Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics across Space and Time: A Review
Abstract
:1. Introduction
- How has LTS been utilised to improve the estimation of AGB?
- What LTS-based approaches have been demonstrated as useful for estimating AGB and its dynamics across space and time?
2. Advanced Preprocessing and Change Detection Methods for LTS
2.1. Robust Preprocessing Methods
2.2. Vegetation Change Detection Using LTS
3. How Has LTS Been Utilised to Improve the Estimation of AGB?
3.1. Filling Spatial and Temporal Data Gaps in AGB Predictions
3.2. Improving the Accuracy of AGB Modelling
4. What LTS-Based Approaches Have Been Demonstrated for Estimating AGB and Its Dynamics across Space and Time?
4.1. Modelling Approaches
4.1.1. Explanatory Data
4.1.2. Training Data
4.1.3. Statistical Modelling Technique
4.2. Accuracy Assessment
4.3. Characterising Spatial and Temporal Patterns of Forest AGB Dynamics
5. Conclusions and Future Opportunities
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Landsat Spectral Index | Calculation |
---|---|
Normalized Difference Vegetation Index (NDVI) [100] | NDVI = (NIR − R)/(NIR + R) |
Normalized Burn Ratio (NBR) [101] | NBR = (NIR − SWIR)/(NIR + SWIR) |
Normalized Difference Moisture Index (NDMI) | NDMI = (NIR − SWIR)/(NIR + SWIR) |
Enhanced Vegetation Index (EVI) [102] | EVI = G * ((NIR − R)/(NIR + C1 * R – C2 * B + L)) L = value to adjust for canopy background, C = coefficients for atmospheric resistance, B = the blue band |
Soil Adjusted Vegetation Index (SAVI) [103] | SAVI = ((NIR − R)/(NIR + R + L)) * (1 + L) |
Chlorophyll Vegetation Index (CVI) [104] | CVI = (NIR x R)/G G = the green band |
Difference Vegetation Index (DVI) [105] | DVI = NIR − R |
Linear transform of multiple bands [84] | VIS123 = B + G + R MID57 = TM band 5 + TM band 7 (SWIR) |
Integrated Forest Z-score (IFZ) [37] | z-score measure of a pixel likelihood of being forested, using TM bands 3, 5 and 7 |
Tasseled Cap (TC) transformations: TC brightness (TCB); TC greenness (TCG); TC wetness (TCW) [86,87,88,89] | TCW, TCB, and TCG are calculated by multiplying Landsat band pixel values with TC coefficients. See the coefficients in references. |
TC angle (TCA) [81] | TCA = arctan(TCG/TCB) |
TC distance (TCD) [106] | |
TC Disturbance Index (DI) [91] | DI = TCBr – (TCGr + TCWr) r = denotes rescaled TC indices based upon the mean and standard deviation of the scene’s forest values |
References
- U.S. Geological Survey. Landsat—Earth Observation Satellites. In Fact Sheet; U.S. Geological Survey: Reston, VA, USA, 2015; p. 4. [Google Scholar]
- U.S. Geological Survey. Landsat 9. In Fact Sheet; U.S. Geological Survey: Reston, VA, USA, 2019; p. 2. [Google Scholar]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Hall, R.J.; Coburn, C.A.; Hall, F.G. Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sens. Environ. 2010, 114, 1325–1337. [Google Scholar] [CrossRef]
- Wulder, M.; Skakun, R.; Kurz, W.; White, J. Estimating time since forest harvest using segmented Landsat ETM+ imagery. Remote Sens. Environ. 2004, 93, 179–187. [Google Scholar] [CrossRef]
- Hudak, A.T.; Strand, E.K.; Vierling, L.A.; Byrne, J.C.; Eitel, J.U.; Martinuzzi, S.; Falkowski, M.J. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sens. Environ. 2012, 123, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Hall, D.E.; Falkowski, M.J. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens. Environ. 2008, 112, 2232–2245. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Ohmann, J.; Gregory, M.; Roberts, H.; Yang, Z.; Bell, D.M.; Kane, V.; Hughes, M.J.; Cohen, W.B.; Powell, S.; et al. An empirical, integrated forest biomass monitoring system. Environ. Res. Lett. 2018, 13, 025004. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing—Based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Franklin, J. Thematic Mapper analysis of coniferous forest structure and composition. Int. J. Remote Sens. 1986, 7, 1287–1301. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E.; Yang, Z. Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sens. Environ. 2014, 151, 124–137. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Banskota, A.; Kayastha, N.; Falkowski, M.J.; Wulder, M.A.; Froese, R.E.; White, J.C. Forest Monitoring Using Landsat Time Series Data: A Review. Can. J. Remote Sens. 2014, 40, 362–384. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- USGS. Landsat Collection1 Level 1 Product Definition; United State Geological Survey: Reston, VA, USA, 2019.
- Gutman, G.; Huang, C.; Chander, G.; Noojipady, P.; Masek, J.G. Assessment of the NASA–USGS global land survey (GLS) datasets. Remote Sens. Environ. 2013, 134, 249–265. [Google Scholar] [CrossRef]
- Vogeler, J.C.; Braaten, J.D.; Slesak, R.A.; Falkowski, M.J. Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015). Remote Sens. Environ. 2018, 209, 363–374. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E. Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2557–2567. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Braaten, J.D.; Cohen, W.B.; Yang, Z. Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems. Remote Sens. Environ. 2015, 169, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ. 2012, 122, 146–165. [Google Scholar] [CrossRef]
- White, J.; Wulder, M.; Hobart, G.; Luther, J.; Hermosilla, T.; Griffiths, P.; Coops, N.; Hall, R.; Hostert, P.; Dyk, A. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef] [Green Version]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 2015, 170, 121–132. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C. Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia. Remote Sens. Environ. 2011, 115, 548–561. [Google Scholar] [CrossRef]
- Flood, N. Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median). Remote Sens. 2013, 5, 6481–6500. [Google Scholar] [CrossRef] [Green Version]
- Pickell, P.D.; Hermosilla, T.; Frazier, R.J.; Coops, N.C.; Wulder, M.A. Forest recovery trends derived from Landsat time series for North American boreal forests. Int. J. Remote Sens. 2015, 37, 138–149. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.H.; Wulder, M.A.; White, J.C. Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest. For. Ecol. Manag. 2016, 361, 194–207. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Devries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 2015, 161, 107–121. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
- Kennedy, R.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.; Healey, S.; Yang, Z.; Stehman, S.; Brewer, C.; Brooks, E.; Gorelick, N.; Huang, C.; Hughes, M.; Kennedy, R.; et al. How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Schleeweis, K.G.; Moisen, G.G.; Toney, C.; Cohen, W.B.; Freeman, E.A.; Yang, Z.; Huang, C. Testing a Landsat-based approach for mapping disturbance causality in U.S. forests. Remote Sens. Environ. 2017, 195, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Yang, Z.; Braaten, J.; Copass, C.; Antonova, N.; Jordan, C.; Nelson, P. Attribution of disturbance change agent from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sens. Environ. 2015, 166, 271–285. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. A spatial and temporal analysis of forest dynamics using Landsat time-series. Remote Sens. Environ. 2018, 217, 461–475. [Google Scholar] [CrossRef]
- Zald, H.S.J.; Wulder, M.A.; White, J.C.; Hilker, T.; Hermosilla, T.; Hobart, G.W.; Coops, N.C. Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens. Environ. 2016, 176, 188–201. [Google Scholar] [CrossRef] [Green Version]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Zald, H.S.J. Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sens. Environ. 2018, 209, 90–106. [Google Scholar] [CrossRef]
- Boisvenue, C.; Smiley, B.P.; White, J.C.; Kurz, W.A.; Wulder, M.A. Integration of Landsat time series and field plots for forest productivity estimates in decision support models. For. Ecol. Manag. 2016, 376, 284–297. [Google Scholar] [CrossRef]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Bolton, D.K.; Tompalski, P.; Bater, C.W. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots. Remote Sens. Environ. 2018, 216, 697–714. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data. Int. J. Appl. Earth Obs. Geoinf. 2020, 84. [Google Scholar] [CrossRef]
- Morel, A.C.; Fisher, J.B.; Malhi, Y. Evaluating the potential to monitor aboveground biomass in forest and oil palm in Sabah, Malaysia, for 2000–2008 with Landsat ETM+ and ALOS-PALSAR. Int. J. Remote Sens. 2012, 33, 3614–3639. [Google Scholar] [CrossRef]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A.; Kennedy, R. Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics. ISPRS J. Photogramm. Remote Sens. 2014, 92, 137–146. [Google Scholar] [CrossRef]
- Wilson, B.T.; Knight, J.F.; McRoberts, R.E. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 29–46. [Google Scholar] [CrossRef]
- Nguyen, T.; Jones, S.; Soto-Berelov, M.; Haywood, A.; Hislop, S. A Comparison of Imputation Approaches for Estimating Forest Biomass Using Landsat Time-Series and Inventory Data. Remote Sens. 2018, 10, 1825. [Google Scholar] [CrossRef] [Green Version]
- Deo, R.; Russell, M.; Domke, G.; Andersen, H.-E.; Cohen, W.; Woodall, C. Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA. Remote Sens. 2017, 9, 598. [Google Scholar] [CrossRef] [Green Version]
- Deo, R.K.; Russell, M.B.; Domke, G.M.; Woodall, C.W.; Falkowski, M.J.; Cohen, W.B. Using Landsat Time-Series and LiDAR to Inform Aboveground Forest Biomass Baselines in Northern Minnesota, USA. Can. J. Remote Sens. 2017, 43, 28–47. [Google Scholar] [CrossRef]
- Zald, H.S.J.; Ohmann, J.L.; Roberts, H.M.; Gregory, M.J.; Henderson, E.B.; McGaughey, R.J.; Braaten, J. Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure. Remote Sens. Environ. 2014, 143, 26–38. [Google Scholar] [CrossRef]
- Bolton, D.K.; White, J.C.; Wulder, M.A.; Coops, N.C.; Hermosilla, T.; Yuan, X. Updating stand-level forest inventories using airborne laser scanning and Landsat time series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 174–183. [Google Scholar] [CrossRef]
- Lefsky, M.A. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System. J. Appl. Remote Sens. 2009, 3, 033505. [Google Scholar] [CrossRef]
- Liu, L.; Peng, D.; Wang, Z.; Hu, Y. Improving artificial forest biomass estimates using afforestation age information from time series Landsat stacks. Environ. Monit. Assess. 2014, 186, 7293–7306. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A.; Alejandro, P. Historical forest biomass dynamics modelled with Landsat spectral trajectories. ISPRS J. Photogramm. Remote Sens. 2014, 93, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Hall, R.J.; Skakun, R.S.; Arsenault, E.J.; Case, B.S. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. For. Ecol. Manag. 2006, 225, 378–390. [Google Scholar] [CrossRef]
- Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J.; Ryu, S.-R. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Dong, J.R.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks. Remote Sens. Environ. 2003, 84, 393–410. [Google Scholar] [CrossRef] [Green Version]
- Ohmann, J.L.; Gregory, M.J. Predictive mapping of forest composition and structure with direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A. Can. J. For. Res. 2002, 32, 725–741. [Google Scholar] [CrossRef]
- Brian, T.; Kim, W.; Jürgen, B.; Geoff, C.; Cris, B.; Peter, K. Woody Biomass Methods for Estimating Changes; The Australian National University: Canberra, Australia, 1999. [Google Scholar]
- Wulder, M.; White, J.; Fournier, R.; Luther, J.; Magnussen, S. Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS. Sensors 2008, 8, 529–560. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Chen, J.M.; Tian, Q.J.; Ju, W.M.; Xia, X.Q. Combining remote sensing imagery and forest age inventory for biomass mapping. J. Environ. Manag. 2007, 85, 616–623. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Cohen, W.B.; Kennedy, R.E.; Grodzki, W.; Pflugmacher, D.; Griffiths, P.; Hostert, P. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sens. Environ. 2013, 139, 277–290. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Moisen, G.G.; Healey, S.P.; Keeton, W.S.; Freeman, E.A.; Hostert, P. Evaluating the Remote Sensing and Inventory-Based Estimation of Biomass in the Western Carpathians. Remote Sens. 2011, 3, 1427–1446. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, E.; Vega, J.A.; Fernández-Alonso, J.M.; Vega-Nieva, D.; Ortiz, L.; López-Serrano, P.M.; López-Sánchez, C.A. Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM+ and National Forest Inventory data. iForest-Biogeosci. For. 2017, 10, 590–596. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sens. Environ. 2015, 158, 220–234. [Google Scholar] [CrossRef]
- Ohmann, J.L.; Gregory, M.J.; Roberts, H.M. Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. Remote Sens. Environ. 2014, 151, 3–15. [Google Scholar] [CrossRef]
- Bell, D.M.; Gregory, M.J.; Ohmann, J.L. Imputed forest structure uncertainty varies across elevational and longitudinal gradients in the western Cascade Mountains, Oregon, USA. For. Ecol. Manag. 2015, 358, 154–164. [Google Scholar] [CrossRef]
- DeVries, B.; Decuyper, M.; Verbesselt, J.; Zeileis, A.; Herold, M.; Joseph, S. Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series. Remote Sens. Environ. 2015, 169, 320–334. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Jung, J.; Lee, J.; Choi, S.U.; Hong, S.Y.; Heo, J. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor. Sensors (Basel) 2015, 15, 18865–18886. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Domke, G.M.; D’Amato, A.W.; Woodall, C.W.; Walters, B.F.; Deo, R.K. Using matrix models to estimate aboveground forest biomass dynamics in the eastern USA through various combinations of LiDAR, Landsat, and forest inventory data. Environ. Res. Lett. 2018, 13, 125004. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Kennedy, R.E.; Healey, S.P.; Huang, C. Observation of Trends in Biomass Loss as a Result of Disturbance in the Conterminous U.S.: 1986–2004. Ecosystems 2013, 17, 142–157. [Google Scholar] [CrossRef]
- Badreldin, N.; Sanchez-Azofeifa, A. Estimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada. Remote Sens. 2015, 7, 2832–2849. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Lu, C.; Xu, H.; Wang, G. Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time series and permanent sample plot data. J. For. Res. 2018, 30, 1689–1706. [Google Scholar] [CrossRef]
- Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. Bioscience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Crist, E.P. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G. The tasselled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In Proceedings of the LARS Symposia, West Lafayette, IN, USA, 1 July 1976; p. 159. [Google Scholar]
- Labrecque, S.; Fournier, R.; Luther, J.; Piercey, D. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For. Ecol. Manag. 2006, 226, 129–144. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Bater, C.W.; Coops, N.C.; Hopkinson, C.; Chen, G. Lidar plots—A new large-area data collection option: Context, concepts, and case study. Can. J. Remote Sens. 2014, 38, 600–618. [Google Scholar] [CrossRef]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chirici, G.; Mura, M.; McInerney, D.; Py, N.; Tomppo, E.O.; Waser, L.T.; Travaglini, D.; McRoberts, R.E. A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data. Remote Sens. Environ. 2016, 176, 282–294. [Google Scholar] [CrossRef]
- Eskelson, B.N.I.; Temesgen, H.; Lemay, V.; Barrett, T.M.; Crookston, N.L.; Hudak, A.T. The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases. Scand. J. For. Res. 2009, 24, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Crookston, N.L.; Finley, A.O. yaImpute: An R package for kNN imputation. J. Stat. Softw. 2008, 23, 16. [Google Scholar] [CrossRef] [Green Version]
- Ho Tong Minh, D.; Ndikumana, E.; Vieilledent, G.; McKey, D.; Baghdadi, N. Potential value of combining ALOS PALSAR and Landsat-derived tree cover data for forest biomass retrieval in Madagascar. Remote Sens. Environ. 2018, 213, 206–214. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Key, C.; Benson, N. Landscape Assessment: Remote Sensing of Severity, the Normalized Burn Ratio and Ground Measure of Severity, the Composite Burn Index; FIREMON: Fire Effects Monitoring and Inventory System; USDA Forest Service, Rocky Mountain Res. Station: Ogden, UT, USA, 2005. [Google Scholar]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.; Eitel, J.U.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Phua, M.-H.; Saito, H. Estimation of biomass of a mountainous tropical forest using Landsat TM data. Can. J. Remote Sens. 2003, 29, 429–440. [Google Scholar] [CrossRef]
- Duane, M.V.; Cohen, W.B.; Campbell, J.L.; Hudiburg, T.; Turner, D.P.; Weyermann, D.L. Implications of alternative field-sampling designs on Landsat-based mapping of stand age and carbon stocks in Oregon forests. For. Sci. 2010, 56, 405–416. [Google Scholar]
Algorithm | Method | Temporal Frequency | Spatial Scale | Change Index | Change Type |
---|---|---|---|---|---|
Vegetation Change Tracker (VTC, [37]) | Thresholding | Annual | Pixel | Integrated Forest Z-score (IFZ) | Abrupt |
Continuous Change Detection and Classification (CCDC, [38]) | Statistical boundary | All available images | Pixel | Landsat spectral bands | Abrupt, gradual |
Breaks for additive Season and Trend Monitor (BFAST Monitor, [39]) | Statistical boundary | All available images | Pixel | Normalized difference vegetation index (NDVI) | Abrupt, gradual |
Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr, [40]) | Temporal segmentation | Annual | Pixel | Normalized burn ratio (NBR), NDVI, TC components (Brightness (TCB), Greenness (TCG), Wetness (TCW)), spectral bands | Abrupt, gradual |
Benefit | Specific Improvement/Finding | Reference |
---|---|---|
Filling spatial and temporal data gaps in AGB predictions | Image composites derived from LTS are necessary for spatially complete estimations of AGB over large areas, regardless modelling approach adopted | Zald, Wulder [48]; Matasci, Hermosilla [49] |
Demonstrating the utility of LTS-derived image composites in consistently monitoring AGB over long time-periods (20–40 years) | Boisvenue, Smiley [50]; Matasci, Hermosilla [51]; Kennedy, Ohmann [9]; Nguyen, Jones [52] | |
Utilising LTS-derived image composites for AGB predictions in different contexts | Morel, Fisher [53]; Frazier, Coops [54]; Wilson, Knight [55]; Nguyen, Jones [56] | |
Filling spatial and temporal data gaps in LTS using a pixel-based temporal fitting process | Deo, Russell [57]; Deo, Russell [58] | |
Improving the accuracy of AGB modelling | Using disturbance and recovery metrics derived from LTS can improve the accuracy of AGB predictions in comparison with using single-date images | Pflugmacher, Cohen [28]; Pflugmacher, Cohen [12] |
Quantifying the capacity of LTS-derived change metrics for estimating forest AGB | Frazier, Coops [54] | |
Demonstrating the utility of LTS-derived change attributions (e.g., disturbance severity and agent) in modelling forest structure and AGB | Zald, Ohmann [59]; Zald, Wulder [48]; Nguyen, Jones [56]; Bolton, White [60] | |
Forest age derived from LTS can improve forest AGB estimates | Lefsky [61]; Liu, Peng [62] | |
Identifiers of temporal patterns in spectral trajectories provide improvements in modelling and explaining historical AGB dynamics | Gómez, White [63] | |
Seasonal NDVI time series improving AGB estimations compared with a single-date NDVI | Zhu and Liu [64] | |
Fitted LTS data improving the accuracy of AGB predictions compared with raw/observed data. | Deo, Russell [58] | |
A pixel-based temporal fitting process improves the temporal consistency of AGB predictions. | Matasci, Hermosilla [51], Deo, Russell [58]; Kennedy, Ohmann [9] |
Study (Year) | Ecosystem, Location | LTS Stack | Modelling Approaches | Predicting AGB and Its Dynamics | Accuracy Assessment | |||
---|---|---|---|---|---|---|---|---|
Explanatory Data | Reference Data | Modelling Technique | Temporal Estimates | Characterising AGB Dynamics | ||||
Powell, Cohen [81] (2010) | Coniferous and mixed forests in northern Arizona and Minnesota, US | Annual cloud-free images (1985–2006) | -Six spectral bands; -Spectral indices: NDVI, TCB, TCW, TCG, TC angle (TCA), TC distance (TCD), disturbance index (DI); -Topographic and climatic variables. | Field inventory (FI) plots | Reduced Major Axis regression, Gradient Nearest Neighbour (GNN) imputation (k = 1), Random Forest (RF) regression | Annual | -Smoothing AGB trajectories using linear segmentation algorithms to detect changes -Creating forest AGB disturbance maps | -Model cross-validation using withheld FI plots -Validating AGB change using re-measured field plots -Comparing scene-level AGB trajectories |
Powell, Cohen [82] (2013) | Multiple forest types across 50 Landsat scenes, US | Annual least cloudy images (1986–2004) | -Six spectral bands; -Spectral indices: NDVI, TCB, TCW, TCG, TCA, TCD; -Topographic and climatic variables. | FI plots | RF regression | Annual | -Smoothing AGB trajectories using LandTrendr -Integrating AGB loss estimates with VCT-derived disturbance maps -Estimating national and stratum levels of AGB loss from disturbance. -Evaluating trends in AGB loss on the context of large forest carbon sink in the US. | -Model assessment using out-of-bag (OOB) errors -Independent validations of AGB predictions using FI plots and other AGB products -Comparing AGB loss estimates with results from other studies |
Main-Knorn, Cohen [72] (2013) | Coniferous forests, Western Carpathian Mountains, Europe | Annual cloud-free images (1985–2010) | -Six spectral bands -Topographic variables | FI plots | RF regression | Annual | -Fitting AGB trajectories using LandTrendr to detect changes -Mapping AGB loss and gain according to disturbance and recovery trends | -Model assessment using a 10-fold cross-validation -Validating AGB disturbance maps using TimeSync |
Gómez, White [63] (2014) | Pine forests, Spain | Annual cloud-free images (1984–2009) | -Spectral indices: TCA, TCD, NDVI -Change metrics: dynamic variables derived by transformations of spectral trajectories | Remeasured FI plots | Decision trees (CART) | 2 maps of 1990 and 2000 | -Calculating AGB change over the period 1990–2000 as the difference between AGB values of the 2 years with uncertainty estimates. | -Model cross-validation using withheld FI plots -Validating AGB change using re-measured FI plots |
Liu, Peng [62] (2014) | Artificial mixed forests, north-western China | Near-annual cloud-free images (1974–2013) | -Spectral indices: simple ratio index (SR = NIR/Red) -Forest afforestation age derived using the VTC algorithm. | FI plots | Linear regression | Eight years during 1974–2013 | -Calculating mean AGB by different afforestation ages over the 40 years -Temporal statistics of biomass at a regional level | -Leave-one-out cross-validation model |
Pflugmacher, Cohen [12] (2014) | Mixed-conifer forests, Oregon, US | Annual cloud-free images (1972–2009) | -Spectral indices: TCA, TCD -Change metrics: LandTrendr-derived relative change magnitude, pre- and post-change conditions; and TSD | Airborne Lidar-based plots | RF regression | Annual | -Estimating AGB change by subtracting predictions between two points of time | -Model assessment using RF OOB errors -Cross-validation of AGB and its changes using re-measured field plots |
Badreldin and Sanchez-Azofeifa [83] (2015) | Coniferous forests, Coal Valley Mine, Alberta, Canada | Annual cloud-free composites (1988–2011) | -Spectral indices: NDVI, enhanced vegetation index (EVI and EVI2), chlorophyll vegetation index (CVI), TCB, TCG, TCW | Ground Lidar plots | Multiple linear regression | Five years during 1988–2011 | -Estimating AGB change as differences between two points of time -Trend analysis using the Mann-Kendall test | -Model validation using ground Lidar plots |
Nguyen, Jung [79] (2015) | Mixed coniferous forests, South Korea | Five seasonal images (2010–2011) | -Six spectral bands | FI plots | kNN regression (k = 1–20) | Seasonal | -None | -Accuracy assessment using 10-fold cross-validation |
Boisvenue, Smiley [50] (2016) | Boreal forests, Saskatchewan, Canada | Annual cloud-free composites (1984–2012) | -Six fitted spectral bands -Topographic variables | Remeasured FI plots (1381 plots since 1949) | RF regression | Annual | -Computing annual AGB changes from annual AGB maps -Developing a mixed-effect model to summarize long-term trends of AGB at a stratum-level | -Model assessment using RF OOB accuracy -Validating predictions of AGB change using remeasured FI plots |
Deo, Russell [58] (2017) | Mixed forests, Minnesota, the US | Near-annual cloud-free images (1990–2011) | -Fitted spectral band 5 -Fitted spectral indices: NDVI, NBR, TCA, DI, IFZ | Remeasured FI plots (2000–2011) | RF-based k-Nearest Neighbour (kNN) imputation (k = 1,3,5) | Six years during 1990–2011 | -Estimating AGB change as the differences between temporal predicted maps. | -Model cross-validation using FI plots (2000,2010) -Comparing AGB predictions with other products at the stand-level |
Zhang, Lu [84] (2018) | Pinus densata-dominated forests, southwest China | Five-year intervals least cloudy TM images (1987–2007) | -Six spectral bands -Spectral indices: SRs, normalized ratios (NDs), difference vegetation index (DVI), NDVI, TCW, TCB, TCG, linear transform of multiple bands (VIS123, MID57) -Texture measures of 5×5 and 9×9 pixel-windows -Topographic variables | Remeasured FI plots (5-year cycles during 1987–2007) | Multiple Linear Regression, Partial Least Square Regression, Gradient Boost Regression Tree, and RF regression | Five years during 1987–2007 | -Directly modelling AGB dynamics by linking changes of spectral variables with changes in AGB measurements -Combining AGB change maps with land cover classification maps and estimating the total AGB change for each of 5-year intervals | -Validating AGB predictions and changes using remeasured FI plots. |
Ma, Domke [80] (2018) | Mixed deciduous and coniferous forests in the eastern US | Annual cloud-free images (1984–2015) | -Spectral band 4 (SWIR) -Spectral indices: DI, EVI, IFZ, NDVI, NBR, TCW, TCA, TCB, TCG, normalized difference moisture index (NDMI), soil adjusted vegetation index (SAVI) | Remeasured FI plots | Matrix models | -Using matrix models to project future AGB dynamics | -Evaluating the accuracy of matrix models using FI plots -Using fuzzy sets representing uncertainty | |
Kennedy, Ohmann [9] (2018) | Coniferous forests, Western US | Annual cloud-free composites (1990–2012) | -LandTrendr-derived data: -Fitted spectral indices: NBR, TCB, TCG, TCW -Spectral change metrics, disturbance causal agents -Topographic and climatic variables. | Multi-temporal remeasured FI plots (1991–2011) | GNN imputation (k = 1,2,3) | Annual | -Consistently tracking AGB changes by forest disturbance and recovery -Estimating AGB loss according to disturbance agents with uncertainties. | -Estimating uncertainty based on different scenarios of LandTrendr and GNN -Evaluating AGB outcomes using 6018 FI plots across the study area -Comparing AGB predictions with airborne Lidar AGB data |
Matasci, Hermosilla [51] (2018) | Canadian forest ecosystems (650 million ha) | Annual cloud-free composites (1984–2016) | -Fitted spectral indices: TCB, TCG, TCA, NBR -Change metrics: years since the greatest change -Topographic and climatic variables; pixel locations | Airborne Lidar-based plots | RF-based kNN imputation (k = 1) | Annual | -Integrating AGB prediction maps with LTS-derived disturbance maps -Sample-based summarising AGB dynamics for three scenarios: undisturbed forests, forests impacted by wildfires, and harvesting | -Model cross-validation using Lidar-based plots -Multi-temporal, stand-level assessments using airborne Lidar data |
Nguyen, Jones [52] (2020) | Mixed temperate forests, Victoria, Australia | Annual cloud-free composites (1988–2017) | -Fitted spectral indices: NBR, TCB, TCG, TCA -Change metrics: disturbance levels and causal agents, TSD -Topographic and climatic variables; pixel locations (X and Y) | FI plots | RF-based kNN imputation (k = 1) | Annual | -Fitting temporal AGB trajectories according to fitted NBR trajectories. -Integrating AGB trajectories with forest disturbance and recovery history -Characterising spatial and temporal patterns of AGB dynamics using spatial change metrics, including: AGB loss and gain from disturbance and recovery, Recovery Indicator (RI = AGB gain/AGB loss), Years to Recovery (Y2R) -Determining how AGB responds to different disturbance scenarios (severities and causal agents) | -Internal assessment using bootstrapping sample -Time-series validations of AGB predictions using airborne multi-temporal Lidar data -Validating AGB changes according to forest disturbance and recovery history using Lidar-based AGB data |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
H. Nguyen, T.; Jones, S.; Soto-Berelov, M.; Haywood, A.; Hislop, S. Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics across Space and Time: A Review. Remote Sens. 2020, 12, 98. https://doi.org/10.3390/rs12010098
H. Nguyen T, Jones S, Soto-Berelov M, Haywood A, Hislop S. Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics across Space and Time: A Review. Remote Sensing. 2020; 12(1):98. https://doi.org/10.3390/rs12010098
Chicago/Turabian StyleH. Nguyen, Trung, Simon Jones, Mariela Soto-Berelov, Andrew Haywood, and Samuel Hislop. 2020. "Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics across Space and Time: A Review" Remote Sensing 12, no. 1: 98. https://doi.org/10.3390/rs12010098
APA StyleH. Nguyen, T., Jones, S., Soto-Berelov, M., Haywood, A., & Hislop, S. (2020). Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics across Space and Time: A Review. Remote Sensing, 12(1), 98. https://doi.org/10.3390/rs12010098