Next Article in Journal
Identifying and Quantifying the Abundance of Economically Important Palms in Tropical Moist Forest Using UAV Imagery
Previous Article in Journal
Supervised and Semi-Supervised Self-Organizing Maps for Regression and Classification Focusing on Hyperspectral Data
Open AccessArticle

Three Decades of Coastal Changes in Sindh, Pakistan (1989–2018): A Geospatial Assessment

Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China
Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08542, USA
Author to whom correspondence should be addressed.
Remote Sens. 2020, 12(1), 8;
Received: 3 November 2019 / Revised: 11 December 2019 / Accepted: 13 December 2019 / Published: 18 December 2019
(This article belongs to the Section Environmental Remote Sensing)
Coastal erosion endangers millions living near-shore and puts coastal infrastructure at risk, particularly in low-lying deltaic coasts of developing nations. This study focuses on morphological changes along the ~320-km-long Sindh coastline of Pakistan over past three decades. In this study, the Landsat images from 1989 to 2018 at an interval of 10 years are used to analyze the state of coastline erosion. For this purpose, well-known statistical approaches such as end point rate (EPR), least median of squares (LMS), and linear regression rate (LRR) are used to calculate the rates of coastline change. We analyze the erosion trend along with the underlying controlling variables of coastal change. Results show that most areas along the coastline have experienced noteworthy erosion during the study period. It is found that Karachi coastline experienced 2.43 ± 0.45 m/yr of erosion and 8.34 ± 0.45 m/yr of accretion, while erosion on the western and eastern sides of Indus River reached 12.5 ± 0.55 and 19.96 ± 0.65 m/yr on average, respectively. Coastal erosion is widespread along the entire coastline. However, the rate of erosion varies across the study area with a general trend of erosion increasing from west to east in the Indus Delta region (IDR), and the highest average erosion rate is 27.46 m/yr. The interdecadal change during 1989–1999, 1999–2009 and 2009–2018 periods depicted an increasing linear trend (R2 = 0.78) from Karachi to Indus River (IR) East zone. The spatial trend from west to east is positively correlated with mean sea level rise, which has increased from 1.1 to 1.9 mm/year, and negatively correlated with topographic slope, which is found to be decreasing eastward along the coastline. The findings necessitate appropriate actions and have important implications to better manage coastal areas in Pakistan in the wake of global climate change. View Full-Text
Keywords: coastal erosion; remote sensing; Landsat; Indus Delta region; geographic information system; DSAS coastal erosion; remote sensing; Landsat; Indus Delta region; geographic information system; DSAS
Show Figures

Graphical abstract

MDPI and ACS Style

Kanwal, S.; Ding, X.; Sajjad, M.; Abbas, S. Three Decades of Coastal Changes in Sindh, Pakistan (1989–2018): A Geospatial Assessment. Remote Sens. 2020, 12, 8.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop