Hyperspectral Pansharpening Based on Homomorphic Filtering and Weighted Tensor Matrix
Abstract
:1. Introduction
- A novel HS image spatial component extraction strategy is proposed. Open-closing morphological operation and homomorphic filtering are first introduced to remove the noise and extract the spatial details of each band of the HS image, respectively. Then, a weighted root mean squared error-based method is proposed to obtain the total spatial component of the HS image.
- An optimized weighted tensor matrix-based method is proposed to integrate the spatial component of the HS image with the spatial component of the PAN image. The weighted structure tensor matrix that represents the structural information of multiple images is applied to hyperspectral pansharpening for the first time. The classical methods which mostly extract the spatial information of the PAN image inject the incomplete spatial information, and may lead to distortion. Unlike there classical methods, the proposed optimized weighted tensor matrix-based method generates the spatial information not only from the PAN image but also from the HS image, and can reduce the distortion caused by the insufficient spatial information.
2. Related Work
2.1. Weighted Structure Tensor Matrix
2.2. Homomorphic Filtering
3. Proposed Method
3.1. Hyperspectral Image Preprocessing
3.2. Hyperspectral Image Spatial Information Extraction
3.3. Panchromatic Image Preprocessing and Total Spatial Information Acquisition
3.4. Fused High Spatial Resolution Hyperspectral Image Generation
4. Experimental Results and Discussion
4.1. Datasets and Experimental Setup
4.2. Validity Discussion of the Open-Closing Denoising Operation
4.3. Experiments on Simulated Hyperspectral Datasets
4.4. Experiments on Real Hyperspectral Datasets
4.5. Computational Complexity Analysis and Time Comparisons
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. and Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, L.Y.; Hou, C.P.; Kung, S.Y. Hyperspectral and multispectral image fusion based on local low rank and coupled spectral unmixing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5997–6009. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly detection in hyperspectral images based on low-rank and sparse representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1990–2000. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Du, Q. Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 2018, 27, 2623–2634. [Google Scholar] [CrossRef]
- Xue, B.; Yu, C.; Wang, Y.; Song, M.; Li, S.; Wang, L.; Chen, H.; Chang, C.I. A subpixel target detection approach to hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5093–5114. [Google Scholar] [CrossRef]
- Kang, X.; Duan, P.; Xiang, X.; Li, S.; Benediktsson, J.A. Detection and correction of mislabeled training samples for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5673–5686. [Google Scholar] [CrossRef]
- Lv, Z.Y.; Shi, W.Z.; Zhou, X.C.; Benediktsson, J.A. Semi-automatic system for land cover change detection using bi-temporal remote sensing images. Remote Sens. 2017, 9, 1112. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.; Ian, B.; Strachan, I. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Chabrillat, S.; Pinet, P.C.; Ceuleneer, G.; Johnson, P.E.; Mustard, J.F. Ronda peridotite massif: Methodology for its geological mapping and lithological discrimination from airborne hyperspectral data. Int. J. Remote Sens. 2000, 21, 2363–2388. [Google Scholar] [CrossRef]
- Bishop, C.A.; Liu, J.G.; Mason, P.J. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. Int. J. Remote Sens. 2011, 32, 2409–2426. [Google Scholar] [CrossRef]
- Ellis, R.J.; Scott, P.W. Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall, UK. Remote Sens. Environ. 2004, 93, 118–130. [Google Scholar] [CrossRef]
- Wei, Q.; Dobigeon, N.; Tourneret, J.Y. Fast fusion of multiband images based on solving a Sylvester equation. IEEE Trans. Image Process. 2015, 24, 4109–4121. [Google Scholar] [CrossRef]
- Wei, Q.; Dobigeon, N.; Tourneret, J.Y. Bayesian fusion of multiband images. IEEE J. Sel. Top. Signal Process. 2015, 9, 1117–1127. [Google Scholar] [CrossRef]
- Simoes, M.; Dias, J.B.; Almeida, L.; Chanussot, J. A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3373–3388. [Google Scholar] [CrossRef]
- Loncan, L.; Almeida, L.; Dias, J.B.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.Z.; Licciardi, G.A.; Simoes, M.; Tourneret, J.; Veganzones, M.A.; Vivone, G.; Wei, Q.; Yokoya, N. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef]
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and multispectral data fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Hoyer, P.O. Non negative sparse coding. In Proceedings of the IEEE Workshop Neural Network Signal Processing, Martigny, Switzerland, 6 September 2002; pp. 557–565. [Google Scholar]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled nonnegative matrix factorization unmixing for hyper-spectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Carper, W.; Lillesand, T.M.; Kiefer, P.W. The use of Intensity-Hue-Saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion. 2001, 2, 117–186. [Google Scholar] [CrossRef]
- Chavez, P.S.; Kwarteng, A.Y.A. Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348. [Google Scholar]
- Shettigara, V. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogramm. Eng. Remote Sens. 1992, 58, 561–567. [Google Scholar]
- Laben, C.; Brower, B. Process for Enhacing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6,011,875, 4 January 2000. [Google Scholar]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS + Pan data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [Google Scholar] [CrossRef]
- Liu, J.G. Smoothing filter based intensity modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Vivone, G.; Restaino, R.; Mura, M.D.; Licciardi, G.; Chanussot, J. Contrast and error-based fusion schemes for multispectral image pansharpening. IEEE Geosci. Remote Sens. Lett. 2014, 11, 930–934. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. 25 years of pansharpening: A critical review and new developments. In Signal Image Processing for Remote Sensing, 2nd ed.; Chen, C.H., Ed.; CRC Press: Boca Raton, FL, USA, 2011; Chapter 28; pp. 533–548. [Google Scholar]
- Park, H.; Choi, J.; Park, N.; Choi, S. Sharpening the VNIR and SWIR bands of Sentinel-2A imagery through modified selected and synthesized band schemes. Remote Sens. 2017, 9, 80. [Google Scholar] [CrossRef]
- Vivone, G.; Addesso, P.; Restaino, R.; Dalla, M.; Chanussot, J. Pansharpening Based on Deconvolution for Multiband Filter Estimation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 540–553. [Google Scholar] [CrossRef]
- Liao, W.; Huang, X.; Coillie, F.; Gautama, S.; Pizurica, A.; Philips, W.; Liu, H.; Zhu, T.; Shimoni, M.; Moser, G.; et al. Processing of multiresolution thermal hyperspectral and digital color data: Outcome of the 2014 IEEE GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2984–2996. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.Q.; Chan, J.C.W. Hyperspectral and Multispectral Image Fusion via Deep Two-Branches Convolutional Neural Network. Remote Sens. 2018, 10, 800. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, C.; Sun, M.W.; Ou, Y.J. Pan-Sharpening Using an Efficient Bidirectional Pyramid Network. IEEE Trans. Geosci. Remote Sens. 2019, 1–15. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 639–642. [Google Scholar] [CrossRef]
- Akl, A.; Yaacoub, C.; Donias, M.; Costa, J.D.; Germain, C. Texture synthesis using the structure tensor. IEEE Trans. Image Process. 2015, 24, 4082–4095. [Google Scholar] [CrossRef]
- Lefkimmiatis, S.; Osher, S. Nonlocal structure tensor functionals for image regularization. IEEE Trans. Computat. Imag. 2015, 1, 16–29. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Jin, J.; Shen, Y. Structure tensor total variation-regularized weighted nuclear norm minimization for hyperspectral image mixed denoising. Signal Process. 2017, 131, 202–219. [Google Scholar] [CrossRef]
- Tiwari, K.; Arya, D.K.; Badrinath, G.S.; Gupta, P. Designing palmprint based recognition system using local structure tensor and force field transformation for human identification. Neurocomputing. 2013, 116, 222–230. [Google Scholar] [CrossRef]
- Fan, C.N.; Zhang, F.Y. Homomorphic filtering based illumination normalization method for face recognition. Pattern Recogn. Lett. 2011, 32, 1468–1479. [Google Scholar] [CrossRef]
- Sreenivasan, K.R.; Havlicek, M.; Deshpande, G. Nonparametric hemodynamic deconvolution of fMRI using homomorphic filtering. IEEE Trans. Med. Imaging. 2014, 34, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Li, C.; Wu, Z.; Wang, T. An enhancement method for X-ray image via fuzzy noise removal and homomorphic filtering. Neurocomputing. 2016, 195, 56–64. [Google Scholar] [CrossRef]
- Liu, Z.G.; Wang, J.L.; Liu, B. ECG Signal Denoising Based on Morphological Filtering. In Proceedings of the 2011 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, 10–12 May 2011. 12072479. [Google Scholar]
- Chen, S.H.; Wang, E.Y. Electromagnetic Radiation Signals of Coal or Rock Denoising Based on Morphological Filter. Procedia Engineer. 2011, 26, 588–594. [Google Scholar]
- Lai, W.; Huang, J.; Ahuja, N.; Yang, M. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 624–632. [Google Scholar]
- Dong, W.Q.; Xiao, S.; Li, Y.S.; Qu, J.H. Hyperspectral pansharpening based on intrinsic image decomposition and weighted least squares filter. Remote Sens. 2018, 10, 445. [Google Scholar] [CrossRef]
- Mookambiga, A.; Gomathi, V. Comprehensive review on fusion techniques for spatial information enhancement in hyperspectral imagery. Multidimens. Syst. Signal Process. 2016, 27, 863–889. [Google Scholar] [CrossRef]
- Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [Google Scholar] [CrossRef]
- Vivone, G.; Alpharone, L.; Chanussot, J.; Mura, M.D.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Du, Q.; Younan, N.H.; King, R.; Shah, V.P. On the performance evaluation of pan-sharpening techniques. IEEE Geosci. Remote Sens. Lett. 2007, 4, 518–522. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Selva, M.; Santurri, L.; Baronti, S. On the Use of the Expanded Image in Quality Assessment of Pansharpened Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1–5. [Google Scholar] [CrossRef]
Dataset | Reference HS Size | Simulated Size | Reference HS Spatial Resolution (SR) | Simulated SR | Band Number | Spectral Range |
---|---|---|---|---|---|---|
Washington DC | 200 × 200 | PAN 200 × 200 | 3m | PAN 3m | 191 | 0.4–2.5 |
HS 50 × 50 | HS 12m | |||||
Salinas scene | 200 × 200 | PAN 200 × 200 | 3.7 m | PAN 3.7 m | 204 | 0.4–2.4 |
HS 50 × 50 | HS 18.5 m | |||||
Dataset | Real HS Size | Real PAN size | Real HS SR | Real PAN SR | Band Number | Spectral Range |
Hyperion | 100 × 100 | 300 × 300 | 30 m | 10 m | 174 | 0.4–2.5 |
Index | No Denoising | Average | Gaussian | Open | Closed | Open-Closing |
---|---|---|---|---|---|---|
RMSE | 0.0125 | 0.0119 | 0.0123 | 0.0121 | 0.0123 | 0.0112 |
SAM | 6.8506 | 6.8507 | 6.8506 | 6.8507 | 6.8506 | 6.8506 |
CC | 0.9156 | 0.9176 | 0.9176 | 0.9175 | 0.9176 | 0.9176 |
ERGAS | 25.5071 | 25.4812 | 25.4822 | 25.5052 | 25.4880 | 25.4804 |
Dataset | Index | Method | |||||
---|---|---|---|---|---|---|---|
GS | GFPCA | CNMF | HySure | Bayesian | HFWT | ||
Washington DC | RMSE | 0.0114 | 0.0139 | 0.0116 | 0.0097 | 0.0117 | 0.0112 |
SAM | 7.1069 | 9.8467 | 7.6438 | 6.8601 | 7.2586 | 6.8506 | |
CC | 0.8856 | 0.8179 | 0.8879 | 0.9018 | 0.8954 | 0.9176 | |
ERGAS | 36.0732 | 37.7303 | 34.3126 | 26.5678 | 29.3497 | 25.4804 | |
Salinas scene | RMSE | 0.0426 | 0.2224 | 0.0162 | 0.0163 | 0.0167 | 0.0138 |
SAM | 3.7807 | 2.9814 | 1.7586 | 1.7039 | 1.8015 | 1.5460 | |
CC | 0.8542 | 0.9429 | 0.9544 | 0.9583 | 0.9515 | 0.9625 | |
ERGAS | 4.3301 | 3.0843 | 2.6346 | 2.4451 | 2.9079 | 2.5312 |
Index | Method | |||||
---|---|---|---|---|---|---|
GS | GFPCA | CNMF | HySure | Bayesian | HFWT | |
RMSE | 0.0426 | 0.0451 | 0.0368 | 0.0398 | 0.0387 | 0.0358 |
SAM | 11.1037 | 15.6849 | 12.2755 | 12.8308 | 12.9605 | 9.1809 |
CC | 0.9296 | 0.9241 | 0.9631 | 0.9443 | 0.9504 | 0.9821 |
ERGAS | 15.3536 | 16.3011 | 11.1116 | 12.3441 | 12.2353 | 11.1109 |
Dataset | Method | |||||
---|---|---|---|---|---|---|
GS | GFPCA | CNMF | HySure | Bayesian | HFWT | |
Washington DC | 1.1764 | 2.3455 | 8.8369 | 43.3926 | 70.5347 | 6.9068 |
Salinas scene | 2.3953 | 4.8471 | 8.9498 | 55.4224 | 71.4972 | 7.1413 |
Hyperion | 2.6618 | 7.5118 | 23.3787 | 117.1729 | 158.7151 | 10.6448 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, J.; Li, Y.; Du, Q.; Dong, W.; Xi, B. Hyperspectral Pansharpening Based on Homomorphic Filtering and Weighted Tensor Matrix. Remote Sens. 2019, 11, 1005. https://doi.org/10.3390/rs11091005
Qu J, Li Y, Du Q, Dong W, Xi B. Hyperspectral Pansharpening Based on Homomorphic Filtering and Weighted Tensor Matrix. Remote Sensing. 2019; 11(9):1005. https://doi.org/10.3390/rs11091005
Chicago/Turabian StyleQu, Jiahui, Yunsong Li, Qian Du, Wenqian Dong, and Bobo Xi. 2019. "Hyperspectral Pansharpening Based on Homomorphic Filtering and Weighted Tensor Matrix" Remote Sensing 11, no. 9: 1005. https://doi.org/10.3390/rs11091005
APA StyleQu, J., Li, Y., Du, Q., Dong, W., & Xi, B. (2019). Hyperspectral Pansharpening Based on Homomorphic Filtering and Weighted Tensor Matrix. Remote Sensing, 11(9), 1005. https://doi.org/10.3390/rs11091005