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Abstract: The reflectance of the Earth’s surface is significantly influenced by atmospheric 

conditions such as water vapor content and aerosols. Particularly, the absorption and 

scattering effects become stronger when the target features are non-bright objects, such as 

in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is 

thus required to minimize those effects and to convert digital number (DN) values to 

surface reflectance. The main aim of this study was to test the three most popular 

atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast  

Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the 

Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with 

Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, 

a series of experiments were conducted for above-ground forest biomass (AGB) 

estimations of the Gongju and Sejong region of South Korea, in order to check the 

effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest 

biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS 

and TOA. In addition, a significant improvement of RMSE by 6S was found with images 

when the study site had higher total water vapor and temperature levels. Moreover, we also 
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tested the sensitivity of the atmospheric correction methods to each of the Landsat  

ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the 

infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest 

that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS 

products, is better suited for AGB estimation based on optical remote-sensing data, especially 

when using satellite images acquired in the summer during full canopy development. 

Keywords: k-Nearest Neighbor; biomass estimation; DOS; FLAASH; 6S 

 

1. Introduction 

A forest ecosystem is an important and manageable carbon sink that plays a critical role in reducing 

carbon concentrations in the atmosphere [1–3]. The spatial distribution of above-ground forest biomass 

(AGB) is necessary for calculating the net flux of terrestrial carbon and supporting climate change 

modeling studies [4–6]. The traditional methods of AGB estimation are based on field sample  

plots [7,8]. AGB is modeled by using diameter-at-breast-height measurements that are easy to obtain 

in field samples. Additionally, combining satellite imagery and field inventory offers the distinct 

advantage that large areas can be monitored [9] and spatial variability can be much better characterized 

than when using field inventory data exclusively—always assuming that imagery with adequate spatial, 

spectral and radiometric characteristics is available [10]. However, the quality of satellite imagery 

ultimately relies on environmental elements including topographic and atmospheric conditions [11].  

The reflectance of the Earth’s surface is significantly influenced by the atmosphere’s water-vapor 

and aerosols, which change with time and space. Moreover, the influences of absorption and scattering 

becomes stronger when target features, such as in aqueous or vegetated areas, are non-bright objects. 

This problem is especially significant when using optical satellite images of forested areas for 

monitoring purposes [12]. Therefore, it is crucial to select a reliable and efficient atmospheric 

correction model among the various available algorithms and software. Also, there are many previous 

studies that have emphasized the need for atmospheric correction; however, they have stated that it is 

not necessarily to produce better results for classification and change detection when using single-date 

data [12–16]. For example, Song et al. [16] investigated when and how to correct atmospheric effects 

on classification and change detection using the maximum likelihood classifier together with a  

single-date image. Kaufman [17] and Liang et al. [18] found that more complicated algorithms provide 

less accurate classification and change detection results, and thus proposed the relatively simple Dark 

Object Subtraction (DOS) with and without Rayleigh atmospheric correction. Kawata et al. [14] evaluated 

image classification accuracy before and after atmospheric correction. They used the Lowtran-6 code 

for removal of atmospheric effects as well as Gaussian maximum likelihood for classification, and 

concluded that except for the aqueous areas, the atmospheric model did not improve the image 

classification accuracy. Atmospheric correction’s impact on spectral signatures and vegetation indices, 

which can lead to uncertainy in AGB estimation, was addressed in [12,19,20]. In those studies, the 

difference of the mean value of NDVI with and without atmospheric correction was found to be 18%, 

indicating that atmospheric effects should be removed when using vegetation indices. Lu et al. [21] 
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assessed three image-based calibration models (the apparent reflectance model, DOS, and the 

improved DOS) for biomass estimation in the Amazon Basin. Based on their results, they selected the 

improved DOS for their further Bio-sphere-Atmosphere Experiment. Uncertainties of information 

extracted from optical sensor imagery were quantified in [22,23]. These studies revealed that the 

uncertainties on ocean targets are higher than desert targets due to the lower signal level in aqueous 

areas. Additionally, in terms of AGB estimation based on remote-sensing data, there are uncertainties 

and variations of both the spectral values of corrected images and their biomass estimation, which 

might be the result of atmospheric correction methods [24], shadow and topographic conditions [25,26]  

or landscape differences [14,23]. However, the impacts of atmospheric correction on above-ground 

biomass estimation of forested areas have not yet been fully examined. 

To date, Landsat images, including Landsat TM and ETM+, have been the most popular  

medium-resolution data in AGB studies [6,27–30]. The main reason is that Landsat has been providing 

Earth observation data the longest, since 1972 [31,32] and also that its spatial and spectral resolutions 

are in accordance. However, their investigations have been mostly of single scenery, or for single 

acquisition dates, such as in peak growing season, to establish an AGB model [6]. There has been little 

research analyzing the differences in seasonal images’ responses to the same National Forest Inventory 

(NFI) data. Thus, it is worth investigating seasonal Landsat acquisition dates to determine which 

season is more suitable for AGB estimation and atmospheric correction.  

The main goal of this study was to select an optimal atmospheric correction method for  

above-ground forest biomass estimation based on remote-sensing data under a certain environmental 

condition. To achieve this, three of the most popular atmospheric correction models, the DOS, Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), and the Second Simulation of 

Satellite Signal in the Solar Spectrum (6S), were evaluated and compared with Top of Atmospheric 

(TOA) reflectance. Also, the effectiveness of the atmospheric correction methods for each of the 

Landsat EMT+ bands under a given atmospheric condition needed to be analyzed in order to determine 

the dominant method for each band. The test site, the forested Gongju and Sejong regions in South 

Korea, was chosen, and the evaluation was performed using the k-Nearest Neighbor (kNN) algorithm 

with five different seasonal Landsat ETM+ images and field datasets. 

2. Materials 

2.1. Study Area 

The Gongju and Sejong regions of South Korea was chosen as the study site. They are located in 

the middle of South Korea (between longitudes 126°53′, 127°25′ E and latitudes 36°17′, 36°43′ N).  

They have a continental climate, and the forested area covered 72,377 ha in 2010.  

2.2. National Forest Inventory Data 

The 5th and 6th NFI data, provided by the Korea Forest Research Institute, were used in this study. 

It covers 47 plots (144 subplots), and includes location, Diameter at Breast Height (DBH), tree species, 

age, height, and other data. The AGB of each subplot was estimated from the DBH and tree height 
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according to stem volume models and the biomass expansion factor [33–35]. Figure 1 shows the study 

sites in South Korea along with the distribution of the NFI locations.  

(a) (b) (c) 

Figure 1. (a) Location of the study area, the Gongju and Sejong regions, South Korea;  

(b) locations of field survey (green star) and meteorological stations (black triangle);  

(c) design of NFI plot consisting of 4 sub-plots.  

Table 1. Atmospheric conditionson date of image acquisition from 2 nearest 

meteorological stations. 

Atmospheric Conditions 

Average 

Temperature 

(°C) 

The Highest 

Temperature 

(°C) 

The Lowest 

Temperature 

(°C) 

Relative 

Humidity 

(%) 

Rainfall 

(mm) 

Total Water 

Vapor (g/kg) 

5 April 2011 
Deajeon 10.8 19.5 1.7 30.6 0 2.5 

Cheonan 8.7 18.5 −0.9 36.6 0 2.6 

20 May 2011 
Deajeon 20.1 24.1 18.4 79.5 13.5 11.8 

Cheonan 20.1 23.9 17.0 79.3 3.0 11.7 

8 August 2010 
Deajeon 27.9 33.2 23.9 67.6 0 16.2 

Cheonan 27.6 33.6 23.5 73.3 0 17.2 

24 October 2009 
Deajeon 16.6 23.3 10.0 67.6 0 8.0 

Cheonan 16.1 23.2 10.5 71.5 0 8.2 

15 November 2011 
Deajeon 6.7 13.0 2.0 57.4 0 3.5 

Cheonan 5.0 12.8 −0.7 65.3 0 3.5 

Atmospheric condition information of study site: In order to determine the correlation between 

AGB estimation and atmospheric condition, the atmospheric conditions of two meteorological stations 

close to the Gongju and Sejong region were obtained from the Korea Meteorological Administration’s 

website [36]. These two stations are Deajeon and Cheonan, which are located to the southeast and 
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north of the study site, respectively (Figure 1b). The atmospheric conditions on the date of the Landsat 

image acquisition from the two stations are summarized in Table 1. It can be seen that the humidity 

percentage on 20th May 2011 was the highest, followed by 8th August 2010 and 24th October 2011, 

while it was the lowest on 5th April 2011. There was a rainfall on 20th May 2011, which might have 

alleviated the relative humidity. The total water vapor at each station for the given dates was calculated 

based on the average temperature and relative humidity. The total water vapor on 8th August 2010 was 

the highest, followed by 20th May 2011; the total water vapor levels in the spring (5th April 2011) and 

late autumn (15th November 2011) were significantly lower.  

2.3. Remotely Sensed Data 

The Landsat images for the study were acquired from early spring until late autumn between 2009 

and 2011. These dates were 4th April 2011, 20th May 2011, 8th August 2010, 24th October 2009 and 

15th November 2011; all five Landsat ETM+ scenes and their information are summarized in Table 2, 

and are illustrated with the infrared band compositions in Figure 2. They reflected seasonal changes of 

temperate forest in Korea. The NFI subplots were removed from consideration in cases where they 

were located in no-data areas due to SLC-off ETM+ images, cloud cover or shadow.  

Table2. Characteristics of Landsat ETM+ images uses in Gongju and Sejong region research. 

Scene ID Date Path/Row Season 
Sun Azimuth 

Angle (°) 

Sun Elevation 

Angle (°) 

LE71150352011095EDC00 5th April 2011 115/35 Spring 139 53 

LE71150352010140EDC01 20th May 2011 115/35 Late spring 124 65 

LE71150352010220EDC00 8th August 2010 115/35 Summer 126 61 

LE71150352009297EDC00 24th October 2009 115/35 Autumn 155 39 

LE71150352011319EDC00 15th November 2011 115/35 Late autumn 159 33 

 

Figure 2. Cont. 
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Figure 2. Quality of five seasonal images in infrared composition and study area: (a) 4th 

April 2011; (b) 20th May 2011; (c) 8th August 2010; (d) 24th October 2009; (e) 15th 

November 2011; (f) NFI samples from no-data area (black) due to SLC-off ETM+ images, 

cloud cover or shadow were removed. 

3. Methodology 

3.1. Atmospheric Correction 

Figure 3 presents an overview of the present study. The biomass estimation procedure consists of 

seven steps: (1) collection of seasonal satellite images and field survey data (NFI); (2) conversion of 

digital numbers of all images to top of atmosphere reflectance (TOA); (3) application of kNN and  

ten-fold cross-validation to TOA reflectance images; (4) selection of images with highest accuracy for 

further study; (5) application of three different atmospheric correction methods to selected images;  

(6) biomass estimation using kNN algorithm and accuracy assessment with 10-fold cross-validation for 

different atmospheric correction cases, and (7) comparison of all four cases of atmospheric-corrected 

and non-corrected images.  

Case 1, TOA reflectance: The Landsat ETM+ sensors acquire spectral data and store them in the 

Digital Number (DN) format (range: 0–255). The original DN value is then converted to TOA 

reflectance by Equations (1) and (2) [37].  

min
max min

( )( )cal cal
cal cal

LMAX LMIN
L Q Q LMIN

Q Q
λ λ

λ λ
−= − +
−

 (1)

2

cos

L d

ESUN
λ

λ
λ

πρ =
θ

 (2)

where: Lλ  is the Radiance at a target band in units of 2/ ( * * )W m sr mμ , 

LMAXλ  is the Spectral radiance scaled to maxcalQ  in units of 2/ ( * * )W m sr mμ , 

LMINλ  is the Spectral radiance scaled to mincalQ  in units of 2/ ( * * )W m sr mμ , 

calQ  is the Quantized calibrated pixel value ( )DN , 

maxcalQ  is the Maximum quantized calibrated pixel value (DN = 255) corresponding to LMAXλ , 

mincalQ  is the Minimum quantized calibrated pixel value (DN = 0) corresponding to LMINλ , 
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d  is the Earth-Sun distance, in astronomical units, 
ESUNλ  is the solar irradiance in units of 2/ ( * * )W m sr mμ , 

θ  is the Sun elevation in degrees (given in satellite image meta data). 

 

Figure 3. Study flow diagram. 

Case 2, DOS: This is perhaps the simplest and most widely used image-based absolute atmospheric 

correction approach [16,25,38,39]. This approach assumes the existence of dark objects throughout a 

satellite image scene, and they should have zero value, along with a horizontally homogeneous 

atmosphere (Equation (3)) [25]. Thus, the minimum DN value in the histogram considered as dark 

objects from the entire scene which is known as the atmospheric effects (mostly from haze), which 

accordingly is subtracted from all pixels [40]. Several different versions of DOS are currently available 

in ENVI and ERDAS. In the present study, the water areas having the lowest DN values were chosen 

as dark objects, in other words the DN values over water areas were set as dark object values: 

0

*( )

*( * ( )* )
haze

v z down

L L
REF

TAU E Cos TZ TAU E
λπ −=

+
 (3)

where: REF  is the spectral reflectance of the surface, 

satL  is the at-satellite radiance for the given spectral band in units of 2/ ( * * )W m sr mμ , 

hazeL  is the upwelling atmospheric spectral radiance scattered in the direction of and at the sensor 

entrance pupil and within the sensor’s field of view, in units of 2/ ( * * )W m sr mμ , 

vTAU  is the atmospheric transmittance along the path from the ground surface to the sensor, 

0E  is the Solar spectral irradiance on a surface perpendicular to the Sun’s rays outside the 

atmosphere, in units of 2/ ( * * )W m sr mμ , 
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TZ  is the angle of incidence of the direct solar flux onto the Earth’s surface (solar zenith angle), 

zTAU  is the atmospheric transmittance along the path from the sun to the ground surface, 

downE  is the down-welling spectral irradiance at the surface due to the scatted solar flux in the 

atmosphere, in units of 2/ ( * * )W m sr mμ . 

Case 3, FLAASH: There is a radiative transfer code named MODerate-Resolution TRANsmittance 

(MODTRAN4) [41,42], which provides an atmospheric correction software package. FLAASH 

provides the graphical user interface for the MODTRAN4 spectral calculations, including data 

simulation [43]. One key feature of FLAASH is that it offers the option of correcting for light scattered 

into the field of view from adjacent pixels [44]. Basically, it was developed from a standard equation 

for spectral radiance at a sensor pixel (Equation (4)) [43]:  

* *
1

e
a

e

A B
L L

S

ρ + ρ= +
− ρ

 (4)

where: *L  is the spectral radiance at a sensor pixel, 

ρ  is the pixel surface reflectance, 

eρ  is the average surface reflectance for the pixel and the surrounding region, 

S  is the spherical albedo of the atmosphere, 

A and B are coefficients that vary according to the atmospheric and geometric conditions but not the 

surface condition, 

L*a is the radiance backscattered by the atmosphere. 

In MODTRAN4; the A, B, S and L*a parameters are determined by the viewing and solar angles and 

mean surface elevation. They can vary according to different atmospheric models; aerosol types and 

visible angles.  

Case 4, 6S: This is also a radiative transfer code, developed from the 5S version [26]. Similarly, 6S 

was developed from the same Equation (4); however 6S can solve Equation (4) in both scalar and 

vector form while FLAASH (MODTRAN4) solve the transfer equation only in the scalar form [45]. 

Thus, the vector 6S version is capable of taking into account light polarization contributions.  

The requirements for the 6S model are meteorological visibility, type of sensor, sun zenith and azimuth, 

the date and time of image acquisition, and the latitude and longitude of the scene center. Possible 

additional input data are atmospheric profiles including water vapor, gas, aerosol, and clouds [24]. In this 

study, the Atmospheric profiles including the Atmospheric Optical Depth (AOD) and water vapor 

column were MODIS products: MOD04 [46]and MOD05 [47], respectively. A Matlab routine named 

“LandCor” was used to control the Fortran code of 6S [48,49]. 

3.2. kNN Estimation 

kNN is widely utilized in estimation of AGB [50–54]. An unknown pixel is estimated based  

on the k-nearest neighbors that are the most spectrally similar to the target pixel. The spectral  

distance between a target and reference pixels is calculated as Equation (5) [54] and normalized  

as Equation (6): 
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(5)

where: dt,r is the spectral distance between two pixels,  

xi,t is the Reflectance Value (RV) of the target pixel in the ith band,  

xi,r is the RV of the reference pixel corresponding to a subplot in the ith band, 

and m denotes the number of total bands, and: 

, 2 2
1, ,

1 1k

t r
jt r t j

w
d d=

=   (6)

where j  = 1, 2, …, r , k  indicates the number of nearest neighbors. 

Subsequently, the AGB in the target pixel is estimated by summarizing all of the AGB of the  

k-nearest neighbors with respect to their weight, as shown in Equation (7):  

,
1

ˆ ( )
k

t t r r
r

y w y
=

= ×  (7)

where ŷt is the AGB at target pixel t, and yr is the AGB value of the k-nearest subplots. 

3.3. Accuracy Assessment: 10-Fold Cross-Validation 

To quantify the RMSE, all field plots are divided into 10 equal-sized subsets. In validation, 9 

subsets are used for calibration, and the remaining one is used for validation. The RMSE is calculated 

as Equation (8) [55]:  

( )2

1

1
ˆRMSE

n

i i
i

y y
n =

= −  (8)

where ŷi is the estimated AGB of the ith observation, yi is the AGB from the reference dataset, and n is 

the number of subplots. 

This process is repeated in ten times, and then the mean RMSE finally is obtained. Additionally, the 

relative RMSE is calculated as in Equation (9): 

RMSE
RMSE% 100%

y
= ×  (9)

where the RMSE is calculated by Equation (8), and y  is the observed mean. 

3.4. Optimal Atmospheric Correction Method for Particular Band 

Figure 4 shows the proposed routine to test whether a particular atmospheric correction method is 

more suitable for a particular band of a specific seasonal Landsat ETM+ image. For the test, all four 

corrected Landsat images (TOA, DOS-corrected, FLAASH and 6S-corrected) were mixed together, 

and then 4096 (=46) combinations from six bands with different atmospheric correction methods were 

produced. With respect to all 4096 combinations, the kNN algorithm and accuracy assessment were 

performed, and consequently, 4096 accuracy assessment results were produced. The top 20 lowest 
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RMSE from those were selected for the analysis of the dominance of the atmospheric correction 

method on each band. In this manner, the advantages of each atmospheric correction method for a 

particular Landsat ETM+ band and a given specific atmospheric condition were examined and analyzed. 

 

Figure 4. Matlab routine for finding dominant atmospheric correction method for each band. 

4. Results and Discussion 

In this study, we performed experiments on the test site, which was the forested area of Gongju and 

Sejong region, South Korea, using five seasonal Landsat ETM+ images. The experiments are 

summarized in Figures 3 and 4. First, we applied the kNN algorithm to the TOA reflectance values of 

all five images to confirm the most suitable season for AGB estimation. Second, we applied the three 

atmospheric correction methods (DOS, FLAASH, 6S) to the suitable ETM+ images selected from the 

first test—8th August 2010 and 20th May 2011 and applied the kNN algorithm and accuracy 

assessment to determine the best method for AGB from the perspective of estimation accuracy. Third, 

the optimal correction methods for each ETM+ image band were investigated as indicated in Figure 4. 

The experimental results are discussed in the following paragraphs.  

4.1. Seasonal AGB Estimation 

Table 3 shows the accuracy assessment results in the RMSE and relative RMSE of the AGB 

estimation with five ETM+ images and NFI field data. The number of k-nearest neighbors from 1 to 20 

was tested, and Figure 5 illustrates the pattern of RMSE changes while k is changing with respect to 

five different seasonal images. Overall, when k is more than 6, RMSE stays more stable, and the 

variation of relative RMSE that has k between 6 and 20 is less than 1.3% in all cases except for the 

autumn image (the variation was 3.6%). The accuracy levels also show agreement with an earlier AGB 

estimation for the Danyang area [56] and another, previous study in the same area [57]. 
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Table 3. Accuracy assessment results of AGB at Gongju and Sejongsites in different 

seasons: RMSE (unit: tonC/ha) and %RMSE (unit: %).  

Date 5 April 2011 20 May 2011 8 August 2010 24 October 2009 15 November 2011 

Season Spring Late Spring Summer Autumn Late Autumn 

k RMSE %RMSE RMSE %RMSE RMSE %RMSE RMSE %RMSE RMSE %RMSE 

1 34.0 63.6 32.9 63.0 30.1 58.2 35.8 69.5 37.2 73.8 

2 28.8 53.7 28.1 53.6 26.8 52.0 33.2 64.4 31.5 62.5 

3 28.2 52.6 26.4 50.4 25.8 49.9 30.5 59.2 28.3 56.1 

4 27.9 52.1 25.3 48.3 24.5 47.4 29.4 57.0 26.9 53.4 

5 28.0 52.3 24.9 47.6 23.8 46.0 29.4 57.1 25.6 50.8 

6 27.9 52.0 24.6 47.1 23.9 46.3 29.6 57.5 25.5 50.6 

7 27.7 51.6 24.2 46.4 23.8 46.1 29.3 56.8 25.3 50.2 

8 27.7 51.8 24.1 46.2 23.6 45.6 28.9 56.2 25.5 50.6 

9 27.5 51.4 23.9 45.7 23.2 45.0 28.8 56.0 25.5 50.7 

10 27.7 51.7 23.9 45.7 23.5 45.6 28.7 55.8 25.7 51.0 

11 27.6 51.5 23.8 45.6 23.6 45.8 28.6 55.6 25.6 50.7 

12 27.4 51.2 23.6 45.1 23.7 46.0 28.3 55.0 25.6 50.7 

13 27.4 51.2 23.7 45.3 23.8 46.0 28.3 54.9 25.6 50.9 

14 27.3 51.1 23.6 45.2 23.7 45.9 28.2 54.8 25.6 50.9 

15 27.3 51.0 23.8 45.4 23.7 46.0 28.1 54.5 25.8 51.3 

16 27.4 51.2 23.7 45.4 23.7 46.0 28.0 54.4 26.0 51.6 

17 27.5 51.3 23.6 45.2 23.5 45.6 28.2 54.8 26.0 51.6 

18 27.4 51.1 23.6 45.2 23.5 45.5 28.2 54.7 26.1 51.8 

19 27.3 51.0 23.8 45.4 23.5 45.6 27.8 54.1 26.1 51.8 

20 27.2 50.7 23.9 45.7 23.5 45.6 27.8 53.9 26.2 52.0 

Regarding the seasonal/temporal pattern of AGB estimation, the best RMSE was achieved when 

using the 8 August 2011 image, followed by 20 May 2011 (Figure 5). The other AGB estimations, 

during spring and autumn, presented less accurate results. The results show agreement with an 

assessment of AGB estimation with a Landsat time series in southeast Ohio, which is at a similar 

latitude in the northern hemisphere and has a similar seasonal pattern to that of the study site [6]. They 

reported that the summer period can be suitable time to estimate AGB using Landsat time-series data. 

Our results also confirmed that a forest in full canopy development presents better results than its early 

development around the late spring or in the defoliating season.  

 

Figure 5. Changing of RMSE due to increase of k. 
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4.2. Comparison of Atmospheric Correction Methods for AGB 

The two Landsat ETM+ images on 20th May 2011 and 8th August 2010, which had the lowest 

RMSE of AGB estimation, were chosen to compare the performance of three atmospheric correction 

methods: DOS, FLAASH, and 6S. First, Table 4 shows that in the AGB estimation accuracies for 20th 

May 2011 with four models (the just-noted three plus TOA reflectance), there is a common trend in 

that at each k, 6S consistently showed better results than the others; and even the FLAASH results 

showed a little improvement over TOA and DOS. The best RMSE was achieved by the 6S-corrected 

image with k = 6 and k = 8: its RMSE and relative RMSE were 22.5 tonC/ha and 43.1%, respectively, 

and the improvement of the relative RMSE was around 4% and 3.1% compared with the TOA cases 

(47.1% and 46.2%) at k of 6 and 8, respectively. Second, Table 5 shows the AGB estimation 

accuracies of 8th August 2010 with the same four models. Similarly, the 6S model showed better 

improvement at each k when FLAASH does not improve, and the DOS results are about the same as 

6S. Additionally, the magnitude of improvement by 6S in the 8th August 2010 image was greater than 

the improvement by 6S in the 20th May 2011 image. The best RMSE and relative RMSE of the 20th 

May 2011 image corrected by 6S were 21.3 tonC/ha and 41.3%, respectively, at k = 6; this represented 

an improvement of 5% relative RMSE over the TOA case (46.3).  

Table 4. Accuracy assessment results for 20th May 2011 Landsat ETM+ by four 

atmospheric cases: RMSE (unit: tonC/ha) and %RMSE (unit: %). 

k 
TOA Reflectance DOS FLAASH 6S 

RMSE %RMSE RMSE %RMSE RMSE %RMSE RMSE %RMSE 

1 32.9 63.0 32.9 63.0 29.1 55.6 28.8 55.1 

2 28.1 53.6 28.1 53.6 26.7 51.1 24.9 47.6 

3 26.4 50.4 26.4 50.4 24.5 46.8 23.5 44.9 

4 25.3 48.3 25.3 48.3 24.5 46.9 23.0 44.0 

5 24.9 47.6 24.9 47.6 24.4 46.7 22.9 43.7 

6 24.6 47.1 24.6 47.1 24.1 46.1 22.5 43.1 

7 24.2 46.4 24.2 46.4 24.0 45.9 22.9 43.7 

8 24.1 46.2 24.1 46.2 24.0 45.8 22.5 43.1 

9 23.9 45.7 23.9 45.7 24.1 46.0 22.7 43.4 

10 23.9 45.7 23.9 45.7 23.8 45.6 22.9 43.7 

11 23.8 45.6 23.8 45.6 23.7 45.3 22.9 43.8 

12 23.6 45.1 23.6 45.1 23.5 44.9 22.7 43.3 

13 23.7 45.3 23.7 45.3 23.5 45.0 22.7 43.5 

14 23.6 45.2 23.6 45.2 23.7 45.3 22.9 43.9 

15 23.8 45.4 23.8 45.4 23.7 45.4 23.1 44.1 

16 23.7 45.4 23.7 45.4 23.6 45.2 23.3 44.6 

17 23.6 45.2 23.6 45.2 23.6 45.2 23.4 44.8 

18 23.6 45.2 23.6 45.2 23.7 45.4 23.4 44.8 

19 23.8 45.4 23.8 45.4 23.8 45.5 23.5 44.9 

20 23.9 45.7 23.9 45.7 23.8 45.5 23.4 44.7 
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Table 5. Accuracy assessment results for 8th August 2010 Landsat ETM+ by four 

atmospheric cases: RMSE (unit: tonC/ha) and %RMSE (unit: %). 

k 
TOA Reflectance DOS FLAASH 6S 

RMSE %RMSE RMSE %RMSE RMSE %RMSE RMSE %RMSE

1 30.1 58.2 30.1 58.2 31.0 60.1 24.9 48.3 
2 26.8 52.0 26.8 52.0 27.6 53.4 23.4 45.3 
3 25.8 49.9 25.8 49.9 25.4 49.3 23.2 44.9 
4 24.5 47.4 24.5 47.4 24.3 47.1 21.9 42.3 
5 23.8 46.0 23.8 46.0 23.8 46.0 21.5 41.7 
6 23.9 46.3 23.9 46.3 23.8 46.1 21.3 41.3 
7 23.8 46.1 23.8 46.1 23.8 46.1 21.8 42.3 
8 23.6 45.6 23.6 45.6 23.5 45.5 21.6 41.9 
9 23.2 45.0 23.2 45.0 23.5 45.6 21.5 41.6 

10 23.5 45.6 23.5 45.6 23.7 46.0 21.4 41.4 
11 23.6 45.8 23.6 45.8 23.7 45.9 21.5 41.7 
12 23.7 46.0 23.7 46.0 23.9 46.3 21.7 42.0 
13 23.8 46.0 23.8 46.0 23.8 46.0 21.8 42.2 
14 23.7 45.9 23.7 45.9 23.6 45.7 21.8 42.2 
15 23.7 46.0 23.7 46.0 23.7 46.0 22.0 42.6 
16 23.7 46.0 23.7 46.0 23.7 45.9 22.1 42.7 
17 23.5 45.6 23.5 45.6 23.7 45.9 22.1 42.8 
18 23.5 45.5 23.5 45.5 23.8 46.0 22.1 42.9 
19 23.5 45.6 23.5 45.6 23.7 46.0 22.2 43.1 
20 23.5 45.6 23.5 45.6 23.7 46.0 22.4 43.4 

Figure 6 summarizes the results with the lowest RMSE for all of the seasonal images with the 

different atmospheric correction methods. In each seasonal image, the lowest RMSEs were achieved 

with the image corrected by the 6S method at the same k, and then the RMSEs of the three other cases 

(TOA, DOS and FLAASH) at the same k were chosen for comparison. The k values for 5th April 

2011, 8th August 2010, 24th October 2009 and 15th November 2011 were 13, 6, 16 and 8, 

respectively. In the case of 20th May 2011, 6S’s RMSE attained the lowest point at k = 6 and 8, as 

noted in the previous section; however, at k = 8, TOA’s RMSE was still maintaining a decreasing 

trend; thus k = 8 was chosen to add to Figure 6. This figure confirms that the 6S method performed 

better than the others, and that the late spring and summer images provided the lower RMSE for AGB 

estimation; contrastingly, FLAASH’s results were inconsistent in all seasons, and DOS did not 

improve the RMSE of AGB estimation. Additionally, 6S showed a significant improvement compared 

to TOA in the case of atmospheric conditions in which the total water vapor peaked at the highest 

values (Table 1), while the 6S result improved only marginally compared with TOA when the total 

water vapor was not high, such as in Korea’s early spring. Shaw [58] proved that air masses at high 

temperatures contain more aerosols than at low temperatures. In this regard, we found a correlation 

between temperature and total water vapor: in AGB’s RMSE result (Table 1 and Figure 6), the trend 

shown was at higher temperatures there were more aerosols and total water vapor, under which 

condition, AGB estimation by the 6S model was more improved. For example, the largest reduction of 
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RMSE on 8th August 2010, around 2.6 tonC/ha, was by 6S (Figure 6) when the temperature and the 

total water vapor were both the highest, followed by 20th May 2011. 

 

Figure 6. RMSE of AGB estimation with application of atmospheric correction methods  

at Gongju and Sejong region. The numbers in the graph are the RMSE differences  

between FLAASH and TOA and between 6S and TOA (the difference between DOS and 

TOA was ignored).  

These AGB results showed agreement with Nazeeretal. [59], who found that 6S presented the 

lowest difference between the surface reflectance measured from fields and the response Landsat 

ETM+ values. On the basis of the above experiments for AGB estimation and accuracy assessment, it 

can be claimed that atmospheric correction by 6Sis more advantageous, particularly AGB estimation, 

than by the other methods, especially with ETM+ images of full canopy under atmospheric conditions 

characterized by high total water vapor and high temperature, and consequently high aerosol levels.  

4.3. Optimal Atmospheric Correction Method for a Particular Band 

The process described in Figure 4 was applied for two Landsat ETM+ scenes (20th May 2011 and 

8th August 2010). However, choosing an optimal number of nearest neighbors (k) is a crucial point 

with respect to the use of the kNN algorithm [54]. In the present study, to select the optimal k between 

1 and 20, RMSE results from five seasonal Landsat ETM+ were tested in the previous section (Table 3 

and Figure 5). There was a common trend, which was that with increasing number of k, the RMSEs 

normally decreased, and became more stable after the value of k = 6. Nevertheless, the minimum 

RMSEs could be obtained at different k based on different seasonal images; hence the proposed routine 

used k at 6 for the kNN algorithm for all new images, given that these RMSEs were very close to those 

at larger k, and that the larger k values could average out the variation of the original sample plot data 

in the pixel-level estimates [10,52,54,60]. Basically, 4096 combinations of images, including six bands 

in each image, were created, and the kNN algorithm was run to calculate the AGB RMSE and relative 

RMSE. In each image, six bands were successively chosen from four corrected images for the same 

acquisition date. Then, all of the RMSE and relative RMSE of all of the images were listed and 
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compared with each other. Tables 6 and 7 show the top 20 lowest RMSE and relative RMSE for 20th 

May 2011 and 8th August 2010, respectively.  

As can be seen, there was significant improvement in the RMSE of AGB estimation when using 

combinations for 20th May (late spring), whereas there was a small decrease in the RMSE for 8th 

August (the summer, when the canopy is in full development). In the case of 20th May 2011, the 

RMSE decreased from 22.5 tonC/ha and 43.1.1% with only 6S correction at k = 6, to 19.5 tonC/ha and 

37.2% RMSE with the following combination (an improvement of 6% relative RMSE): bands 1 and 6 

corrected by FLAASH; bands 2, 4 and 5 corrected by 6S, and band 3 corrected by TOA. Regarding 8th 

August 2010, the best combination was the following: band 1 corrected by FLAASH; bands 2, 3, 4 and 

5 corrected by 6S, and band 6 corrected by DOS. The improvement by combining was not so 

remarkable compared with the 6S correction image (21.3 tonC/ha, 43.1% in case of 6S correction and 

21.2 tonC/ha, 41.1% in case of combination).In both cases, 6S overall showed a better performance 

than the other three models: TOA, DOS and FLAASH. Although there was no consistently best 

combination of atmospheric correction methods, one pattern was recognized: 6S performed the best for 

band 4 (0.76–0.90 µm) and band 5 (1.55–1.75 µm) of ETM+, which was most affected by absorption 

of water vapor, well-illustrated in the atmospheric window, and which bands are the pivotal ones for 

biomass content estimation and vegetation applications [61]. This result is further supporting evidence 

that 6S is more advantageous than the other methods.  

Table 6. Accuracy assessment results for 20th May 2011 Landsat ETM+ by 4 atmospheric 

cases: RMSE (unit: tonC/ha) and %RMSE (unit: %); for band area: 4 atmospheric 

correction options, TOA, DOS, FLAASH and 6S are named 1, 2, 3 and 4, respectively. 

RMSE %RMSE Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 

19.5 37.2 3 4 1 4 4 3 
19.5 37.2 3 4 2 4 4 3 
19.8 38.0 1 4 3 4 4 3 
19.8 38.0 2 4 3 4 4 3 
19.9 38.0 3 4 3 4 4 3 
19.9 38.0 4 4 1 4 4 3 
19.9 38.0 4 4 2 4 4 3 
20.1 38.5 1 3 1 4 4 3 
20.1 38.5 2 3 1 4 4 3 
20.1 38.5 1 3 2 4 4 3 
20.1 38.5 2 3 2 4 4 3 
20.2 38.6 4 4 3 4 4 3 
20.2 38.7 4 2 1 4 4 3 
20.2 38.7 4 1 1 4 4 3 
20.2 38.7 4 2 2 4 4 3 
20.2 38.7 4 1 2 4 4 3 
20.2 38.7 3 3 1 4 4 3 
20.2 38.7 3 3 2 4 4 3 
20.3 38.7 1 2 1 4 4 3 
20.3 38.7 1 1 1 4 4 3 

Optimal method 3, 4, 2, 1 4, 3, 2, 1 1, 2, 3 4 4 3 
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Table 7. Accuracy assessment results for 8th August 2010 Landsat ETM+ by four atmospheric 

cases: RMSE (unit: tonC/ha) and %RMSE (unit: %); for band area: four atmospheric 

correction options, TOA, DOS, FLAASH and 6S are named 1, 2, 3 and 4, respectively. 

RMSE %RMSE Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 

21.2 41.1 3 4 4 4 4 2 
21.2 41.1 3 4 4 4 4 1 
21.2 41.2 1 4 4 4 4 3 
21.2 41.2 2 4 4 4 4 3 
21.3 41.2 4 4 4 4 4 2 
21.3 41.2 4 4 4 4 4 1 
21.3 41.2 3 4 4 4 4 3 
21.3 41.2 3 4 4 4 4 4 
21.3 41.3 1 4 4 4 4 2 
21.3 41.3 2 4 4 4 4 2 
21.3 41.3 1 4 4 4 4 1 
21.3 41.3 2 4 4 4 4 1 
21.3 41.3 4 4 3 4 4 3 
21.3 41.3 4 4 4 4 4 4 
21.3 41.4 1 4 4 4 4 4 
21.3 41.4 2 4 4 4 4 4 
21.4 41.4 4 4 4 4 4 3 
21.4 41.4 3 4 2 4 4 3 
21.4 41.4 3 4 1 4 4 3 
21.4 41.5 4 4 3 4 4 2 

Optimal method 3, 1, 2, 4 4 4 4 4 2, 1, 3, 4 

4.4. Atmospheric Correction Method for Above-Ground Forest Biomass Estimation 

In summation, 6S (with LandCor interface), when compared with TOA, DOS and FLAASH, was 

decisively the most effective method for AGB estimation with the kNN algorithm using ETM+; 6S 

performed especially well in band 4 and band 5 (the infrared wavelengths). Those bands have been 

found to be valuable for assessment of plant chlorophyll concentration [62] and LAI [63], both of 

which are closely correlated with AGB [64].  

The present results could have been due to the specific atmospheric parameters involved in each of 

the models. While DOS is not concerned with atmospheric profile [25], and FLAASH uses global 

values for its atmospheric parameters [41,42], 6S exploits the MODIS products, MOD04 [46]  

and MOD05 [47] (representing total water vapor and aerosol optical depth). In more detail, the 

atmospheric component consists of water vapor, aerosol, ozone, oxygen, carbon dioxide, and nitrogen, 

which apparently influence path radiance [26]. However, the influence level of each constituent differ; 

total ozone, total water vapor and aerosol optical depth are considered the key atmospheric  

constituents [49]. Whereas total ozone is assumed not to vary with ground elevation across a Landsat 

scene, and is located mostly in the stratosphere [65], total water vapor and aerosol optical depth  

vary by ground elevation, since most of their constituents are located in the lower troposphere [26].  

Zelazowski et al. [49] stated that total ozone has minor, diminishing effects on the spectral signature, 
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mainly in the range of Landsat’s band 2, whereas by contrast, water vapor and aerosol can have major 

influences on the signal registered by all Landsat bands. Furthermore, the present study site 

experiences high total water vapor and high temperature during the summer season [36], and thus it is 

also effected by aerosol optical depth [58,66]. Additionally, from the accuracy assessment results 

(Figures 5 and 6) in comparison with Table 1, it was confirmed that Landsat ETM+ acquired in the full 

canopy season, when both temperature and total water vapor are at high levels, provides the most 

accurate RMSE. Thus, under such atmospheric conditions, the 6S model, with water vapor and  

aerosol optical depth inputs from the MODIS products (MOD04 and MOD05), offers the advantage in  

AGB estimation. 

5. Conclusions 

In this study, Landsat ETM+ imagery and NFI field survey data were used to evaluate the accuracy 

of above-ground biomass estimation using the kNN algorithm with the three atmospheric correction 

methods DOS, FLAASH, and 6S. The evaluations were conducted for a forested area in the Gongju 

and Sejong regions, South Korea, using images acquired from early spring to late autumn. From a 

comparison of those atmospheric correction cases and seasonal images over the study area, it was 

found that the lowest RMSE of the AGB was achieved when using the 6S radiative transfer code. The 

second highest accuracy was achieved in the FLAASH-corrected images, the AGB results from the 

DOS-corrected images being almost the same as those from the TOA-corrected results. Also, this 

study reconfirmed that satellite images with full canopy are the best for AGB estimation. 

A practical method of finding an optimal combination of atmospheric correction methods for each 

band was suggested and tested. Although the combination was dominated by 6S, it was shown that a 

combination of different atmospheric correction methods could contribute considerably to improving 

AGB accuracy. Furthermore, in the AGB results for the mixing of atmospheric correction methods, 

there was a consistency in that 6S performed much better than the others in bands 4 and 5. It can be 

speculated that the superior performance reflected the fact that 6S brings in atmospheric parameters 

including total water vapor and aerosol optical depth from the MODIS products.  

It is understood that correction of the atmospheric effect generally requires a series of complex 

steps; however, this is necessary not only specifically for AGB applications but also for forestry 

applications in general. There remains a need for further comparison among the different atmospheric 

correction methods in order to determine the optimal methods under certain atmospheric conditions. 

However, from the results obtained in the present study, presented above, we can at least suggest that 

the 6S model, integrating water vapor and aerosol optical depth derived from the MODIS products, is 

better suited for AGB estimation based on optical remote-sensing data, especially when using data that 

are acquired in summer, when total water vapor and temperature are both high and the forest canopy is 

in full development. 
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