Effects of Spring–Neap Tidal Cycle on Spatial and Temporal Variability of Satellite Chlorophyll-A in a Macrotidal Embayment, Ariake Sea, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data and Preprocessing
2.2. Tidal Level Data
2.3. Satellite Composite Data
- (1)
- From the daily data, composites were made for each tidal stage of each individual spring–neap tidal cycle to derive all the individual spring–neap tidal cycle data (four tidal stages (per tidal cycle) × two tidal cycles (per month) × 12 months × 16 years).
- (2)
- The individual spring–neap tidal cycle data was averaged for each month of each year, and then the data in the same month were averaged for all the years to obtain the monthly climatology data of each tidal stage (four tidal stages × 12 months).
- (3)
- Meanwhile, the individual spring–neap tidal cycle data were averaged for each year first, and then the data were averaged for all the years to derive the annual climatology data of each tidal stage (four tidal stages).
- (4)
- An average of the annual climatology of each tidal stage’s data was made to obtain the annual climatology data (one data point).
2.4. River Discharge Data
3. Results
3.1. Annual Climatology of Chl-a and TSM
3.2. Monthly Climatology of Chl-a and TSM
3.3. Individual Events of Spring–Neap Tidal Cycle Variability of Chl-a
4. Discussion
4.1. Use of Satellite Data to Investigate the Spring–Neap Tidal Variations in Chl-a and TSM
4.2. Spatial and Seasonal Variability of the Spring–Neap Tidal Cycle
4.3. Seasonal Influence of River Discharge to the Spring–Neap Tidal Variations in Chl-a
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aoki, K.; Onitsuka, G.; Shimizu, M.; Matsuo, H.; Kitadai, Y.; Ochiai, H.; Yamamoto, T.; Furukawa, S. Interregional difference in spring neap variations in stratification and chlorophyll fluorescence during summer in a tidal sea (Yatsushiro Sea, Japan). Estuar. Coast. Shelf Sci. 2016, 180, 212–220. [Google Scholar] [CrossRef]
- Azhikodan, G.; Yokoyama, K. Spatio-temporal variability of phytoplankton (Chlorophyll-a) in relation to salinity, suspended sediment concentration, and light intensity in a macrotidal estuary. Cont. Shelf Res. 2016, 126, 15–26. [Google Scholar] [CrossRef]
- Cloern, J.E.; Powell, T.M.; Huzzey, L.M. Spatial and temporal variability in south San Francisco Bay (USA), II, Temporal changes in salinity, suspended sediments, and phytoplankton biomass and productivity over tidal time scales. Estuar. Coast. Shelf Sci. 1989, 28, 599–613. [Google Scholar] [CrossRef]
- Koh, C.H.; Khim, J.S.; Araki, H.; Yamanishi, H.; Mogi, H.; Koga, K. Tidal resuspension of microphytobenthic Chlorophyll-a in a Nanaura mudflat, Saga, Ariake Sea, Japan: Flood−ebb and spring−neap variations. Mar. Ecol. Prog. Ser. 2006, 312, 85–100. [Google Scholar] [CrossRef]
- Monbet, Y. Control of phytoplankton biomass in estuaries: A comparative analysis of microtidal and macrotidal estuaries. Estuaries 1992, 15, 563–571. [Google Scholar] [CrossRef]
- Wofsy, S.C. A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters. Limnol. Oceanogr. 1983, 28, 1144–1155. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Song, Q. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sens. Environ. 2014, 140, 779–788. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Ishizaka, J.; Siswanto, E.; Baek Son, Y.; Yoo, S.; Kiyomoto, Y. Seasonal and spring interannual variations in satellite-observed chlorophyll-a in the Yellow and East China Seas: New datasets with reduced interference from high concentration of resuspended sediment. Cont. Shelf Res. 2013, 59, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gons, H.J.; Auer, M.T.; Effler, S.W. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Gt Lakes. Rem. Sens. Environ. 2008, 112, 4098–4106. [Google Scholar] [CrossRef]
- Ishizaka, J.; Kitaura, Y.; Touke, Y.; Sasaki, H.; Tanaka, A.; Murakami, H.; Suzuki, T.; Matsuoka, K.; Nakata, H. Satellite detection of red tide in Ariake Sound, 1998–2001. J. Oceanogr. 2006, 62, 37–45. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M.; Jiang, L. Spring-neap tidal effects on satellite ocean color observations in the Bohai Sea, Yellow Sea, and East China Sea. J. Geophysic. Res. 2011, 116. [Google Scholar] [CrossRef]
- Su, J.; Tian, T.; Krasemann, H.; Schartau, M.; Wirtz, K. Response patterns of phytoplankton growth to variations in resuspension in the German Bight revealed by daily MERIS data in 2003 and 2004. Oceanologia 2015, 57, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Tsutsumi, H. Critical events in the Ariake Sea ecosystem: Clam population collapse, red tides, and hypoxic bottom water. Plankton Benthos Res. 2006, 1, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Hayami, Y.; Maeda, K.; Hamada, T. Long term variation in transparency in the inner area of Ariake Sea. Estuar. Coast. Shelf Sci. 2015, 163, 290–296. [Google Scholar] [CrossRef]
- Unoki, S. Why did the tide and the tidal current decrease in Ariake Sea? Oceanogr. Japan 2002, 12, 85–96. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Unoki, S. The results of re-examining the recent decay of tide in Ariake Sea, based on smoothed data of observations. Oceanogr. Japan 2003, 12, 307–313. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Kodama, M. Effects of resuspended sediments on the environmental changes in the inner part of Ariake Sea, Japan. Bull. Fish Res. Agency 2007, 19, 9–15. [Google Scholar]
- Yang, M.M.; Ishizaka, J.; Goes, J.I.; Gomes, H.R.; Maúre, E.R.; Hayashi, M.; Katano, T.; Fujii, N.; Saitoh, K.; Mine, T.; et al. Improved MODIS-Aqua chlorophyll-a retrievals in the turbid semi-enclosed Ariake Sea, Japan. Remote Sens. 2018, 10, 1335. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; Cannizzaro, J.; Duan, H. Long-term distribution patterns of remotely sensed water quality parameters in Chesapeake Bay. Estuar. Coast. Shelf Sci. 2013, 128, 93–103. [Google Scholar] [CrossRef]
- Binding, C.E.; Bowers, D.G.; Mitchelson-Jacob, E.G. Estimating suspended sediment concentrations from ocean color measurements in moderately turbid waters; The impact of variable particle scattering properties. Remote Sens. Environ. 2005, 94, 373–383. [Google Scholar] [CrossRef]
- Kishino, M.; Tanaka, A.; Ishizaka, J. Retrieval of Chlorophyll-a, suspended solids and colored dissolved organic matter in Tokyo Bay using ASTER data. Remote Sens. Environ. 2005, 99, 66–74. [Google Scholar] [CrossRef]
- Ito, Y.; Katano, T.; Fujii, N.; Koriyama, M.; Yoshino, K.; Hayami, Y. Decreases in turbidity during neap tides initiate late winter large diatom blooms in a macrotidal embayment. J. Oceanogr. 2013, 69, 467–479. [Google Scholar] [CrossRef]
- Valente, A.S.; da Silva, J.C.B. On the observability of the fortnightly cycle of the Tagus estuary turbid plume using MODIS ocean colour images. J. Mar. Sci. 2009, 75, 131–137. [Google Scholar] [CrossRef]
- Hayashi, M.; Ishizaka, J.; Kobayashi, H.; Toratani, M.; Nakamura, T.; Nakashima, Y.; Yamada, S. Evaluation and improvement of MODIS and SeaWiFS-derived chlorophyll-a concentration in Ise-Mikawa Bay. J. RSSJ 2015, 35, 245–259, (In Japanese with English Abstract). [Google Scholar]
- Demers, S.; Therriault, J.C.; Bourget, E.; Bah, A. Resuspension in the shallow sublittoral zone of a macrotidal estuarine environment: Wind influence. Limnol. Oceanogr. 1987, 32, 327–339. [Google Scholar] [CrossRef]
- Black, K.S. Suspended sediment dynamics and bed erosion in the high shore mudflat region of the Humber Estuary, UK. Mar. Pollut. Bull. 1998, 37, 122–133. [Google Scholar] [CrossRef]
- DeJonge, V.N.; Vanbeusekom, J.E.E. Wind-and-tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol. Oceanogr. 1995, 40, 766–778. [Google Scholar]
- Ooshima, I.; Abe, K. Estimation method for the attenuation coefficient in the surface layer of the Ariake Sea. Oceanogr. Japan 2005, 14, 593–600, (In Japanese with English Abstract). [Google Scholar] [CrossRef] [Green Version]
- Lohrenz, S.E.; Dagg, M.J.; Whitledge, T.E. Enhanced primary production at the plume/oceanic interface of the Mississippi River. Cont. Shelf Res. 1990, 10, 639–664. [Google Scholar] [CrossRef]
- Smith, W.O.; DeMaster, D.J. Phytoplankton biomass and productivity in the Amazon River plume: Correlation with monthly river discharge. Cont. Shelf Res. 1996, 16, 291–319. [Google Scholar] [CrossRef]
- Dortch, Q.; Whitledge, T.E. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf Res. 1992, 12, 1293–1309. [Google Scholar] [CrossRef]
- Cloern, J.E.; Cole, B.E.; Wong, R.L.; Alpine, A.E. Temporal dynamics of estuarine phytoplankton: A case study of San Francisco Bay. Hydrobiologia 1985, 129, 153–176. [Google Scholar] [CrossRef]
- DeMaster, D.J.; Knapp, G.B.; Nittrouer, C.A. Effect of suspended sediments on geochemical processes near the mouth of the Amazon River: Examination of biogenic silica uptake and the fate of particle-reactive elements. Cont. Shelf Res. 1986, 6, 107–125. [Google Scholar] [CrossRef]
- Cole, J.C.; Caraco, N.F.; Peierls, B.L. Can phytoplankton maintain a positive carbon balance in a turbid, freshwater, tidal estuary? Limnol. Oceanogr. 1992, 37, 1608–1617. [Google Scholar] [CrossRef] [Green Version]
Chl-a Peaks | Whole Bay | Off Saga | Isahaya Bay | Off Kumamoto | ||||||||||||
Month | SN | N | NS | S | SN | N | NS | S | SN | N | NS | S | SN | N | NS | S |
Dec. | 1 | 1 | 1 | 1 | ||||||||||||
Jan. | 1 | 1 | 1 | 1 | ||||||||||||
Feb. | 1 | 1 | 1 | 1 | ||||||||||||
Mar. | 1 | 1 | 1 | 1 | ||||||||||||
Apr. | 1 | 1 | 1 | 1 | ||||||||||||
May | 1 | 1 | 1 | 1 | ||||||||||||
Jun. | 1 | 1 | 1 | 1 | ||||||||||||
Jul. | 1 | 1 | 1 | 1 | ||||||||||||
Aug. | 1 | 1 | 1 | 1 | ||||||||||||
Sep. | 1 | 1 | 1 | 1 | ||||||||||||
Oct. | 1 | 1 | 1 | 1 | ||||||||||||
Nov. | 1 | 1 | 1 | 1 | ||||||||||||
TSM Peaks | Whole Bay | Off Saga | Isahaya Bay | Off Kumamoto | ||||||||||||
Month | SN | N | NS | S | SN | N | NS | S | SN | N | NS | S | SN | N | NS | S |
Dec. | 1 | 1 | 1 | 1 | ||||||||||||
Jan. | 1 | 1 | 1 | 1 | ||||||||||||
Feb. | 1 | 1 | 1 | 1 | ||||||||||||
Mar. | 1 | 1 | 1 | 1 | ||||||||||||
Apr. | 1 | 1 | 1 | 1 | ||||||||||||
May | 1 | 1 | 1 | 1 | ||||||||||||
Jun. | 1 | 1 | 1 | 1 | ||||||||||||
Jul. | 1 | 1 | 1 | 1 | ||||||||||||
Aug. | 1 | 1 | 1 | 1 | ||||||||||||
Sep. | 1 | 1 | 1 | 1 | ||||||||||||
Oct. | 1 | 1 | 1 | 1 | ||||||||||||
Nov. | 1 | 1 | 1 | 1 |
Tidal Cycle ID | Chl-a (mg m−3) | TSM (g m−3) | Chl-a:TSM | River Discharge (m3 s−1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time Period | Month | SN | N | NS | S | Mean | SD | SN | N | NS | S | Mean | SD | SN | N | NS | S | Mean | Peak | Peak/Mean | |
TC-1 | 11/27/2003-12/11/2003 | Dec. | 6.06 | 7.72 | 7.85 | 6.53 | 7.04 | 0.88 | 3.07 | 2.64 | 5.27 | 4.58 | 3.89 | 1.41 | 1:472 | 1:365 | 1:511 | 1:495 | 198.43 | 311.33 | 1.57 |
TC-2 | 1/26/2004-2/10/2004 | Feb. | 8.06 | 3.73 | 8.66 | 4.04 | 6.12 | 2.60 | 2.45 | 2.29 | 2.27 | 2.78 | 2.45 | 0.10 | 1:304 | 1:613 | 1:262 | 1:689 | 138.46 | 161.54 | 1.17 |
TC-3 | 2/11/2004-2/23/2004 | Feb. | 2.73 | 3.36 | 3.23 | 3.49 | 3.20 | 0.33 | 3.59 | 2.52 | 3.34 | 4.79 | 3.56 | 0.56 | 1:1316 | 1:750 | 1:1034 | 1:1373 | 130.77 | 173.24 | 1.32 |
TC-4 | 3/26/2012-4/10/2012 | Apr. | 8.45 | 7.38 | 5.51 | 4.10 | 6.36 | 1.94 | 3.87 | 3.88 | 5.84 | 3.19 | 4.19 | 1.13 | 1:457 | 1:526 | 1:1059 | 1:777 | 429.34 | 1359.58 | 3.17 |
TC-5 | 4/28/2005-5/10/2005 | May | 3.98 | 7.39 | 11.29 | 8.19 | 7.71 | 3.00 | 4.15 | 3.17 | 3.15 | 5.83 | 4.07 | 0.57 | 1:1042 | 1:429 | 1:279 | 1:711 | 426.58 | 1533.01 | 3.59 |
TC-6 | 8/14/2010-8/28/2010 | Aug. | 30.81 | 20.96 | 12.54 | 12.20 | 19.13 | 8.78 | 2.64 | 3.29 | 2.57 | 3.97 | 3.12 | 0.40 | 1:86 | 1:157 | 1:205 | 1:325 | 255.59 | 428.56 | 1.68 |
TC-7 | 7/24/2008-8/5/2008 | Jul. | 17.58 | 12.78 | 17.89 | 32.97 | 20.31 | 8.76 | 2.26 | 2.68 | 4.98 | 3.47 | 3.35 | 1.46 | 1:129 | 1:210 | 1:278 | 1:105 | 289.92 | 639.89 | 2.21 |
TC-8 | 9/29/2003-10/12/2003 | Oct. | 4.94 | 8.17 | 6.07 | 6.67 | 6.46 | 1.35 | 5.11 | 3.55 | 5.58 | 5.49 | 4.93 | 1.06 | 1:1036 | 1:435 | 1:918 | 1:824 | 186.76 | 200.17 | 1.07 |
TC-9 | 10/13/2003-10/27/2003 | Oct. | 5.37 | 6.22 | 7.45 | 5.82 | 6.21 | 0.89 | 3.41 | 2.62 | 6.47 | 4.65 | 4.29 | 2.03 | 1:634 | 1:421 | 1:869 | 1:800 | 174.64 | 226.01 | 1.29 |
TC-10 | 11/16/2004-11/28/2004 | Nov. | 5.42 | 8.20 | 7.37 | 8.51 | 7.37 | 1.39 | 3.56 | 2.93 | 3.70 | 3.08 | 3.32 | 0.41 | 1:656 | 1:357 | 1:502 | 1:362 | 257.59 | 428.62 | 1.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Goes, J.I.; Tian, H.; Maúre, E.d.R.; Ishizaka, J. Effects of Spring–Neap Tidal Cycle on Spatial and Temporal Variability of Satellite Chlorophyll-A in a Macrotidal Embayment, Ariake Sea, Japan. Remote Sens. 2020, 12, 1859. https://doi.org/10.3390/rs12111859
Yang M, Goes JI, Tian H, Maúre EdR, Ishizaka J. Effects of Spring–Neap Tidal Cycle on Spatial and Temporal Variability of Satellite Chlorophyll-A in a Macrotidal Embayment, Ariake Sea, Japan. Remote Sensing. 2020; 12(11):1859. https://doi.org/10.3390/rs12111859
Chicago/Turabian StyleYang, Mengmeng, Joaquim I. Goes, Hongzhen Tian, Elígio de R. Maúre, and Joji Ishizaka. 2020. "Effects of Spring–Neap Tidal Cycle on Spatial and Temporal Variability of Satellite Chlorophyll-A in a Macrotidal Embayment, Ariake Sea, Japan" Remote Sensing 12, no. 11: 1859. https://doi.org/10.3390/rs12111859
APA StyleYang, M., Goes, J. I., Tian, H., Maúre, E. d. R., & Ishizaka, J. (2020). Effects of Spring–Neap Tidal Cycle on Spatial and Temporal Variability of Satellite Chlorophyll-A in a Macrotidal Embayment, Ariake Sea, Japan. Remote Sensing, 12(11), 1859. https://doi.org/10.3390/rs12111859