Assessing the Changes in the Moisture/Dryness of Water Cavity Surfaces in Imlili Sebkha in Southwestern Morocco by Using Machine Learning Classification in Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and General Physiology
2.2. Earth Observation Data
2.3. Surface Soil Data Measured in the Field
2.4. DEM, Geomorphology, Hydrology, and Geology of Imlili Sebkha
2.5. Spatial Datasets, PreProcessing, and Feature Extraction
2.5.1. Optical Imagery
2.5.2. SAR Imagery
2.6. Radar/Optical Data Fusion
2.7. Random Forest Classification within GEE
3. Results
3.1. Imlili Sebkha Change Mapping Obtained from Optical Data
3.1.1. Monitoring of Sebkha Surface Soil Salinization
3.1.2. Monitoring Wet/Dry Cavity States Using SWCI
3.2. Imlili Sebkha Change Mapping Obtained from SAR Data
Monitoring of Saltwater Cavity Moisture State Using MNDPI
3.3. SAR/Optic Collaboration for Mapping Saltwater Cavities for 2017
3.3.1. Mapping of Wet/Dry Cavity States Using SOSWCI
3.3.2. Mapping of Underground Network by Merging the Radar and Optic Data
3.3.3. Application of Random Forest Classification to a Multibands Integrated Dataset
4. Discussion
4.1. Monitoring of the Soil Salinity and Wet/Dry States of Permanent Water Cavities
4.1.1. Monitoring of the Soil Salinity of Imlili Sebkha
4.1.2. Monitoring of the Wet/Dry States of Permanent Water Cavities
4.2. Origin of Permanent Saltwater Cavities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qninba, A.; Ibn Tattou, M.; Radi, M.; El Idrissi Essougrati, A.; Bensouiba, H.; Ben Moussa, S. Sebkhet Imlily, une zone humide originale dans le Sud Marocain. Bull. Inst. Sci. 2009, 31, 51–55. [Google Scholar]
- Lévêque, C. Relict tropical fish fauna in Central Sahara. Ichthyol. Explor. Freshw. 1990, 1, 39–48. [Google Scholar]
- Trape, S. Impact of climate change on the relict tropical fish fauna of Central Sahara: Threat for the survival of Adrar mountains fishes, Mauritania. PLoS ONE 2009, 4, e4400. [Google Scholar] [CrossRef] [PubMed]
- Trape, S. A new cichlid fish in the Sahara: The Ounianga Serir lakes (Chad), a biodiversity hotspot in the desert. C. R. Biol. 2016, 339, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Qninba, A.; El Agbani, M.A.; Radi, M.; Pariselle, A. Sur la présence de Tilapia guineensis (Teleostei, Cichlidae) dans les gueltas d’un affluent de l’Oued Chbeyka, l’oued Aabar (Province de Tan Tan, Sud-Ouest du Maroc). Bull. Inst. Sci. 2012, 34, 125–126. [Google Scholar]
- Bennas, N.; Himmi, O.; Benamar, L.; L’Mohdi, O. Première données sur les coléoptères et les hémiptères aquatiques de la Sebkha d’Imlili (Région Dakhla-Oued ed Dahab, Sud-Ouest du Maroc). Boletín Sociedad Entomológica Aragonesa (SEA) 2016, 59, 117–126. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Foucault, A. La révolution paléoclimatologique. Géochronique 1994, 50, 13–14. [Google Scholar]
- Abotalib, Z.; Sultan, M.; Elkadiri, R. Groundwater processes in Saharan Africa: Implications for landscape evolution in arid environments. Earth-Sci. Rev. 2016, 156, 108–136. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Petit-Maire, N. The last 140 ka in the Afro-Asian arid/semi-arid transitional zone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 110, 217–233. [Google Scholar] [CrossRef]
- Bleeker, P. Atlas Ichthyologique des Indes Orientales Néêrlandaises; Frédéric Muller: Amsterdam, The Netherlands, 1865; pp. 49–101. [Google Scholar]
- Google Earth Engine. A Planetary-Scale Plat-Form for Environmental Data & Analysis. 2012. Available online: https://earthengine.google.org (accessed on 8 August 2019).
- Patel, N.N.; Angiuli, E.; Gamba, P.; Gaughan, A.; Lisini, G.; Stevens, F.R.; Tatem, A.J.; Trianni, G. Multitemporal settlement and population mapping from Landsat using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Margono, B.; Bwangoy, J.-R.; Potapov, P.V.; Hansen, M.C. Mapping wetlands in Indonesia using Landsat and PALSAR data-sets and derived topographical indices. Geo-Spat. Inf. Sci. 2014, 17, 60–71. [Google Scholar] [CrossRef]
- Pradhan, B.; Alazhari Moneir, A.A.; Ratiranjan, J. Sand dune risk assessment in Sabha region, Libya using Landsat 8, MODIS, and Google Earth Engine images. Geomat. Nat. Hazards Risk 2018, 9, 1280–1305. [Google Scholar] [CrossRef] [Green Version]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Johansen, K.; Phinn, S.; Taylor, M. Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2015, 1, 36–49. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liua, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Shengqi Dai, S.; et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2018, in press. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2019, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009; 422p. [Google Scholar]
- Dobson, M.C.; Pierce, L.E.; Ulaby, F.T. The role of frequency and polarization in terrain classification using SAR data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1621–1623. [Google Scholar]
- Touzi, R.; Boerner, W.; Lee, J.S.; Luneberg, E. A review of polarimetry in the context of synthetic aperture radar: Concepts and information extraction. Can. J. Remote Sens. 2004, 30, 380–407. [Google Scholar] [CrossRef]
- Baghdadi, N.; Gaultier, S.; King, C. Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks. Can. J. Remote Sens. 2002, 28, 701–711. [Google Scholar] [CrossRef]
- Gaber, A.; Koch, M.; El-Baz, F. Textural and compositional characterization of Wadi Feiran Deposits, Sinai Peninsula, Egypt, using Radarsat-1, PALSAR, SRTM and ETM+ data. J. Remote Sens. 2010, 2, 52–75. [Google Scholar] [CrossRef] [Green Version]
- Saraf, A.K. IRS-IC-LISS-III and PAN data fusion: An approach to improve remote sensing based mapping techniques. Int. J. Remote Sens. 2010, 20, 1929–1934. [Google Scholar] [CrossRef]
- Koch, M.; El-Baz, F. Spectral and textural classification of active wadi systems in arid lands by Landsat TM and Radarsat data. In Proceedings of the CDROM-Proceedings of the ASPRS Annual Conference, Washington, DC, USA, 19–26 April 2000; p. 10. [Google Scholar]
- Laur, H.; Bally, P.; Meadows, P.; Sanchez, J.; Schaettler, B.; Lopinto, E.; Esteban, D. ERS SAR Calibration Derivation of the Backscattering Coefficient σ0 in ESA ERS SARPRI Products. Document ES-TN-RS-PM-HL09. 2002. Available online: http://earth.esa.int/ESC2/.ESA (accessed on 1 October 2019).
- Melsheimer, C.; Tanck, G.; Gade, M.; Aplers, W. Imaging of tidal flats by multifrequency/multi-polarization synthetic aperture radar. In Operational Remote Sensing for Sustainable Development; Nieuwenhuis, G.J.A., Vaughan, R.A., Molenaar, M., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 189–192. [Google Scholar]
- Baghdadi, N.; Holah, N.; Zribi, M. Soil moisture estimation using multi-incidence and multi-polarization ASAR data. Int. J. Remote Sens. 2006, 27, 1907–1920. [Google Scholar] [CrossRef]
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef] [Green Version]
- Touzi, R.; Hélie, R.; Filfil, R. On the use of polarimetric SAR information for extraction of wetland indicators. In Proceedings of the IGARSS’05, Seoul, Korea, 25–29 July 2005. [Google Scholar]
- Touzi, R.; Charbonneau, F. Characterization of target symmetric scattering using polarimetric SARs. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2507–2516. [Google Scholar] [CrossRef]
- Touzi, R.; Raney, R.K.; Charbonneau, F. On the use of permanent symmetric scatterers for ship characterization. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2039–2045. [Google Scholar] [CrossRef]
- Cloude, S.; Papathanassiou, K. Polarimetric SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1551–1565. [Google Scholar] [CrossRef]
- Rjimati, E.C.; Michard, A.; Saddiqi, O. Anti-Atlas occidental et Provinces sahariennes. In Nouveaux Guides Géologiques et Miniers du Maroc, Volume 6. Notes et Mémoires du Service géologique du Maroc; Michard, A., Saddiqi, O., Chalouan, A., Mouttaqi, A., Eds.; Ministère de l’Energie et des Mines: Rabat, Morocco, 2011; Volume 561, pp. 9–95. [Google Scholar]
- Chander, G.; Markham, B.L.; Helderc, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Bannari, A.; Kadhem, G.; El-Battay, A.; Hameid, N.A.; Rouai, M. Assessment of Land Erosion and Sediment Accumulation Caused by Runoff after a Flash-Flooding Storm Using Topographic Profiles and Spectral Indices. Adv. Remote Sens. 2016, 5, 315–354. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Hakdaoui, S.; Emran, A.; Pradhan, B.; Chang-Wook Lee, C.W.; Nguemhe Fils, S.C. A Collaborative Change Detection Approach on Multi-Sensor Spatial Imagery for Desert Wetland Monitoring after a Flash Flood in Southern Morocco. Remote Sens. 2019, 11, 1042. [Google Scholar] [CrossRef] [Green Version]
- Hakdaoui, S.; Emran, A. Extraction of water information based on SAR RADAR and Optical image processing: Case of flood disaster in Southern Morocco. In Geospatial Technology, Application in Water Resources Management, Series: Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, In press.
- Xiong, L.; Deng, R.; Li, J.; Liu, X.; Qin, Y.; Liang, Y.; Liu, Y. Subpixel Surface Water Extraction (SSWE) Using Landsat 8 OLI Data. Water 2018, 10, 653. [Google Scholar] [CrossRef] [Green Version]
- Douaoui, A.E.K.; Nicolasb, H.; Walter, C. Detecting Salinity Hazards within a Semiarid Context by Means of Combining Soil and Remote-Sensing Data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Penga, J.; Biswasc, A.; Jianga, Q.; Zhaoa, R.; Hua, J.; Hua, B.; Hia, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Chen, S.; Xu, B.; Jin, Y.; Huang, Y.; Zhang, W.; Guo, J.; Shen, G.; Yang, X. Remote Sensing Monitoring and Spatial-temporal Characteristics Analysis of Soil Salinization in Agricultural Area of Northern Xinjiang. Acta Geogr. Sin. 2015, 35, 1607–1615. [Google Scholar]
- Dwivedi, R.S.; Rso, B.R.M. The selection of the best possible Landsat TM band combination for delineating salt-affected soils. Int. J. Remote Sens. 1992, 13, 2051–2058. [Google Scholar] [CrossRef]
- Masoud, A.; Koike, K. Arid land salinization detected by remotely-sensed land cover changes: A case study in the Siwa region, NW Egypt. J. Arid Environ. 2006, 66, 151–167. [Google Scholar] [CrossRef]
- Bouaziz, M.; Matschullat, J.; Gloaguen, R. Improved remote sensing detection of soil salinity from a semi-arid climate in northeast Brazil. Comptes Rendus Geosci. 2011, 343, 795–803. [Google Scholar] [CrossRef]
- Dong, F.; Tang, Y.; Xing, X.; Liu, Z.; Xing, L. Formation and Evolution of Soil Salinization in Shouguang City Based on PMS and OLI/TM Sensors. Water 2019, 11, 345. [Google Scholar] [CrossRef] [Green Version]
- Lapadu-Hargues, P. Les massifs de la Margeride et du Mont Lozère et leurs bordures. Bull. Sery. Carte Géol. France 1947, 46, 379–532. [Google Scholar]
- Becker, F.; Choudhury, B.J. Relative sensitivity of normalized difference vegetation Index (NDVI) and microwave polarization difference Index (MPDI) for vegetation and desertification monitoring. Remote Sens. Environ. 1988, 24, 297–311. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P.; Santi, E. Radiometric Microwave Indices for Remote Sensing of Land Surfaces. Remote Sens. 2018, 10, 1859. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.; Srivastava, H.S. Comparative evaluation of the sensitivity of multi-polarised sar and optical data for various land cover. Int. J. Adv. Remote Sens. 2016, 4, 1–14. [Google Scholar]
- Owe, M.; De Jeu, R.; Walker, J. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.J. Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resour. Res. 1997, 33, 1475–1484. [Google Scholar] [CrossRef]
- Al-Jassar, H.K.; Rao, K.S. Monitoring of soil moisture over the Kuwait desert using remote sensing techniques. IJRS 2010, 31, 4373–4385. [Google Scholar] [CrossRef]
- European Space Agency. SENTINEL-1 Observation Scenario. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario (accessed on 19 August 2019).
- Sindikubwabo, C.; Li, R.; Wang, C. Abrupt Change in Sahara Precipitation and the Associated Circulation Patterns. Atmos. Clim. Sci. 2018, 8, 262–273. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Vivekanandan, J.; Brandes, E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.L.; Farr, T.G.; van Zyl, J.J.; Zebker, H.A. Radar polarimetry: Analysis tools and applications. IEEE Trans. Geosci. Remote Sens. 1998, 26, 774–789. [Google Scholar] [CrossRef]
- Abdikan, S. Exploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area. Geocarto Int. 2018, 33, 21–37. [Google Scholar] [CrossRef]
- Barbouchi, M.; Riadh, A.; Chokmani, K.; Ben Aissa, N.; Lhissou, R.; El Harti, A. Soil Salinity Characterization Using Polarimetric InSAR Coherence: Case Studies in Tunisia and Morocco. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 3823–3832. [Google Scholar] [CrossRef]
- El-Zeiny, A.M.; Effat, H.A. Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sens. Appl. Soc. Environ. 2017, 8, 266–277. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T. Mapping soil moisture distribution with imaging radar. In Principles & Applications of Imaging Radar, Manual of Remote Sensing, 3rd ed.; Henderson, F.M., Lewis, A.J., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1998; ISBN 0-47129-406-3. [Google Scholar]
- Altese, E.; Bolognani, O.; Mancini, M.; Troch, P. Retrieving soil moisture over bare soil from ERS 1 synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering model and field data. Water Resour. Res. 1996, 32, 653–661. [Google Scholar] [CrossRef]
- Doubková, M.; Van Dijk, A.I.; Sabel, D.; Wagner, W.; Blöschl, G. Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia. Remote Sens. Environ. 2012, 120, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Haas, J. Soil Moisture Modelling Using TWI and Satellite Imagery in the Stockholm Region. Master’s Thesis, School of Architecture and the Built Environment, Royal Institute of Technology (KTH), Stockholm, Sweden, 2010. [Google Scholar]
- Hammam, A.A.; Mohamed, E.S. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. Egypt. J. Remote Sens. Space Sci. 2018. [Google Scholar] [CrossRef]
- Zoka, M.; Psomiadis, E.; Dercas, N. The Complementary Use of Optical and SAR Data in Monitoring Flood Events and Their Effects. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 644. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Agrawal, P.; Agrawal, S. ALOS PALSAR and Hyperion Data Fusion for Land Use Land Cover Feature Extraction. J. Indian Soc. Remote Sens. 2017, 45, 407–416. [Google Scholar] [CrossRef]
- Liu, M.; Dai, Y.; Zhang, J.; Zhang, X.; Meng, J.; Xie, Q. PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform. Acta Oceanol. Sin. 2015, 34, 59–67. [Google Scholar] [CrossRef]
- Chavez, W.J.; Sides, S.C.; Anderson, J.A. Comparison of three different methods to merge multiresolution and multispectral data: TM & Spot Pan. Photogramm. Eng. Remote Sens. 1991, 57, 295–303. [Google Scholar]
- Siddiqui, Y. The modified IHS method for fusing satellite imagery. In Proceedings of the ASPRS 2003 Annual Conference Proceedings, Anchorage, AK, USA, 5–9 May 2003. [Google Scholar]
- Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743–757. [Google Scholar] [CrossRef]
- Guan, H.; Yu, J.; Li, J.; Luo, L. Random forests-based feature selection for land-use classification using lidar data and orthoimagery. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 XXII ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, X.; Tian, J.; Sun, Q.R. Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China. Remote Sens. 2016, 8, 954. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Corcoran, J.; Knight, J.; Gallant, A. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern Minnesota. Remote Sens. 2013, 5, 3212–3238. [Google Scholar] [CrossRef] [Green Version]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Daniels, J.; Blumberg, D.G.; Linetsky, M.; Vulfson, L.D.; Kotlyar, A.L.; Freiliker, V.; Ronen, G. Microwave remote sensing of physically buried objects; implications for environmental research. Remote Sens. Environ. 2003, 86, 243–256. [Google Scholar] [CrossRef]
- Blumberga, D.J.; Netaa, T.; Margalitb, N.; Lazarc, M.; Freilikher, V. Mapping exposed and buried drainage systems using remote sensing in the Negev Desert, Israel. Geomorphology 2004, 61, 239–250. [Google Scholar] [CrossRef]
- Blumberg, D.G. Remote sensing of desert dune forms by polarimetric synthetic aperture radar (SAR). Remote Sens. Environ. 1998, 65, 204–216. [Google Scholar] [CrossRef]
- Elachi, C. Spaceborne Radar Remote Sensing: Applications and Techniques; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 1987. [Google Scholar]
- Qninba, A.; El Agbani, M.A. Maroc Sebkhat Imlili. FDR pour le Site n° 2323, Sebkhat Imlili, Maroc. 2018. Available online: https://rsis.ramsar.org/ris/2323 (accessed on 1 October 2019).
- Emran, A. Le fonctionnement de la Sebkha d’Imlily dévoilé par les images Radar Palsar. Un reliquat de passé dans le Sahara marocain témoin de changement climatique dans des conditions géologiques improbables. In Conférence Régionale « Initiation et Développement de Cartographie Géospatiale Via le Web Pour la Mutualisation et le Partage de L’information Géospatiale»; EMI: Rabat, Morocco, 2016. [Google Scholar]
- Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth 2013, 55–57, 43–52. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
Minimum Surface | 0.015 | Minimum Depth | 20.115 |
Maximum Surface | 472.617 | Maximum Depth | 460 |
Mean Surface | 18.769 | Mean Depth | 80 |
Standard Deviation | 43.477 | Standard Deviation | 73.57 |
Data Source | Characteristics | Extracted Indices |
---|---|---|
Optical Imagery | 280 individual 30-m TM/Landsat-5 images acquired from the study area in 1984, 1994 and 2004 | —Water index used in this study (ABWI) —Normalised Difference Salinity Index (NDSI)—Salt Water Cavity Index (SWCI) —Sar/Optic Saltwater Cavity Index (SOSWCI) |
83 individual 10-m MSI/Sentinel-2A images acquired from the study area in 2017 | ||
50 individual 10-m MSI/Sentinel-2A images acquired from the study area in 2019 | ||
Radar Imagery | 211 individual Sentinel-1 SAR ground-range-detected images collected at a 10 m spatial resolution from 2015 to present | —Microwave-Normalised Difference Polarisation Index (MNDPI) —SAR/Optic Salt Cavity Index (SOSWCI) |
Reference Data CHIRPS Precipitation Data | Vector-point-based data that represent the position of water cavities Spatial: 0.05° Date range: 1985–2019 | Water cavities characteristics in the attribute table Precipitation graph generated by ClimateEngine.org |
NDSI | Non-Salinisation | Mild Salinisation | Moderate Salinisation | Severe Salinisation |
---|---|---|---|---|
Landsat | ≤0.2 | 0.2–0.4 | 0.4–0.8 | ≥0.8 |
Class | Accuracy Assessment % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reference (Ground Thruth) | 1 | 2 | 3 | 4 | 5 | 6 | OA | ||||
1 | 77 | 2 | 2 | 0 | 1 | 2 | 84 | 8.3 | 91.7 | 96.2 | 93.2 |
2 | 0 | 74 | 1 | 0 | 2 | 0 | 77 | 3.9 | 96 | 92.5 | |
3 | 2 | 1 | 73 | 1 | 1 | 0 | 78 | 6.4 | 93.6 | 91.2 | |
4 | 0 | 1 | 2 | 76 | 1 | 0 | 80 | 8 | 92 | 95 | |
5 | 1 | 1 | 1 | 2 | 74 | 2 | 81 | 8.6 | 91.4 | 92.5 | |
6 | 0 | 1 | 1 | 1 | 1 | 75 | 79 | 5 | 95 | 95 | |
80 | 80 | 80 | 80 | 80 | 97 | 479 | |||||
3.75 | 7.5 | 8.75 | 5 | 7.5 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakdaoui, S.; Emran, A.; Pradhan, B.; Qninba, A.; Balla, T.E.; Mfondoum, A.H.N.; Lee, C.-W.; Alamri, A.M. Assessing the Changes in the Moisture/Dryness of Water Cavity Surfaces in Imlili Sebkha in Southwestern Morocco by Using Machine Learning Classification in Google Earth Engine. Remote Sens. 2020, 12, 131. https://doi.org/10.3390/rs12010131
Hakdaoui S, Emran A, Pradhan B, Qninba A, Balla TE, Mfondoum AHN, Lee C-W, Alamri AM. Assessing the Changes in the Moisture/Dryness of Water Cavity Surfaces in Imlili Sebkha in Southwestern Morocco by Using Machine Learning Classification in Google Earth Engine. Remote Sensing. 2020; 12(1):131. https://doi.org/10.3390/rs12010131
Chicago/Turabian StyleHakdaoui, Sofia, Anas Emran, Biswajeet Pradhan, Abdeljebbar Qninba, Taoufik El Balla, Alfred Homère Ngandam Mfondoum, Chang-Wook Lee, and Abdullah M. Alamri. 2020. "Assessing the Changes in the Moisture/Dryness of Water Cavity Surfaces in Imlili Sebkha in Southwestern Morocco by Using Machine Learning Classification in Google Earth Engine" Remote Sensing 12, no. 1: 131. https://doi.org/10.3390/rs12010131