Performance Evaluation of the Multiple Quantile Regression Model for Estimating Spatial Soil Moisture after Filtering Soil Moisture Outliers
Abstract
:1. Introduction
2. Materials and Methods
2.1. MODIS Data
2.2. Observed Data
2.3. Anomaly Detection Algorithm
2.4. Multiple Quantile Regression Model
3. Results
3.1. Outlier Detection of Observed SM Data
3.2. Seasonal Multiple Quantile Regression (MQR) Results
3.3. Performance Comparison between The MLR And MQR Models
4. Discussion
4.1. Limitation of the MQR Model
4.2. Extension of Input Variables
5. Conclusions
- As a result of outlier detection, the average DRRs for IF1 and IF2 were 23.6% and 14.4%, respectively, at 58 stations. In addition, average COR_PCP for IF1 and IF2 were 29.9% and 37.6%, respectively. The result of IF2 shows that the IF algorithm considering PCP (precipitation) can improve suitability of the outlier detection. Finally, the IF2 result was used as an input variable.
- When comparing the MLR and MQR results, the R2 and RMSE values for MLR were 0.20 to 0.66 and 1.86% to 12.21%/day, respectively, while the R2 and RMSE values for MQR were 0.25 to 0.77 and 1.08% and 7.23%/day, respectively. From these results, the R2 improved by 0.13 from an average of 0.38 to 0.50, and the RMSE decreased by 1.1%/day errors from an average of 4.15% to 3.05%/day.
- Finally, in addition to improvement in accuracy, box plots were constructed for the four major stations representing each of the soil types to match the cumulative distribution functions (CDF) between observed SM and estimated SM, including MLR and MQR. At these stations, Q1 and Q3 of the MQR showed significant improvements. The Q1 and Q3 absolute percent errors for the MQR improved by 25.9% and 5.2%, respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Gevaert, A.I.; Parinussa, R.M.; Renzullo, L.J.; van Dijk, A.I.J.M.; de Jeu, R.A.M. Spatio-temporal evaluation of resolution enhancement for passive microwave soil moisture and vegetation optical depth. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 235–244. [Google Scholar] [CrossRef]
- Torres-Rua, F.A.; Ticlavilca, M.A.; Bachour, R.; McKee, M. Estimation of surface soil moisture in irrigated lands by assimilation of landsat vegetation indices, surface energy balance products, and relevance vector machines. Water 2016, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.; Gillies, R.; Perry, E. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Jung, C.G.; Lee, Y.G.; Cho, Y.; Kim, S. A study of spatial soil moisture estimation using a multiple linear regression model and MODIS land surface temperature data corrected by conditional merging. Remote Sens. 2017, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Njoku, E.; Wilson, W.; Yueh, S.; Dinardo, S.; Li, F.; Jackson, T.; Lakshmi, V.; Bolten, J. Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Trans. Geosci. Remote Sens. 2003, 40, 2659–2673. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dubois, P.C.; van Zyl, J. Radar mapping of surface soil moisture. J. Hydrol. 1996, 184, 57–84. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Jackson, T.J.; Bindlish, R.; Colliander, A. Passive/active microwave soil moisture change disaggregation using SMAPVEX12 data. J. Hydrol. 2019, 574, 1085–1098. [Google Scholar] [CrossRef]
- White, J.; Berg, A.A.; Champagne, C.; Warland, J.; Zhang, Y. Canola yield sensitivity to climate indicators and passive microwave-derived soil moisture estimates in Saskatchewan, Canada. Agric. For. Meteorol. 2019, 268, 354–362. [Google Scholar] [CrossRef]
- Dong, J.; Crow, W.T.; Tobin, K.J.; Cosh, M.H.; Bosch, D.D.; Starks, P.J.; Seyfried, M.; Collins, C.H. Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation. Remote Sens. Environ. 2020, 242, 111756. [Google Scholar] [CrossRef]
- Ye, N.; Walker, J.P.; Rüdiger, C.; Ryu, D.; Gurney, R.J. Surface rock effects on soil moisture retrieval from L-band passive microwave observations. Remote Sens. Environ. 2018, 215, 33–43. [Google Scholar] [CrossRef]
- Su, C.-H.; Ryu, D.; Western, A.W.; Wagner, W. De-noising of passive and active microwave satellite soil moisture time series. Geophys. Res. Lett. 2013, 40, 3624–3630. [Google Scholar] [CrossRef]
- Lei, F.; Crow, W.T.; Shen, H.; Su, C.-H.; Holmes, T.R.H.; Parinussa, R.M.; Wang, G. Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error. Remote Sens. Environ. 2018, 205, 85–99. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, L20401. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.; Philippe, W.; Richaume, P.; Wigneron, J.-P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.; et al. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Njoku, E.; Jackson, T.; Lakshmi, V.; Chan, T.; Nghiem, S. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- De Jeu, R.A.M.; Wagner, W.; Holmes, T.R.H.; Dolman, A.J.; van de Giesen, N.C.; Friesen, J. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 2008, 29, 399–420. [Google Scholar] [CrossRef] [Green Version]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Werbylo, K.L.; Niemann, J.D. Evaluation of sampling techniques to characterize topographically-dependent variability for soil moisture downscaling. J. Hydrol. 2014, 516, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Djamai, N.; Magagi, R.; Goïta, K.; Merlin, O.; Kerr, Y.; Roy, A. A combination of DISPATCH downscaling algorithm with CLASS land surface scheme for soil moisture estimation at fine scale during cloudy days. Remote Sens. Environ. 2016, 184, 1–14. [Google Scholar] [CrossRef]
- Kang, J.; Jin, R.; Li, X.; Ma, C.; Qin, J.; Zhang, Y. High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and MODIS apparent thermal inertia in the Babao River Basin, China. Remote Sens. Environ. 2017, 191, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Jung, C.; Kim, S. Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data. Agric. Water Manag. 2019, 213, 580–593. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric. For. Meteorol. 2009, 149, 1327–1342. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Jackson, R.D.; Reginato, R.J.; Idso, S.B. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J., Jr. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Jackson, R.D. Canopy temperature and crop water stress. In Advances in Irrigation; Hillel, D., Ed.; Academic Press: New York, NY, USA, 1982; pp. 43–85. [Google Scholar]
- Gillies, R.R.; Kustas, W.P.; Humes, K.S. A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface e. Int. J. Remote Sens. 1997, 18, 3145–3166. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Biswas, A. Comparison of spectral and spatial-based approaches for mapping the local variation of soil moisture in a semi-arid mountainous area. Sci. Total Environ. 2020, 724, 138319. [Google Scholar] [CrossRef]
- Mohseni, F.; Mokhtarzade, M. A new soil moisture index driven from an adapted long-term temperature-vegetation scatter plot using MODIS data. J. Hydrol. 2020, 581, 124420. [Google Scholar] [CrossRef]
- Long, D.; Bai, L.; Yan, L.; Zhang, C.; Yang, W.; Lei, H.; Quan, J.; Meng, X.; Shi, C. Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution. Remote Sens. Environ. 2019, 233, 111364. [Google Scholar] [CrossRef]
- Hassan, A.M.; Belal, A.A.; Hassan, M.A.; Farag, F.M.; Mohamed, E.S. Potential of thermal remote sensing techniques in monitoring waterlogged area based on surface soil moisture retrieval. J. Afr. Earth Sci. 2019, 155, 64–74. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J.; Liu, P. Evaluation and Validation of a High Spatial Resolution Satellite Soil Moisture Product over the Continental United States. J. Hydrol. 2020, 125043. [Google Scholar] [CrossRef]
- Lee, Y.G.; Kim, S. The modified SEBAL for mapping daily spatial evapotranspiration of South Korea using three flux towers and Terra MODIS data. Remote Sens. 2016, 8, 983. [Google Scholar] [CrossRef] [Green Version]
- Ozelkan, E.; Bagis, S.; Ozelkan, E.C.; Ustundag, B.B.; Yucel, M.; Ormeci, C. Spatial interpolation of climatic variables using land surface temperature and modified inverse distance weighting. Int. J. Remote Sens. 2015, 36, 1000–1025. [Google Scholar] [CrossRef]
- Or, D.; Hanks, R.J. Spatial and temporal soil water estimation considering soil variability and evapotranspiration uncertainty. Water Resour. Res. 1992, 28, 803–814. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Skaggs, T.H.; Famiglietti, J.S. Analysis and mapping of field-scale soil moisture variability using high-resolution, ground-based data during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resour. Res. 2000, 36, 1023–1031. [Google Scholar] [CrossRef] [Green Version]
- Goudenhoofdt, E.; Delobbe, L. Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol. Earth Syst. Sci. 2009, 13, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM National Conference, Las Vegas, NV, USA, 27–29 August 1968; pp. 517–524. [Google Scholar] [CrossRef]
- Ding, Z.; Fei, M. An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proc. Vol. 2013, 46, 12–17. [Google Scholar] [CrossRef]
- Chen, W.; Yun, Y.-H.; wen, M.; Lu, H.; Zhang, Z.; Liang, Y. Representative subset selection and outlier detection via isolation forest. Anal. Methods 2016, 8, 7225–7231. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Melly, B. Decomposition of differences in distribution using quantile regression. Labour Econ. 2005, 12, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R.; Hallock, K.F. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
No. | Station | Class | No. | Station | Class | No. | Station | Class | No. | Station | Class |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | CW | Sand | 16 | PU | Loam | 31 | NI | Clay | 46 | SD2 | Loam |
2 | SW | Sand | 17 | HH2 | Clay | 32 | JJ4 | Clay | 47 | SC2 | Clay |
3 | SC1 | Sand | 18 | II | Loam | 33 | JJ5 | Clay | 48 | YY3 | Silt |
4 | CJ | Sand | 19 | CH | Loam | 34 | YG2 | Clay | 49 | CC4 | Sand |
5 | CC1 | Clay | 20 | CO | Clay | 35 | GO | Loam | 50 | YO | Clay |
6 | SS1 | Clay | 21 | YS2 | Silt | 36 | HH4 | Clay | 51 | PB | Loam |
7 | BS | Sand | 22 | JB | Sand | 37 | HH5 | Clay | 52 | GG4 | Silt |
8 | CC2 | Loam | 23 | NG | Clay | 38 | YD | Clay | 53 | TG2 | Silt |
9 | GB1 | Silt | 24 | GD | Loam | 39 | HS | Clay | 54 | JC2 | Clay |
10 | JC1 | Loam | 25 | YS3 | Silt | 40 | HU | Clay | 55 | SY | Clay |
11 | HB | Loam | 26 | CC3 | Loam | 41 | JG | Clay | 56 | HJ | Clay |
12 | YC | Loam | 27 | HH3 | Clay | 42 | BU | Silt | 57 | GG5 | Loam |
13 | IJ | Silt | 28 | JJ3 | Loam | 43 | YJ | Clay | 58 | HH6 | Sand |
14 | YY1 | Loam | 29 | GB2 | Clay | 44 | GJ | Clay | |||
15 | HH1 | Clay | 30 | MM | Clay | 45 | CY | Clay |
Station No. | DRR (%) | COR_PCP (%) | Station No. | DRR (%) | COR_PCP (%) | Station No. | DRR (%) | COR_PCP (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IF1 | IF2 | IF1 | IF2 | IF1 | IF2 | IF1 | IF2 | IF1 | IF2 | IF1 | IF2 | |||
1 | 9.3 | 9.4 | 70.1 | 74.6 | 21 | 28.8 | 15.7 | 11.2 | 23.1 | 41 | 28.8 | 19.1 | 18.7 | 28.4 |
2 | 10.0 | 10.0 | 46.3 | 62.5 | 22 | 28.5 | 16.2 | 11.3 | 19.0 | 42 | 28.8 | 14.9 | 18.8 | 30.3 |
3 | 9.1 | 9.1 | 62.5 | 69.4 | 23 | 28.9 | 15.0 | 12.3 | 23.2 | 43 | 28.8 | 17.3 | 20.1 | 25.0 |
4 | 8.3 | 8.3 | 56.9 | 68.6 | 24 | 30.6 | 19.2 | 22.6 | 25.3 | 44 | 28.8 | 18.1 | 24.5 | 31.1 |
5 | 10.0 | 10.0 | 66.2 | 73.9 | 25 | 28.8 | 17.3 | 20.5 | 29.1 | 45 | 28.8 | 13.9 | 25.5 | 32.9 |
6 | 9.9 | 9.9 | 61.0 | 75.2 | 26 | 29.1 | 19.3 | 17.6 | 21.3 | 46 | 28.5 | 16.0 | 27.3 | 28.6 |
7 | 9.1 | 9.1 | 75.8 | 75.0 | 27 | 29.3 | 17.6 | 22.5 | 26.8 | 47 | 28.8 | 15.2 | 25.2 | 29.6 |
8 | 10.0 | 10.0 | 70.1 | 82.5 | 28 | 28.9 | 16.8 | 16.6 | 22.8 | 48 | 28.8 | 14.7 | 24.8 | 32.5 |
9 | 10.0 | 10.0 | 52.7 | 66.7 | 29 | 28.8 | 17.3 | 17.0 | 21.8 | 49 | 28.8 | 14.9 | 20.1 | 30.6 |
10 | 21.7 | 13.3 | 22.7 | 31.8 | 30 | 28.9 | 15.0 | 14.8 | 24.4 | 50 | 30.6 | 16.4 | 12.6 | 24.4 |
11 | 2.1 | 7.6 | 64.2 | 64.2 | 31 | 28.8 | 15.7 | 15.2 | 26.1 | 51 | 28.8 | 14.4 | 26.0 | 33.6 |
12 | 7.0 | 8.3 | 72.0 | 73.2 | 32 | 28.9 | 18.9 | 17.4 | 26.5 | 52 | 28.8 | 17.5 | 20.0 | 24.8 |
13 | 1.1 | 8.2 | 69.5 | 72.0 | 33 | 28.8 | 16.5 | 19.0 | 22.6 | 53 | 28.8 | 13.6 | 19.7 | 28.9 |
14 | 1.9 | 7.8 | 75.7 | 71.6 | 34 | 30.6 | 20.6 | 23.6 | 31.5 | 54 | 28.8 | 14.7 | 18.8 | 28.9 |
15 | 1.1 | 7.6 | 63.7 | 70.8 | 35 | 28.8 | 17.0 | 18.1 | 25.2 | 55 | 30.9 | 14.6 | 15.4 | 25.5 |
16 | 28.8 | 15.7 | 22.8 | 30.7 | 36 | 28.8 | 16.8 | 20.6 | 27.5 | 56 | 28.8 | 14.1 | 15.9 | 24.5 |
17 | 29.2 | 14.1 | 18.9 | 28.3 | 37 | 28.8 | 16.2 | 12.1 | 24.2 | 57 | 28.8 | 13.6 | 18.6 | 27.1 |
18 | 28.8 | 14.1 | 18.0 | 29.7 | 38 | 28.8 | 17.0 | 17.0 | 25.5 | 58 | 28.8 | 15.7 | 17.7 | 25.0 |
19 | 28.8 | 13.6 | 17.4 | 25.7 | 39 | 28.8 | 18.6 | 13.2 | 23.0 | |||||
20 | 28.8 | 17.8 | 14.4 | 26.1 | 40 | 28.8 | 16.5 | 24.3 | 29.7 |
Class | Season | QT | Con. | NDVI | LST | Precipitation (mm) | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | n-1 | n-2 | n-3 | n-4 | n-5 | |||||||
Silt | Spring | 0.1 | 15.088 | 0.055 | −0.087 | 0.089 | 0.079 | 0.078 | 0.058 | 0.066 | −3.376 | 0.39 |
0.5 | 24.553 | 0.106 | −0.106 | 0.142 | 0.119 | 0.104 | 0.087 | 0.096 | 0.719 | 0.40 | ||
0.9 | 35.656 | 0.052 | −0.001 | 0.104 | 0.046 | 0.028 | 0.025 | 0.030 | −9.066 | 0.41 | ||
Summer | 0.1 | 10.026 | 0.038 | −0.155 | 0.038 | 0.027 | 0.036 | 0.016 | 0.021 | 6.791 | 0.38 | |
0.5 | 17.717 | 0.058 | −0.051 | 0.055 | 0.048 | 0.043 | 0.043 | 0.047 | 6.966 | 0.40 | ||
0.9 | 31.081 | 0.071 | 0.019 | 0.058 | 0.021 | 0.016 | 0.029 | 0.031 | −2.576 | 0.40 | ||
Autumn | 0.1 | 18.406 | 0.007 | −0.100 | 0.042 | 0.021 | 0.017 | 0.019 | 0.010 | −7.386 | 0.40 | |
0.5 | 22.940 | 0.065 | −0.167 | 0.079 | 0.061 | 0.045 | 0.026 | 0.036 | 5.807 | 0.37 | ||
0.9 | 36.441 | 0.056 | −0.045 | 0.094 | 0.049 | 0.030 | 0.021 | −0.001 | −8.570 | 0.41 | ||
Winter | 0.1 | 11.860 | 0.129 | 1.008 | 0.251 | 0.326 | 0.235 | 0.223 | 0.190 | −6.306 | 0.47 | |
0.5 | 25.117 | −0.064 | 0.968 | 0.090 | 0.113 | 0.071 | 0.108 | 0.155 | −7.171 | 0.43 | ||
0.9 | 37.093 | −0.034 | 0.190 | 0.176 | 0.068 | 0.035 | 0.064 | 0.059 | −15.736 | 0.42 | ||
Clay | Spring | 0.1 | 30.384 | 0.117 | 0.059 | 0.087 | 0.070 | 0.046 | 0.143 | 0.077 | −29.746 | 0.75 |
0.5 | 32.075 | 0.084 | 0.324 | 0.080 | 0.067 | 0.063 | 0.031 | 0.057 | −31.456 | 0.82 | ||
0.9 | 35.573 | 0.066 | 0.387 | 0.044 | 0.077 | −0.025 | 0.039 | −0.002 | −35.157 | 0.73 | ||
Summer | 0.1 | −2.619 | 0.047 | 0.892 | 0.106 | 0.062 | 0.106 | 0.109 | 0.031 | −9.398 | 0.48 | |
0.5 | 25.584 | 0.124 | 0.858 | 0.134 | 0.110 | 0.098 | 0.078 | 0.063 | −34.960 | 0.72 | ||
0.9 | 33.948 | 0.026 | 0.114 | 0.016 | 0.003 | 0.007 | 0.013 | 0.020 | −4.555 | 0.38 | ||
Autumn | 0.1 | 26.819 | −0.021 | 0.648 | −0.008 | −0.012 | 0.037 | −0.019 | −0.012 | −33.065 | 0.55 | |
0.5 | 35.786 | −0.088 | 1.060 | −0.002 | −0.007 | 0.034 | −0.024 | −0.032 | −48.069 | 0.75 | ||
0.9 | 36.127 | −0.006 | 0.380 | 0.032 | 0.008 | −0.019 | −0.036 | −0.046 | −15.892 | 0.46 | ||
Winter | 0.1 | 20.479 | 0.029 | 0.165 | −0.010 | −0.002 | 0.049 | 0.046 | 0.026 | −2.949 | 0.42 | |
0.5 | 30.070 | 0.029 | 0.786 | 0.018 | 0.229 | 0.056 | 0.181 | 0.222 | −20.613 | 0.60 | ||
0.9 | 25.154 | 0.502 | 0.687 | 0.148 | 0.086 | −0.036 | 0.243 | 0.245 | 18.411 | 0.51 | ||
Loam | Spring | 0.1 | 19.022 | 0.054 | −0.274 | 0.126 | 0.094 | 0.082 | 0.087 | 0.091 | 2.036 | 0.42 |
0.5 | 28.364 | 0.072 | −0.252 | 0.106 | 0.090 | 0.083 | 0.075 | 0.074 | −0.018 | 0.42 | ||
0.9 | 38.353 | 0.061 | −0.132 | 0.108 | 0.083 | 0.050 | 0.043 | 0.073 | −9.671 | 0.42 | ||
Summer | 0.1 | 3.738 | 0.021 | −0.019 | 0.022 | 0.027 | 0.032 | 0.034 | 0.044 | 10.756 | 0.40 | |
0.5 | 14.114 | 0.065 | −0.036 | 0.070 | 0.061 | 0.058 | 0.057 | 0.071 | 9.071 | 0.41 | ||
0.9 | 32.465 | 0.084 | −0.048 | 0.077 | 0.067 | 0.062 | 0.061 | 0.063 | −3.093 | 0.41 | ||
Autumn | 0.1 | 12.948 | 0.012 | −0.410 | 0.015 | 0.010 | −0.007 | 0.013 | −0.002 | 12.524 | 0.39 | |
0.5 | 24.783 | 0.055 | −0.422 | 0.089 | 0.064 | 0.044 | 0.036 | 0.019 | 7.792 | 0.41 | ||
0.9 | 37.487 | 0.050 | −0.157 | 0.087 | 0.064 | 0.054 | 0.042 | 0.028 | −7.276 | 0.41 | ||
Winter | 0.1 | 8.255 | 0.089 | 0.632 | 0.138 | 0.242 | 0.130 | 0.157 | 0.231 | 17.201 | 0.45 | |
0.5 | 22.587 | 0.163 | 0.185 | 0.202 | 0.179 | 0.140 | 0.142 | 0.153 | 9.681 | 0.40 | ||
0.9 | 36.759 | 0.212 | 0.242 | 0.223 | 0.232 | 0.200 | 0.192 | 0.175 | −11.426 | 0.41 | ||
Sand | Spring | 0.1 | 14.288 | 0.052 | −0.021 | 0.089 | 0.055 | 0.050 | 0.047 | 0.043 | −13.091 | 0.40 |
0.5 | 21.173 | 0.085 | −0.195 | 0.162 | 0.115 | 0.097 | 0.097 | 0.110 | −0.466 | 0.39 | ||
0.9 | 33.889 | 0.159 | −0.306 | 0.122 | 0.115 | 0.077 | 0.063 | 0.091 | 3.008 | 0.38 | ||
Summer | 0.1 | 2.645 | 0.057 | 0.090 | 0.052 | 0.030 | 0.047 | 0.052 | 0.052 | 1.584 | 0.38 | |
0.5 | 13.922 | 0.042 | 0.009 | 0.046 | 0.025 | 0.030 | 0.027 | 0.027 | 5.284 | 0.38 | ||
0.9 | 22.956 | 0.073 | −0.203 | 0.094 | 0.050 | 0.043 | 0.024 | 0.035 | 14.563 | 0.42 | ||
Autumn | 0.1 | 16.412 | 0.073 | −0.250 | 0.050 | 0.053 | 0.044 | 0.037 | 0.032 | −4.697 | 0.40 | |
0.5 | 26.564 | 0.054 | −0.346 | 0.058 | 0.045 | 0.034 | 0.028 | 0.025 | −1.823 | 0.42 | ||
0.9 | 37.189 | 0.050 | −0.428 | 0.092 | 0.062 | 0.052 | 0.049 | 0.047 | −2.623 | 0.42 | ||
Winter | 0.1 | 6.643 | 0.142 | 0.556 | 0.173 | 0.179 | 0.123 | 0.120 | 0.128 | −0.422 | 0.41 | |
0.5 | 12.481 | 0.181 | 0.545 | 0.339 | 0.317 | 0.203 | 0.243 | 0.241 | 15.538 | 0.40 | ||
0.9 | 34.959 | 0.277 | 0.139 | 0.404 | 0.274 | 0.191 | 0.275 | 0.209 | −11.836 | 0.38 |
Station No. | R2 | RMSE (%/Day) | IOA | Station No. | R2 | RMSE (%/Day) | IOA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLR | MQR | MLR | MQR | MLR | MQR | MLR | MQR | MLR | MQR | MLR | MQR | ||
1 | 0.24 | 0.44 | 4.66 | 4.02 | 0.62 | 0.79 | 30 | 0.34 | 0.77 | 2.55 | 1.98 | 0.38 | 0.49 |
2 | 0.26 | 0.35 | 9.64 | 6.36 | 0.75 | 0.85 | 31 | 0.45 | 0.60 | 3.74 | 2.70 | 0.72 | 0.74 |
3 | 0.29 | 0.35 | 12.21 | 7.23 | 0.60 | 0.77 | 32 | 0.33 | 0.58 | 2.77 | 1.08 | 0.61 | 0.64 |
4 | 0.25 | 0.36 | 5.88 | 4.91 | 0.81 | 0.85 | 33 | 0.53 | 0.57 | 5.91 | 2.78 | 0.69 | 0.72 |
5 | 0.48 | 0.60 | 5.61 | 3.11 | 0.82 | 0.86 | 34 | 0.37 | 0.57 | 3.42 | 2.41 | 0.45 | 0.58 |
6 | 0.34 | 0.65 | 3.21 | 2.02 | 0.70 | 0.76 | 35 | 0.31 | 0.33 | 4.04 | 4.01 | 0.63 | 0.64 |
7 | 0.29 | 0.42 | 5.47 | 4.06 | 0.73 | 0.73 | 36 | 0.51 | 0.65 | 3.55 | 1.36 | 0.62 | 0.70 |
8 | 0.48 | 0.50 | 3.62 | 3.22 | 0.68 | 0.69 | 37 | 0.40 | 0.58 | 2.55 | 2.43 | 0.72 | 0.74 |
9 | 0.35 | 0.38 | 3.53 | 3.05 | 0.85 | 0.87 | 38 | 0.40 | 0.57 | 2.76 | 2.34 | 0.21 | 0.49 |
10 | 0.66 | 0.72 | 3.82 | 3.10 | 0.62 | 0.68 | 39 | 0.25 | 0.57 | 4.31 | 2.43 | 0.60 | 0.74 |
11 | 0.43 | 0.48 | 3.56 | 3.16 | 0.66 | 0.75 | 40 | 0.35 | 0.52 | 1.86 | 1.53 | 0.43 | 0.61 |
12 | 0.38 | 0.43 | 3.91 | 3.09 | 0.73 | 0.78 | 41 | 0.33 | 0.57 | 5.22 | 2.55 | 0.17 | 0.54 |
13 | 0.41 | 0.44 | 3.68 | 3.19 | 0.63 | 0.75 | 42 | 0.31 | 0.38 | 4.17 | 3.62 | 0.30 | 0.62 |
14 | 0.32 | 0.43 | 4.74 | 3.22 | 0.49 | 0.66 | 43 | 0.45 | 0.63 | 2.48 | 1.77 | 0.58 | 0.63 |
15 | 0.52 | 0.62 | 3.80 | 2.08 | 0.43 | 0.75 | 44 | 0.39 | 0.59 | 3.65 | 2.38 | 0.45 | 0.72 |
16 | 0.42 | 0.45 | 3.10 | 3.01 | 0.62 | 0.81 | 45 | 0.40 | 0.57 | 3.24 | 2.52 | 0.41 | 0.61 |
17 | 0.59 | 0.67 | 2.59 | 2.34 | 0.48 | 0.77 | 46 | 0.32 | 0.36 | 4.09 | 3.82 | 0.88 | 0.81 |
18 | 0.58 | 0.68 | 3.31 | 2.92 | 0.42 | 0.69 | 47 | 0.34 | 0.61 | 4.46 | 2.05 | 0.53 | 0.64 |
19 | 0.41 | 0.45 | 3.71 | 3.53 | 0.55 | 0.70 | 48 | 0.40 | 0.47 | 3.75 | 2.67 | 0.82 | 0.82 |
20 | 0.48 | 0.55 | 3.26 | 2.25 | 0.46 | 0.58 | 49 | 0.32 | 0.38 | 4.91 | 4.05 | 0.41 | 0.66 |
21 | 0.44 | 0.50 | 3.63 | 3.61 | 0.54 | 0.67 | 50 | 0.31 | 0.62 | 3.86 | 1.75 | 0.51 | 0.67 |
22 | 0.28 | 0.39 | 5.09 | 4.63 | 0.52 | 0.64 | 51 | 0.30 | 0.33 | 3.11 | 2.89 | 0.55 | 0.59 |
23 | 0.35 | 0.66 | 3.32 | 2.69 | 0.21 | 0.56 | 52 | 0.20 | 0.25 | 4.42 | 3.60 | 0.27 | 0.37 |
24 | 0.35 | 0.38 | 4.06 | 3.70 | 0.43 | 0.66 | 53 | 0.26 | 0.36 | 4.80 | 3.65 | 0.47 | 0.58 |
25 | 0.35 | 0.38 | 4.25 | 3.56 | 0.24 | 0.30 | 54 | 0.32 | 0.64 | 3.12 | 1.75 | 0.18 | 0.57 |
26 | 0.34 | 0.38 | 3.06 | 3.01 | 0.40 | 0.64 | 55 | 0.41 | 0.61 | 3.39 | 2.21 | 0.49 | 0.64 |
27 | 0.31 | 0.57 | 4.16 | 2.09 | 0.64 | 0.68 | 56 | 0.41 | 0.60 | 3.46 | 2.56 | 0.75 | 0.77 |
28 | 0.30 | 0.35 | 4.57 | 3.90 | 0.67 | 0.68 | 57 | 0.20 | 0.30 | 5.22 | 3.57 | 0.33 | 0.59 |
29 | 0.39 | 0.58 | 4.62 | 1.88 | 0.51 | 0.75 | 58 | 0.35 | 0.38 | 5.55 | 5.23 | 0.60 | 0.64 |
No. | Station | Elevation (m) | Slope (%) | Soil Moisture (%/Day) | ||
---|---|---|---|---|---|---|
Year | PCP over 5 mm/d | PCP less than 5 mm/d | ||||
2 | SW | 40 | 0.40 | 2013 | 13.6 | 17.3 |
2014 | 12.0 | 14.1 | ||||
2015 | 12.1 | 14.9 | ||||
Mean | 12.5 | 15.6 | ||||
28 | JJ3 | 12 | 0.12 | 2013 | 19.3 | 19.9 |
2014 | 18.7 | 19.4 | ||||
2015 | 23.1 | 23.3 | ||||
Mean | 20.6 | 20.9 | ||||
49 | CC4 | 9 | 0.09 | 2013 | 22.3 | 25.7 |
2014 | 21.5 | 23.3 | ||||
2015 | 19.7 | 20.5 | ||||
Mean | 20.9 | 23.0 | ||||
53 | TG2 | 11 | 0.11 | 2013 | 18.7 | 23.4 |
2014 | 21.7 | 22.5 | ||||
2015 | 20.9 | 22.5 | ||||
Mean | 20.7 | 22.7 | ||||
58 | HH6 | 3 | 0.03 | 2013 | 22.3 | 24.6 |
2014 | 21.9 | 21.7 | ||||
2015 | 25.5 | 24.9 | ||||
Mean | 23.4 | 23.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, C.; Lee, Y.; Lee, J.; Kim, S. Performance Evaluation of the Multiple Quantile Regression Model for Estimating Spatial Soil Moisture after Filtering Soil Moisture Outliers. Remote Sens. 2020, 12, 1678. https://doi.org/10.3390/rs12101678
Jung C, Lee Y, Lee J, Kim S. Performance Evaluation of the Multiple Quantile Regression Model for Estimating Spatial Soil Moisture after Filtering Soil Moisture Outliers. Remote Sensing. 2020; 12(10):1678. https://doi.org/10.3390/rs12101678
Chicago/Turabian StyleJung, Chunggil, Yonggwan Lee, Jiwan Lee, and Seongjoon Kim. 2020. "Performance Evaluation of the Multiple Quantile Regression Model for Estimating Spatial Soil Moisture after Filtering Soil Moisture Outliers" Remote Sensing 12, no. 10: 1678. https://doi.org/10.3390/rs12101678
APA StyleJung, C., Lee, Y., Lee, J., & Kim, S. (2020). Performance Evaluation of the Multiple Quantile Regression Model for Estimating Spatial Soil Moisture after Filtering Soil Moisture Outliers. Remote Sensing, 12(10), 1678. https://doi.org/10.3390/rs12101678