.D.G.; Galiano, S.G.G. Assessing uncertainties in the building of ensemble RCMs over Spain based on dry spell lengths probability density functions. Clim. Dyn. 2013, 40, 1271–1290. [Google Scholar] [CrossRef]
- Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Verbist, K.M.J. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile. J. Geophys. Res. Atmos. 2016, 121, 3790–3806. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef]
- Alharbi, R.; Hsu, K.; Sorooshian, S. Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia. Arab. J. Geosci. 2018, 11, 508. [Google Scholar] [CrossRef]
- De Martonne, E. Treite de Geographie Physique, 7th ed.; Colin, Librairie Armand: Paris, France, 1948. [Google Scholar]
- Khalili, A.; Hajjam, S.; Irannejad, P. The General Model of Water and the Climate of Iran, The Fourth Part of Weather Division; Jamab: Tehran, Iran, 1991. [Google Scholar]
- Raziei, T.; Mofidi, A.; Santos, J.A.; Bordi, I. Spatial patterns and regimes of daily precipitation in Iran in relation to large-scale atmospheric circulation. Int. J. Climatol. 2012, 32, 1226–1237. [Google Scholar] [CrossRef]
- Domroes, M.; Kaviani, M.; Schaefer, D. An analysis of regional and intra-annual precipitation variability over Iran using multivariate statistical methods. Theor. Appl. Climatol. 1998, 61, 151–159. [Google Scholar] [CrossRef]
- Modarres, R. Regional precipitation climates of Iran. J. Hydrol. (N. Z.) 2006, 13–27. [Google Scholar]
- Roushangar, K.; Alizadeh, F. A multiscale spatio-temporal framework to regionalize annual precipitation using k-means and self-organizing map technique. J. Mt. Sci. 2018, 15, 1481–1497. [Google Scholar] [CrossRef]
- Raziei, T. An analysis of daily and monthly precipitation seasonality and regimes in Iran and the associated changes in 1951–2014. Theor. Appl. Climatol. 2018, 134, 913–934. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Raziei, T. A precipitation regionalization and regime for Iran based on multivariate analysis. Theor. Appl. Climatol. 2018, 131, 1429–1448. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; Volume 100, ISBN 0123850223. [Google Scholar]
- Hong, Y.; Gochis, D.; Cheng, J.; Hsu, K.; Sorooshian, S. Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeorol. 2007, 8, 469–482. [Google Scholar] [CrossRef]
- Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.M.H.; Imam, B.; Kuligowski, R.; Skahill, B. Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Am. Meteorol. Soc. 2011, 92, 1353–1357. [Google Scholar] [CrossRef]
- Mehran, A.; AghaKouchak, A. Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Process. 2014, 28, 2262–2270. [Google Scholar] [CrossRef]
- Evans, J.P.; Smith, R.B. Water vapor transport and the production of precipitation in the eastern Fertile Crescent. J. Hydrometeorol. 2006, 7, 1295–1307. [Google Scholar] [CrossRef]
- Chakraborty, A.; Behera, S.K.; Mujumdar, M.; Ohba, R.; Yamagata, T. Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon. Weather Rev. 2006, 134, 598–617. [Google Scholar] [CrossRef]
Gauge (mm/year) | CCS (mm/year) | CCS-BC (mm/year) | |
---|---|---|---|
CR1 | 294.1 | 318.6 | 284.5 |
CR2 | 333.2 | 643.7 | 297.8 |
CR3 | 246.4 | 593.5 | 239.1 |
CR4 | 407.7 | 442.0 | 366.6 |
CR5 | 118.1 | 237.1 | 121.7 |
CR6 | 882.2 | 752.6 | 653.7 |
CR7 | 160.3 | 476.7 | 173.3 |
Annual | Winter | Spring | Summer | Autumn | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | ||
CR1 | CORR | 0.7038 | 0.7388 | 0.6389 | 0.6855 | 0.6242 | 0.5884 | 0.6920 | 0.6477 | 0.811 | 0.8236 |
RMSE | 7.1 | 6.7 | 4.15 | 3.65 | 4.49 | 2.55 | 1.39 | 0.27 | 1.67 | 1.54 | |
BIAS | 24.5 | −9.59 | −26.8 | −3.8 | 49.9 | −3.8 | 13 | −0.1 | −11.6 | −1.8 | |
CR2 | CORR | −0.193 | 0.0118 | −0.323 | −0.001 | −0.198 | −0.135 | 0.6465 | 0.6652 | −0.160 | 0.0793 |
RMSE | 38.5 | 14.6 | 17.4 | 5.5 | 17.2 | 5.4 | 2 | 2.4 | 4.9 | 4.6 | |
BIAS | 310.5 | −35.4 | 143.3 | 8.2 | 143.8 | −21.9 | 5.4 | −13.5 | 18.1 | −8.1 | |
CR3 | CORR | 0.3115 | 0.3470 | 0.0605 | 0.0852 | 0.4056 | 0.2947 | 0.4888 | 0.4995 | 0.4414 | 0.4783 |
RMSE | 28.7 | 8.3 | 10.6 | 3.3 | 14.5 | 3.3 | 1.4 | 1.2 | 3.2 | 2 | |
BIAS | 347.1 | −7.3 | 123.5 | 2.1 | 181.4 | −11.1 | 9.9 | −0.5 | 32.3 | 2.2 | |
CR4 | CORR | 0.0600 | 0.1816 | −0.097 | −0.059 | 0.1760 | 0.2295 | 0.5649 | 0.5469 | 0.3085 | 0.3770 |
RMSE | 8.8 | 8.2 | 4.3 | 4.1 | 4.1 | 2.9 | 0.4 | 0.2 | 2.3 | 2.1 | |
BIAS | 34.4 | −41.1 | 2.1 | −10.2 | 49.7 | −17 | 5.4 | 0.04 | −22.8 | −13.9 | |
CR5 | CORR | −0.090 | −0.062 | −0.107 | −0.081 | 0.0807 | 0.0837 | 0.6281 | 0.6037 | 0.1687 | 0.1893 |
RMSE | 19.2 | 10.4 | 8.1 | 6 | 9 | 3.3 | 3.8 | 0.9 | 2 | 1.6 | |
BIAS | 119 | 3.7 | 31.3 | 1.8 | 60.7 | 2 | 20.3 | −1.3 | 6.7 | 1.2 | |
CR6 | CORR | 0.4 | 0.2430 | 0.1082 | 0.2462 | 0.4733 | 0.4211 | −0.147 | −0.295 | 0.4043 | 0.2528 |
RMSE | 43.7 | 51.6 | 14 | 11.8 | 21.1 | 6.8 | 12.7 | 11.2 | 39.1 | 28.6 | |
BIAS | −129.5 | −228.4 | 36.6 | −31.9 | 164.7 | −24.8 | −86 | −59.6 | −244.8 | −112.1 | |
CR7 | CORR | 0.3708 | 0.5367 | 0.1843 | 0.3817 | 0.1895 | 0.2936 | 0.6939 | 0.7563 | 0.4585 | 0.6250 |
RMSE | 23.2 | 5.9 | 8.2 | 2.5 | 12 | 2.2 | 0.9 | 0.7 | 2.9 | 1.5 | |
BIAS | 316.4 | 13 | 110.1 | 6.3 | 165.4 | 3.3 | 7.5 | 0.4 | 33.5 | 3 |
Annual | Winter | Spring | Summer | Autumn | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | CCS | CCS-BC | ||
CR1 | CORR | 0.487 | 0.525 | 0.029 | 0.116 | 0.584 | 0.0.576 | −0.023 | −0.031 | 0.615 | 0.703 |
RMSE | 139.2 | 136.5 | 85.4 | 78.5 | 64.9 | 46.1 | 27.2 | 25.8 | 53.5 | 50.7 | |
BIAS | 10.8 | −19.7 | −42.2 | −16.7 | 44.6 | −17.1 | −2 | −5.1 | 10.3 | 19.2 | |
CR2 | CORR | −0.071 | 0.141 | −0.046 | 0.195 | 0.039 | 0.162 | 0.445 | 0.380 | −0.004 | 0.181 |
RMSE | 465 | 151.7 | 126.1 | 75.7 | 267.2 | 73.5 | 26 | 27.9 | 96.3 | 59.5 | |
BIAS | 420.9 | 21.8 | 91.6 | −38.2 | 254.6 | 42.7 | −0.6 | −12.5 | 75.3 | 29.8 | |
CR3 | CORR | −0.016 | 0.082 | −0.094 | −0.038 | 0.180 | 0.176 | 0.248 | 0.263 | 0.009 | 0.147 |
RMSE | 367.1 | 101 | 98.6 | 44.5 | 224.1 | 47.7 | 13.6 | 14.3 | 65.2 | 33.6 | |
BIAS | 343.5 | 5.7 | 82.9 | −15.4 | 216.1 | 23.8 | 0.8 | −5.7 | 43.7 | 2.9 | |
CR4 | CORR | 0.361 | 0.421 | 0.279 | 0.326 | 0.270 | 0.209 | 0.124 | 0.101 | 0.212 | 0.353 |
RMSE | 183.6 | 164 | 92.4 | 95.8 | 133.3 | 88.3 | 26.7 | 27.5 | 65.5 | 64.6 | |
BIAS | 73.2 | −5.2 | −38.8 | −48.4 | 108.7 | 31.4 | −4.7 | −8.1 | 7.9 | 20 | |
CR5 | CORR | −0.043 | −0.025 | −0.310 | −0.239 | 0.328 | 0.270 | 0.278 | 0.201 | 0.461 | 0.381 |
RMSE | 166.6 | 96.5 | 90.2 | 69.3 | 67.1 | 25.9 | 29.8 | 14.1 | 17.4 | 15.3 | |
BIAS | 117.7 | 11 | 47.3 | 12.7 | 52.5 | −3.3 | 10.7 | 0.5 | 7.2 | 1 | |
CR6 | CORR | 0.521 | 0.395 | 0.335 | 0.451 | 0.196 | 0.250 | 0.177 | −0.085 | 0.505 | 0.203 |
RMSE | 313.7 | 367.7 | 96.4 | 105.1 | 282.8 | 88.3 | 156.1 | 155.7 | 257.7 | 225.7 | |
BIAS | 4.9 | −145.5 | 1.9 | −60.9 | 272.2 | 65.9 | −89.7 | −81.6 | −179.5 | −68.9 | |
CR7 | CORR | 0.392 | 0.485 | 0.176 | 0.253 | 0.232 | 0.228 | 0.574 | 0.420 | 0.270 | 0.564 |
RMSE | 369 | 99.9 | 103.2 | 46.1 | 222.2 | 49.1 | 10.8 | 12.6 | 65.4 | 27.3 | |
BIAS | 384.9 | 18.5 | 87.4 | −4.3 | 211.2 | 14.1 | −0.8 | −3.9 | 51.1 | 12.5 |
Calibration | Validation | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CR1 | CR2 | CR3 | CR4 | CR5 | CR6 | CR7 | CR1 | CR2 | CR3 | CR4 | CR5 | CR6 | CR7 | ||
RMSE (mm/day) | CCS | 2.11 | 3.64 | 2.79 | 2.25 | 1.44 | 6.90 | 2.21 | 2.77 | 3.28 | 3.90 | 2.81 | 1.33 | 6.39 | 2.60 |
CCS-BC | 1.95 | 1.79 | 1.65 | 2.18 | 1.15 | 5.52 | 1.11 | 2.57 | 2.17 | 2.11 | 2.68 | 1.13 | 5.08 | 1.28 | |
BIAS (mm/day) | CCS | 0.06 | 0.83 | 0.92 | 0.14 | 0.33 | −0.37 | 0.86 | 0.03 | 1.11 | 0.96 | 0.24 | 0.33 | 0.03 | 0.95 |
CCS-BC | −0.02 | −0.11 | −0.04 | −0.08 | 0.01 | −0.63 | 0.05 | −0.05 | 0.04 | 0.03 | 0.01 | 0.03 | −0.37 | 0.06 | |
CORR | CCS | 0.71 | 0.39 | 0.47 | 0.67 | 0.57 | 0.11 | 0.53 | 0.69 | 0.50 | 0.27 | 0.65 | 0.63 | 0.11 | 0.46 |
CCS-BC | 0.76 | 0.52 | 0.39 | 0.69 | 0.57 | 0.25 | 0.50 | 0.74 | 0.46 | 0.24 | 0.68 | 0.62 | 0.28 | 0.36 | |
FAR | CCS | 0.48 | 0.50 | 0.57 | 0.48 | 0.67 | 0.50 | 0.69 | 0.55 | 0.49 | 0.61 | 0.45 | 0.75 | 0.53 | 0.65 |
CCS-BC | 0.43 | 0.41 | 0.48 | 0.40 | 0.55 | 0.49 | 0.57 | 0.47 | 0.41 | 0.52 | 0.44 | 0.59 | 0.49 | 0.57 | |
POD | CCS | 0.85 | 0.83 | 0.79 | 0.79 | 0.82 | 0.50 | 0.88 | 0.75 | 0.85 | 0.91 | 0.75 | 0.70 | 0.52 | 0.86 |
CCS-BC | 0.80 | 0.61 | 0.55 | 0.73 | 0.60 | 0.43 | 0.62 | 0.70 | 0.69 | 0.59 | 0.65 | 0.60 | 0.48 | 0.54 | |
HSS | CCS | 0.59 | 0.50 | 0.43 | 0.53 | 0.43 | 0.20 | 0.40 | 0.48 | 0.50 | 0.47 | 0.50 | 0.32 | 0.21 | 0.43 |
CCS-BC | 0.62 | 0.47 | 0.42 | 0.57 | 0.47 | 0.20 | 0.44 | 0.53 | 0.50 | 0.44 | 0.46 | 0.44 | 0.24 | 0.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katiraie-Boroujerdy, P.-S.; Rahnamay Naeini, M.; Akbari Asanjan, A.; Chavoshian, A.; Hsu, K.-l.; Sorooshian, S. Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sens. 2020, 12, 2102. https://doi.org/10.3390/rs12132102
Katiraie-Boroujerdy P-S, Rahnamay Naeini M, Akbari Asanjan A, Chavoshian A, Hsu K-l, Sorooshian S. Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sensing. 2020; 12(13):2102. https://doi.org/10.3390/rs12132102
Chicago/Turabian StyleKatiraie-Boroujerdy, Pari-Sima, Matin Rahnamay Naeini, Ata Akbari Asanjan, Ali Chavoshian, Kuo-lin Hsu, and Soroosh Sorooshian. 2020. "Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran" Remote Sensing 12, no. 13: 2102. https://doi.org/10.3390/rs12132102
APA StyleKatiraie-Boroujerdy, P.-S., Rahnamay Naeini, M., Akbari Asanjan, A., Chavoshian, A., Hsu, K.-l., & Sorooshian, S. (2020). Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sensing, 12(13), 2102. https://doi.org/10.3390/rs12132102