# Spatial Modeling of Mosquito Vectors for Rift Valley Fever Virus in Northern Senegal: Integrating Satellite-Derived Meteorological Estimates in Population Dynamics Models

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Sites

#### 2.2. In-Situ Meteorological Data

#### 2.3. Satellite-Derived Meteorological Data

_{min}) and maximum (T

_{max}) temperatures according to the method for estimating missing humidity detailed in [43]. This method relies on the relationship between temperature and relative humidity at dew point, adapted for arid areas:

#### 2.4. Satellite Multispectral Images

#### 2.5. Entomological Data

_{2}. In Diama (SRD) and Dande Mayo Loboudou (SRV), two traps were set per site. In Younoufere, 6 traps were set, 2 traps for each monitored pond (Diaby, Djidou and Nacara). Trapping episodes took place from sunset (6 PM) to sunrise (6 AM). The mosquitoes collected were immediately killed by freezing in dry ice, put in dry tubes and stored at −80 °C in dry ice until their transportation to the laboratory. They were then identified by sex and species under a binocular microscope on cold table at −20 °C using morphological keys and identification software [36]. This study highlighted the heterogeneous geographical distribution of Ae. vexans, Cx. poicilipes and Cx. tritaeniorhynchus species, with the predominance of Ae. vexans in the Ferlo area, and those of Cx. tritaeniorhynchus in both SRD and SRV (see details in [36]).

#### 2.6. Overview of the Hydrologic Model Used in the Ferlo Area

#### 2.7. The Mosquito Population Dynamics Model

_{em}), and six stages subdivided regarding their behavior during the gonotrophic cycle (h, host-seeking; g, transition from blood feeding and digestion to gravid; o, oviposition site seeking), i.e., three nulliparous stages (A

_{1h}, A

_{1g}, A

_{1o}), and three parous stages (A

_{2h}, A

_{2g}, A

_{2o}).

_{L}and k

_{P}) reflecting the availability of breeding sites. In the Ferlo area, the temporary ponds are the main breeding sites for Ae. vexans and Cx. poicilipes. Thus, the environment carrying capacity is driven by pond surface dynamics. In SRD and SRV, permanent water bodies (Senegal River, Guiers Lake) are the main breeding sites for Cx. poicilipes and Cx. tritaeniorhynchus and the environment carrying capacity is driven by rainfall.

**Table 1.**Model parameters for Ae. vexans, Cx. poicilipes, Cx. tritaeniorhynchus in Northern Senegal.

Parameter | Definition | Ferlo | SRV and SRD | Reference | ||
---|---|---|---|---|---|---|

Ae. vexans | Cx. poic. | Cx. poic. | Cx. tritae. | |||

${\beta}_{1}$ | Number of eggs laid/ovipositing nulliparous female | 80 | 100 | 100 | 100 | [13,51,52] |

${\beta}_{2}$ | Number of eggs laid/ovipositing parous female | 70 | 80 | 80 | 80 | [10,13,51] |

$\sigma $ | Sex-ratio at emergence | 0.5 | 0.5 | 0.5 | 0.5 | [13,51,53,54] |

${\gamma}_{Aem}$ | Development rate of emerging adults (day^{−1}) | 0.6 | 0.75 | 0.75 | 0.75 | [53,55,56] |

${\gamma}_{Ah}$ | Transition rate from host-seeking to engorged adults (day^{−1}) | 0.33 | 0.33 | 0.33 | 0.33 | [35,49,56] |

${\gamma}_{Ao}$ | Transition rate from ovipositing to host-seeking adults (day^{−1}) | 0.33 | 0.33 | 0.33 | 0.33 | [35,49,56] |

${\mu}_{em}$ | Mortality rate during emergence (day^{−1}) | 0.1 | 0.1 | 0.1 | 0.1 | [51] |

${\mu}_{r}$ | Mortality rate related to seeking behavior (day^{−1}) | 0.08 | 0.08 | 0.08 | 0.08 | * |

${\mu}_{E}$ | Minimum egg mortality rate (day^{−1}) | 0.001 | 0.02 | 0.02 | 0.02 | * |

${\mu}_{L}$ | Minimum larvae mortality rate (day^{−1}) | $0.02$ | 0.01 | 0.01 | 0.01 | [51,53,55] |

${\mu}_{P}$ | Minimum pupae mortality rate (day^{−1}) | 0.02 | 0.01 | 0.01 | 0.01 | [51,53,55] |

${\kappa}_{L}$ | Minimum environment carrying capacity for larvae (larvae ha^{−1}) | 10,000 | 10,000 | 10,000 | 10,000 | * |

${\kappa}_{P}$ | Minimum environment carrying capacity for pupae (pupae ha^{−1}) | 10,000 | 10,000 | 10,000 | 10,000 | * |

Td | Minimal length of desiccation period for Aedes eggs (days) | 7 | _ | _ | _ | [11,35] |

Start | First day of the favorable season | date of the first rain | date of the first rain | 1st of January | 1st of January | * |

End | Last day of the favorable season | Max (date with S = 0; 15th Nov.) | Max (date with S = 0; 15th Nov.) | 31st Dec. | 31st Dec. | * |

Fct ^{1} | Definition | Ae. vexans Ferlo | Cx. poic. Ferlo | Cx. poic. SRV/SRD | Cx. tritae. SRV/SRD | Ref. |
---|---|---|---|---|---|---|

${f}_{E}$ | Transition rate from egg to larvae (day^{−1}) | $\left(T-10\right)/110$*s $with\text{}s=\{\begin{array}{c}S/Smax\\ 0\end{array}\begin{array}{c}if\text{}\Delta S0\\ otherwise\end{array}$ | $0.980\frac{T+273.15}{298.15}.\frac{{e}^{11216.85\left(\frac{1}{298.15}-\frac{1}{\left(T+273.15\right)}\right)}}{1+{e}^{31820.33\left(\frac{1}{303.67}-\frac{1}{\left(T+273.15\right)}\right)}}$ | [11,57] | ||

${f}_{L}$ | Transition rate from larvae to pupae (day^{−1}) | ${q}_{1}{T}^{2}+{q}_{2}T+{q}_{3}$ with q _{1} = −0.0007; q_{2} = 0.0392; q_{3} = −0.3911 | $0.216\frac{T+273.15}{298.15}\frac{{e}^{12425.26\left(\frac{1}{298.15}-\frac{1}{\left(T+273.15\right)}\right)}}{1+{e}^{18757.03\left(\frac{1}{301.82}-\frac{1}{\left(T+273.15\right)}\right)}}$ | [51,57] | ||

${f}_{P}$ | Transition rate from pupae to emerging adults (day^{−1}) | ${q}_{1}{T}^{2}+{q}_{2}T+{q}_{3}$ with q _{1} = −0.0008; q_{2} = −0.0051; q_{3} = −0.0319 | $0.555\frac{T+273.15}{298.15}\frac{{e}^{7875.51\left(\frac{1}{298.15}-\frac{1}{\left(T+273.15\right)}\right)}}{1+{e}^{22135.59\left(\frac{1}{TH}-\frac{1}{\left(T+273.15\right)}\right)}}$ | [51,57] | ||

${f}_{Ag}$ | Transition rate from engorged to ovipositing adults (day^{−1}) | $\left(T-10\right)/77$ | $\left(T-10\right)/40$ | [51,53] | ||

${m}_{E}$ | Egg mortality rate (day^{−1}) | ${\mu}_{E}$+$\{\begin{array}{c}E\_dess\\ 0\end{array}\begin{array}{c}if\text{}\Delta S0\\ otherwise\end{array}$ | $\{\begin{array}{c}{\mu}_{E}\\ 1\end{array}\begin{array}{c}if\text{}S0\\ otherwise\end{array}$ | ${\mu}_{E}$ | ${\mu}_{E}$ | * |

${m}_{L}$ | Larvae mortality rate (day^{−1}) | ${\mu}_{L}+{e}^{-T/2}+0.1{e}^{-5S/{S}_{max}}$ | ${\mu}_{L}+{e}^{-T/2}+0.1{e}^{-5S/{S}_{max}}$ | ${\mu}_{L}+{e}^{-T/2}$ | * | |

${m}_{P}$ | Pupae mortality rate (day^{−1}) | ${\mu}_{P}+{e}^{-T/2}+0.1{e}^{-5S/{S}_{max}}$ | ${\mu}_{P}+{e}^{-T/2}+0.1{e}^{-5S/{S}_{max}}$ | ${\mu}_{P}+{e}^{-T/2}$ | * | |

${m}_{A}$ | Adult mortality rate (day^{−1}) | ${q}_{1}{T}^{2}+{q}_{2}T+{q}_{3}$ with q _{1} = 0.000148; q_{2} = −0.00667; q_{3} = 0.1 | $({q}_{1}{T}^{2}+{q}_{2}T+{q}_{3})\left(1-0.016H\right)$, with q_{1} = 0.000148; q_{2} = −0.00667; q_{3} = 0.1 | [3] | ||

${k}_{L}$ | Environment carrying capacity for larvae (larvae ha^{−1}) | ${\kappa}_{L}\left(1+{S}_{A}\right)$ | ${\kappa}_{L}\left(1+{S}_{C}\right)$ | ${\kappa}_{L}\left(1+0.9R\prime \right)$ | ${\kappa}_{L}\left(1+0.9R\right)$ | * |

${k}_{P}$ | Environment carrying capacity for pupae (pupae ha^{−1}) | ${\kappa}_{P}\left(1+{S}_{A}\right)$ | ${\kappa}_{P}\left(1+{S}_{C}\right)$ | ${\kappa}_{P}\left(1+0.9R\prime \right)$ | ${\kappa}_{L}\left(1+0.9R\right)$ | * |

^{1}S denotes the pond surface, S

_{max}the maximum pond surface, T the temperature in °C, H the relative humidity (%), R the daily rainfall in mm, R’ the rainfall of the preceding month in mm, E

_{dess}the proportion of Ae. vexans eggs that have not achieved the minimum desiccation period (T

_{d}). S

_{A}and S

_{C}denote the area where Aedes and Culex females deposit their eggs and defined as 1-meter ring around and inside the pond, respectively. * To the best of our knowledge (field observations and expertise).

^{3}nulliparous adults for Culex species and 10

^{6}eggs for Aedes species, with the 1st of January as the initial time. The model outputs are the abundance of mosquitoes per stage over time at local level, i.e. for one individual pond in the Ferlo area, and for a permanent water body surface of 4 ha in SRV and SRD.

#### 2.8. Application at Regional Scale

^{3}nulliparous adults for Culex species and 10

^{6}eggs for Aedes species, with the 1st of January as the initial time.

#### 2.9. Validation

_{1h}+ A

_{2h}) (relative to the maximum value of simulated host-seeking females abundance over the 2014–2016 period) derived from in situ and satellite-derived weather data. The degree of association between observed and simulated number of adults at the time of entomological collection was assessed for each collection site by calculating the Spearman correlation coefficient.

## 3. Results

#### 3.1. Assessment of the Hydrologic Model Used in the Ferlo Area

^{2}, 485 m

^{2}and 3862 m

^{2}, respectively.

#### 3.2. Mosquito Population Dynamics in the Three Study Sites

#### 3.3. Model Predictions at Regional Scale

## 4. Discussion

#### 4.1. Environmental Drivers of RVFV Vector Populations

#### 4.2. Mosquito Population Modeling Using in-Situ Weather Data

#### 4.3. Mosquito Population Modeling Using Satellite-Derived Weather Data

#### 4.4. Perspectives

## 5. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Hydrologic Model Description

_{in}(t) the runoff volume of inflows.

_{in}is expressed as the product of a runoff coefficient (K

_{r}), the catchment area of the pond (A

_{c}) and the effective rainfall P

_{e}:

_{e}is the part of the precipitation that produces runoff and is calculated as follows:

_{ap}Index is a weighted sum of past precipitation amounts:

_{0}= 50,000 m

^{2}, α = 2.57, H

_{0}= 1 m, K

_{r}= 0.21, G

_{max}= 15 mm·day

^{−1}, k = 0.4, and L = 15 mm·day

^{−1}.

## Appendix B. Cell Characterization-Estimations of the Water Surface in the Cell, the Number of Ponds, and a Suitability Index for the Presence of Cx. tritaeniorhynchus, Cx. poicilipes, and Ae. vexans

^{2}), chosen as being representative of Ferlo ponds.

**Figure A2.**Distance index of Ae. vexans arabiensis, Culex poicilipes and Culex tritaeniorhyncus, Northern Senegal.

**Figure A3.**Suitability index maps for Ae. vexans arabiensis, Culex poicilipes and Culex tritaeniorhyncus, Northern Senegal.

## References

- Lord, C.C. Modeling and biological control of mosquitoes. J. Am. Mosq. Control Assoc.
**2007**, 23, 252–264. [Google Scholar] [CrossRef] - Juliano, S.A. Population dynamics. J. Am. Mosq. Control Assoc.
**2007**, 23, 265–275. [Google Scholar] [CrossRef] - Ezanno, P.; Aubry-Kientz, M.; Arnoux, S.; Cailly, P.; L’Ambert, G.; Toty, C.; Balenghien, T.; Tran, A. A generic weather-driven model to predict mosquito population dynamics applied to species of Anopheles, Culex and Aedes genera of southern France. Prev. Vet. Med.
**2015**, 120, 39–50. [Google Scholar] [CrossRef] - Beck-Johnson, L.M.; Nelson, W.A.; Paaijmans, K.P.; Read, A.F.; Thomas, M.B.; Bjornstad, O.N. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE
**2013**, 8, e79276. [Google Scholar] [CrossRef] - Depinay, J.M.; Mbogo, C.M.; Killeen, G.; Knols, B.; Beier, J.; Carlson, J.; Dushoff, J.; Billingsley, P.; Mwambi, H.; Githure, J.; et al. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar. J.
**2004**, 3, 29. [Google Scholar] [CrossRef] [PubMed] - Focks, D.A.; Haile, D.G.; Daniels, E.; Mount, G.A. Dynamic life table model for Aedes aegypti (diptera: Culicidae): Simulation results and validation. J. Med. Entomol.
**1993**, 30, 1018–1028. [Google Scholar] [CrossRef] [PubMed] - Otero, M.; Solari, H.G.; Schweigmann, N. A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate. Bull. Math. Biol.
**2006**, 68, 1945–1974. [Google Scholar] [CrossRef] - Tran, A.; L’Ambert, G.; Lacour, G.; Benoît, R.; Demarchi, M.; Cros, M.; Cailly, P.; Aubry-Kientz, M.; Balenghien, T.; Ezanno, P. A rainfall- and temperature-driven abundance model for Aedes albopictus populations. Int. J. Environ. Res. Public Health
**2013**, 10, 1698–1719. [Google Scholar] [CrossRef] [PubMed] - Erguler, K.; Smith-Unna, S.E.; Waldock, J.; Proestos, Y.; Christophides, G.K.; Lelieveld, J.; Parham, P.E. Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse). PLoS ONE
**2016**, 11, e0149282. [Google Scholar] [CrossRef] - Hammami, P.; Tran, A.; Kemp, A.; Tschikae, P.; Kgori, P.; Chevalier, V.; Paweska, J.; Jori, F. Rift Valley fever vector diversity and impact of meteorological and environmental factors on Culex pipiens dynamics in the Okavango Delta, Botswana. Parasit. Vectors
**2016**, 9, 434. [Google Scholar] [CrossRef] - Soti, V.; Tran, A.; Degenne, P.; Chevalier, V.; Lo Seen, D.; Thiongane, Y.; Diallo, M.; Guegan, J.F.; Fontenille, D. Combining hydrology and mosquito population models to identify the drivers of rift valley Fever emergence in semi-arid regions of west Africa. PLoS Negl. Trop. Dis.
**2012**, 6, e1795. [Google Scholar] [CrossRef] [PubMed] - Porphyre, T.; Bicout, D.J.; Sabatier, P. Modelling the abundance of mosquito vectors versus flooding dynamics. Ecol. Model.
**2005**, 183, 173–181. [Google Scholar] [CrossRef] - Clements, A.N. The Biology of Mosquitoes: Development; Nutrition and Reproduction; CABI Publishing: Eastbourne, UK, 2000. [Google Scholar]
- Chuang, T.W.; Henebry, G.M.; Kimball, J.S.; Vanroekel-Patton, D.L.; Hildreth, M.B.; Wimberly, M.C. Satellite Microwave Remote Sensing for Environmental Modeling of Mosquito Population Dynamics. Remote Sens. Environ.
**2012**, 125, 147–156. [Google Scholar] [CrossRef][Green Version] - Tran, A.; Kassié, D.; Herbreteau, V. Applications of Remote Sensing to the Epidemiology of Infectious Diseases: Some Examples. In Land Surface Remote Sensing: Environment and Risks; Baghdadi, N., Zribi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 295–316. [Google Scholar]
- Leedale, J.; Jones, A.E.; Caminade, C.; Morse, A.P. A dynamic, climate-driven model of Rift Valley fever. Geospat. Health
**2016**, 11, 394. [Google Scholar] [CrossRef] [PubMed] - Anyamba, A.; Linthicum, K.J.; Small, J.; Britch, S.C.; Pak, E.; de La Rocque, S.; Formenty, P.; Hightower, A.W.; Breiman, R.F.; Chretien, J.P.; et al. Prediction, assessment of the Rift Valley fever activity in East and Southern Africa 2006-2008 and possible vector control strategies. Am. J. Trop. Med. Hyg.
**2010**, 83, 43–51. [Google Scholar] [CrossRef] [PubMed] - Linthicum, K.J.; Anyamba, A.; Tucker, C.J.; Kelley, P.W.; Myers, M.F.; Peters, C.J. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science
**1999**, 285, 397–400. [Google Scholar] [CrossRef] - Metras, R.; Jewell, C.; Porphyre, T.; Thompson, P.N.; Pfeiffer, D.U.; Collins, L.M.; White, R.G. Risk factors associated with Rift Valley fever epidemics in South Africa in 2008-11. Sci. Rep.
**2015**, 5, 9492. [Google Scholar] [CrossRef] [PubMed] - Adimi, F.; Soebiyanto, R.P.; Safi, N.; Kiang, R. Towards malaria risk prediction in Afghanistan using remote sensing. Malar. J.
**2010**, 9, 125. [Google Scholar] [CrossRef] [PubMed] - Moiroux, N.; Djenontin, A.; Bio-Bangana, A.S.; Chandre, F.; Corbel, V.; Guis, H. Spatio-temporal analysis of abundances of three malaria vector species in southern Benin using zero-truncated models. Parasit. Vectors
**2014**, 7, 103. [Google Scholar] [CrossRef] - Dambach, P.; Machault, V.; Lacaux, J.P.; Vignolles, C.; Sie, A.; Sauerborn, R. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa. Int. J. Health Geogr.
**2012**, 11, 8. [Google Scholar] [CrossRef] - Peyre, M.; Chevalier, V.; Abdo-Salem, S.; Velthuis, A.; Antoine-Moussiaux, N.; Thiry, E.; Roger, F. A Systematic Scoping Study of the Socio-Economic Impact of Rift Valley Fever: Research Gaps and Needs. Zoonoses Public Health
**2015**, 62, 309–325. [Google Scholar] [CrossRef] - Wilson, M.L. Rift Valley fever virus ecology and the epidemiology of disease emergence. Ann. N. Y. Acad. Sci.
**1994**, 740, 169–180. [Google Scholar] [CrossRef] - Pepin, M.; Bouloy, M.; Bird, B.H.; Kemp, A.; Paweska, J. Rift Valley fever virus (Bunyaviridae: Phlebovirus): An update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet. Res.
**2010**, 41, 61. [Google Scholar] [CrossRef] - Nicolas, G.; Durand, B.; Rakotoarimanana, T.T.; Lacote, S.; Chevalier, V.; Marianneau, P. A 3-year serological and virological cattle follow-up in Madagascar highlands suggests a non-classical transmission route of Rift Valley fever virus. Am. J. Trop. Med. Hyg.
**2014**, 90, 265–266. [Google Scholar] [CrossRef] - Jouan, A.; Le Guenno, B.; Digoutte, J.P.; Philippe, B.; Riou, O.; Adam, F. An RVF epidemic in southern Mauritania. Ann. Inst. Pasteur. Virol.
**1988**, 139, 307–308. [Google Scholar] [CrossRef] - Zeller, H.G.; Fontenille, D.; Traore-Lamizana, M.; Thiongane, Y.; Digoutte, J.P. Enzootic activity of Rift Valley fever virus in Senegal. Am. J. Trop. Med. Hyg.
**1997**, 56, 265–272. [Google Scholar] [CrossRef] [PubMed] - Chevalier, V.; Lancelot, R.; Thiongane, Y.; Sall, B.; Diaite, A.; Mondet, B. Rift Valley fever in small ruminants, Senegal, 2003. Emerg. Infect. Dis.
**2005**, 11, 1693–1700. [Google Scholar] [CrossRef] [PubMed] - Thonnon, J.; Picquet, M.; Thiongane, Y.; Lo, M.A.; Sylla, R.; Vercruysse, J. Rift valley fever surveillance in lower Senegal river basin: Update 10 years after the epidemic. Trop. Med. Int. Health
**1999**, 4, 580–585. [Google Scholar] [CrossRef] - Sow, A.; Faye, O.; Ba, Y.; Diallo, D.; Fall, G.; Faye, O.; Bob, N.S.; Loucoubar, C.; Richard, V.; Dia, A.T.; et al. Widespread Rift Valley Fever Emergence in Senegal in 2013-2014. Open Forum Infect. Dis.
**2016**, 3, ofw149. [Google Scholar] [CrossRef] [PubMed] - Diallo, M.; Lochouarn, L.; Ba, K.; Sall, A.A.; Mondo, M.; Girault, L.; Mathiot, C. First isolation of the Rift Valley fever virus from Culex poicilipes (Diptera: Culicidae) in nature. Am. J. Trop. Med. Hyg.
**2000**, 62, 702–704. [Google Scholar] [CrossRef] - Fontenille, D.; Traore-Lamizana, M.; Diallo, M.; Thonnon, J.; Digoutte, J.P.; Zeller, H.G. New vectors of Rift Valley fever in west Africa. Emerg. Infect. Dis.
**1998**, 4, 289–293. [Google Scholar] [CrossRef] - Diallo, M.; Nabeth, P.; Ba, K.; Sall, A.A.; Ba, Y.; Mondo, M.; Girault, L.; Abdalahi, M.O.; Mathiot, C. Mosquito vectors of the 1998–1999 outbreak of Rift Valley Fever and other arboviruses (Bagaza, Sanar, Wesselsbron and West Nile) in Mauritania and Senegal. Med. Vet. Entomol.
**2005**, 19, 119–126. [Google Scholar] [CrossRef] - Mondet, B.; Diaite, A.; Ndione, J.A.; Fall, A.G.; Chevalier, V.; Lancelot, R.; Ndiaye, M.; Poncon, N. Rainfall patterns and population dynamics of Aedes (Aedimorphus) vexans arabiensis, Patton 1905 (Diptera: Culicidae), a potential vector of Rift Valley Fever virus in Senegal. J. Vector Ecol.
**2005**, 30, 102–106. [Google Scholar] - Biteye, B.; Fall, A.G.; Ciss, M.; Seck, M.T.; Apolloni, A.; Fall, M.; Gimonneau, G. Ecological distribution and population dynamics of Rift Valley fever virus mosquito vectors (Diptera, Culicidae) in Senegal. Parasit. Vectors
**2018**, 11, 1–6. [Google Scholar] [CrossRef] - Fall, A.G.; Diaite, A.; Lancelot, R.; Tran, A.; Soti, V.; Etter, E.; Konate, L.; Faye, O.; Bouyer, J. Feeding behaviour of potential vectors of West Nile virus in Senegal. Parasit. Vectors
**2011**, 4, 99. [Google Scholar] [CrossRef] - Fall, A.G.; Diaite, A.; Seck, M.T.; Bouyer, J.; Lefrancois, T.; Vachiery, N.; Aprelon, R.; Faye, O.; Konate, L.; Lancelot, R. West Nile virus transmission in sentinel chickens and potential mosquito vectors, Senegal River Delta, 2008-2009. Int. J. Environ. Res. Public Health
**2013**, 10, 4718–4727. [Google Scholar] [CrossRef] - Jupp, P.G.; Kemp, A.; Grobbelaar, A.; Leman, P.; Burt, F.J.; Alahmed, A.M.; Al Mujalli, D.; Al Khamees, M.; Swanepoel, R. The 2000 epidemic of Rift Valley fever in Saudi Arabia: Mosquito vector studies. Med. Vet. Entomol.
**2002**, 16, 245–252. [Google Scholar] [CrossRef] - Bicout, D.J.; Sabatier, P. Mapping Rift Valley Fever vectors and prevalence using rainfall variations. Vector-Borne Zoonotic Dis.
**2004**, 4, 33–42. [Google Scholar] [CrossRef] - Cailly, P.; Tran, A.; Balenghien, T.; L’Ambert, G.; Toty, C.; Ezanno, P. A climate-driven abundance model to assess mosquito control strategies. Ecol. Model.
**2012**, 227, 7–17. [Google Scholar] [CrossRef] - OIE. Rift Valley Fever-Senegal: (DK) Bovine. Available online: http://www.promedmail.org (accessed on 18 December 2018).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56, Available online: http://www.fao.org/docrep/X0490E/X0490E00.htm#Contents (accessed on 18 December 2018).
- Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens.
**2006**, 27, 3025–3033. [Google Scholar] [CrossRef] - Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens.
**2016**, 8, 354. [Google Scholar] [CrossRef] - Soti, V.; Puech, C.; Lo Seen, D.; Bertran, A.; Vignolles, C.; Mondet, B.; Dessay, N.; Tran, A. The potential for remote sensing and hydrologic modelling to assess the spatio-temporal dynamics of ponds in the Ferlo Region (Senegal). Hydrol. Earth Syst. Sci.
**2010**, 14, 1449–1464. [Google Scholar] [CrossRef][Green Version] - Jetten, T.H.; Takken, W. Anophelism without Malaria in Europe: A Review of the Ecology and Distribution of the Genus Anopheles in Europe; Wageningen Agricultural University Press: Wageningen, The Netherlands, 1994. [Google Scholar]
- Diallo, D.; Talla, C.; Ba, Y.; Dia, I.; Sall, A.A.; Diallo, M. Temporal distribution and spatial pattern of abundance of the Rift Valley fever and West Nile fever vectors in Barkedji, Senegal. J. Vector Ecol.
**2011**, 36, 426–436. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ba, Y.; Diallo, D.; Kebe, C.M.F.; Dia, I.; Diallo, M. Aspects of bioecology of two Rift Valley fever virus vectors in Senegal (West Africa): Aedes vexans and Culex poicilipes (Diptera: Culicidae). J. Med Entomol.
**2005**, 42, 739–750. [Google Scholar] [CrossRef] - Horsfall, W.R. Mosquitoes: Their Bionomics and Relation to Disease; The Royal Press Company: New York, NY, USA, 1955. [Google Scholar]
- Delatte, H.; Gimonneau, G.; Triboire, A.; Fontenille, D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J. Med. Entomol.
**2009**, 46, 33–41. [Google Scholar] [CrossRef] [PubMed] - Briegel, H.; Timmermann, S.E. Aedes albopictus (Diptera: Culicidae): Physiological aspects of development and reproduction. J. Med Entomol.
**2001**, 38, 566–571. [Google Scholar] [CrossRef] - Vinogradova, E. Culex Pipiens Pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetic, Applied Importance and Control; Pensoft Publishers Sofia-Moscow: Sofia, Bulgaria, 2000. [Google Scholar]
- Gjullin, C.M.; Yates, W.W.; Stage, H.H. Studies on Aedes vexans (Meigen) and Aedes sticticus (Meigen), flood-water mosquitoes, in the lower Columbia river valley. Ann. Entomol. Soc. Am.
**1950**, 43, 262–275. [Google Scholar] [CrossRef] - Carron, A.; Bichaud, L.; Platz, N.; Bicout, D.J. Life history traits of Aedes caspius (Diptera: Culicidae): A laboratory study of larval stages. Bull. Entomol. Res.
**2008**, 98, 431–436. [Google Scholar] [CrossRef] - Buei, K.; Ito, S.; Nakamura, H.; Yoshida, M. Field study on the gonotrophic cycle of Culex tritaeniorhynchus. Med. Entomol. Zool.
**1980**, 31, 57–62. [Google Scholar] [CrossRef] - Rueda, L.M.; Patel, K.J.; Axtell, R.C.; Stinner, R.E. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol.
**1990**, 27, 892–898. [Google Scholar] [CrossRef] - Degenne, P.; Lo Seen, D. Ocelet: Simulating processes of landscape changes using interaction graphs. SoftwareX
**2016**, 5, 89–95. [Google Scholar] [CrossRef][Green Version] - Castets, M.; Degenne, P.; Poncelet, P.; Lo Seen, D. Integrating raster and vector spatial representations with interaction graphs for multi-scale environmental simulations. In Proceedings of the 7th International Congress on Environmental Modelling and Software, San Diego, CA, USA, 15–19 June 2014. [Google Scholar]
- Morris, M. Factorial sampling plans for preliminary computational experiments. Technometrics
**1991**, 33, 161–174. [Google Scholar] [CrossRef] - Ba, Y.; Sall, A.A.; Diallo, D.; Mondo, M.; Girault, L.; Dia, I.; Diallo, M. Re-Emergence of Rift Valley Fever Virus in Barkedji (Senegal, West Africa) in 2002–2003: Identification of New Vectors and Epidemiological Implications. J. Am. Mosq. Control Assoc.
**2012**, 28, 170–178. [Google Scholar] [CrossRef] - Talla, C.; Diallo, D.; Dia, I.; Ba, Y.; Ndione, J.A.; Sall, A.A.; Morse, A.; Diop, A.; Diallo, M. Statistical modeling of the abundance of vectors of West African Rift Valley fever in Barkedji, Senegal. PLoS ONE
**2014**, 9, e114047. [Google Scholar] [CrossRef] - Talla, C.; Diallo, D.; Dia, I.; Ba, Y.; Ndione, J.A.; Morse, A.P.; Diop, A.; Diallo, M. Modelling hotspots of the two dominant Rift Valley fever vectors (Aedes vexans and Culex poicilipes) in Barkedji, Senegal. Parasit. Vectors
**2016**, 9, 111. [Google Scholar] [CrossRef] - Soti, V.; Chevalier, V.; Maura, J.; Begue, A.; Lelong, C.; Lancelot, R.; Thiongane, Y.; Tran, A. Identifying landscape features associated with Rift Valley fever virus transmission, Ferlo region, Senegal, using very high spatial resolution satellite imagery. Int. J. Health Geogr.
**2013**, 12, 10. [Google Scholar] [CrossRef] [PubMed] - Soti, V.; Tran, A.; Bailly, J.-S.; Puech, P.; Lo Seen, D.; Bégué, A. Assessing optical Earth observation systems for mapping and monitoring temporary ponds in arid areas. Int. J. Appl. Earth Obs. Geoinf.
**2009**, 11, 344–351. [Google Scholar] [CrossRef] - Gouagna, L.C.; Dehecq, J.S.; Fontenille, D.; Dumont, Y.; Boyer, S. Seasonal variation in size estimates of Aedes albopictus population based on standard mark-release-recapture experiments in an urban area on Reunion Island. Acta Trop.
**2015**, 143, 89–96. [Google Scholar] [CrossRef] - Fall, A.G.; Diaite, A.; Etter, E.; Bouyer, J.; Ndiaye, T.D.; Konate, L. The mosquito Aedes (Aedimorphus) vexans arabiensis as a probable vector bridging the West Nile virus between birds and horses in Barkedji (Ferlo, Senegal). Med. Vet. Entomol.
**2012**, 26, 106–111. [Google Scholar] [CrossRef] - Anyamba, A.; Chretien, J.P.; Small, J.; Tucker, C.J.; Formenty, P.; Richardson, J.; Britch, S.; Linthicum, K.J. Forecasting the temporal and spatial distribution of a rift valley fever outbreak in east Africa: 2006–2007. Am. J. Trop. Med. Hyg.
**2007**, 77, 282–283. [Google Scholar] - Hardy, A.; Ettritch, G.; Cross, D.E.; Bunting, P.; Liywalii, F.; Sakala, J.; Silumesii, A.; Singini, D.; Smith, M.; Willis, T.; et al. Automatic Detection of Open and Vegetated Water Bodies Using Sentinel 1 to Map African Malaria Vector Mosquito Breeding Habitats. Remote Sens.
**2019**, 11, 593. [Google Scholar] [CrossRef] - Tran, A.; Trevennec, C.; Lutwama, J.; Sserugga, J.; Gely, M.; Pittiglio, C.; Pinto, J.; Chevalier, V. Development and Assessment of a Geographic Knowledge-Based Model for Mapping Suitable Areas for Rift Valley Fever Transmission in Eastern Africa. PLoS Negl. Trop. Dis.
**2016**, 10, e0004999. [Google Scholar] [CrossRef][Green Version] - Clements, A.C.; Pfeiffer, D.U.; Martin, V. Application of knowledge-driven spatial modelling approaches and uncertainty management to a study of Rift Valley fever in Africa. Int. J. Health Geogr.
**2006**, 5, 57. [Google Scholar] [CrossRef] - Clements, A.C.; Pfeiffer, D.U.; Martin, V.; Pittliglio, C.; Best, N.; Thiongane, Y. Spatial risk assessment of Rift Valley fever in Senegal. Vector Borne Zoonotic Dis.
**2007**, 7, 203–216. [Google Scholar] [CrossRef] - Pedro, S.A.; Abelman, S.; Tonnang, H.E. Predicting Rift Valley Fever Inter-epidemic Activities and Outbreak Patterns: Insights from a Stochastic Host-Vector Model. PLoS Negl. Trop. Dis.
**2016**, 10, e0005167. [Google Scholar] [CrossRef] [PubMed] - Nicolas, G.; Chevalier, V.; Tantely, L.M.; Fontenille, D.; Durand, B. A spatially explicit metapopulation model and cattle trade analysis suggests key determinants for the recurrent circulation of rift valley Fever virus in a pilot area of madagascar highlands. PLoS Negl. Trop. Dis.
**2014**, 8, e3346. [Google Scholar] [CrossRef] - Paul, P.N.T.; Bah, A.; Ndiaye, P.I.; Ndione, J.A. An Agent-Based Model for Studying the Impact of Herd Mobility on the Spread of Vector-Borne Diseases: The Case of Rift Valley Fever (Ferlo Senegal). Open J. Model. Simul.
**2014**, 2, 97–111. [Google Scholar] [CrossRef] - Belkhiria, J.; Lo, M.; Sow, F.; Martínez-López, B.; Chevalier, V. Application of Exponential Random Graph Models to determine Nomadic herders’ movements in Senegal. Transbound Emerg. Dis.
**2019**. [Google Scholar] [CrossRef]

**Figure 2.**Diagram of the model of mosquito population dynamics applied to Ae. vexans, Cx. poicilipes and Cx. tritaeniorhynchus species in Senegal. In blue, the aquatic stages (E: eggs, L: larvae, P: pupae); in orange, the adult female stages (A

_{em}: emerging, A

_{1}: nulliparous, A

_{2}: parous, with h: host-seeking, g: bloodfed and resting, o: ovipositing). Parameters and functions are defined in Table 1 and Table 2, respectively. Associated model equations are provided in Equations (3)–(4).

**Figure 4.**Comparison of observed (red dots) and predicted (black lines) pond surfaces in Younoufere study site, Ferlo, Senegal, 2015 and 2016. Observed pond surfaces were calculated from the GPS delineated contours of the ponds (right panel: solid and dashed lines correspond to 2015 and 2016 observations, respectively). Predicted pond surfaces were simulated from ground weather station rainfall data (blue bars in the left panel).

**Figure 5.**Comparison of observed (red dots) and predicted (black lines) adult mosquito population dynamics in Diama, Senegal River Delta (SRD), Dande Mayo Loboudou, Senegal River Valley (SRV), and Younoufere, Ferlo, Senegal, 2014–2016. Predicted mosquito dynamics were simulated from ground weather station humidity, temperature, and rainfall data (blue bars).

**Figure 6.**Comparison of observed (red dots) and predicted (black lines) adult mosquito population dynamics in Diama, Senegal River Delta (SRD), Dande Mayo Loboudou, Senegal River Valley (SRV), and Younoufere, Ferlo, Senegal, 2014–2016. Predicted mosquito dynamics were simulated from satellite-derived humidity, temperature, and rainfall estimates (blue bars).

**Figure 7.**Examples of modeled density maps of Ae. vexans, Cx. poicilipes and Cx. tritaeniorhynchus in Northern Senegal, 2014.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tran, A.; Fall, A.G.; Biteye, B.; Ciss, M.; Gimonneau, G.; Castets, M.; Seck, M.T.; Chevalier, V.
Spatial Modeling of Mosquito Vectors for Rift Valley Fever Virus in Northern Senegal: Integrating Satellite-Derived Meteorological Estimates in Population Dynamics Models. *Remote Sens.* **2019**, *11*, 1024.
https://doi.org/10.3390/rs11091024

**AMA Style**

Tran A, Fall AG, Biteye B, Ciss M, Gimonneau G, Castets M, Seck MT, Chevalier V.
Spatial Modeling of Mosquito Vectors for Rift Valley Fever Virus in Northern Senegal: Integrating Satellite-Derived Meteorological Estimates in Population Dynamics Models. *Remote Sensing*. 2019; 11(9):1024.
https://doi.org/10.3390/rs11091024

**Chicago/Turabian Style**

Tran, Annelise, Assane Gueye Fall, Biram Biteye, Mamadou Ciss, Geoffrey Gimonneau, Mathieu Castets, Momar Talla Seck, and Véronique Chevalier.
2019. "Spatial Modeling of Mosquito Vectors for Rift Valley Fever Virus in Northern Senegal: Integrating Satellite-Derived Meteorological Estimates in Population Dynamics Models" *Remote Sensing* 11, no. 9: 1024.
https://doi.org/10.3390/rs11091024