AS-CRI: A New Metric of FTIR-Based Apparent Spectral-Contrast Radiant Intensity for Remote Thermal Signature Analysis
Abstract
:1. Introduction
2. Background of Signature Measurement and Characterization
2.1. Set-Up for Controlled Field Experiment
2.2. Basics of IR Signature Modeling: CRI
3. Proposed IR Signature Metric: AS-CRI
3.1. AS-CRI Calculation Flow
3.2. FTIR-Based Hyperspectral Image Acquisition System
4. Experimental Results
4.1. Acquisition of Hyperspectral IR Database
4.2. Evaluation of AS-CRI
4.3. Comparison of CRI and AS-CRI
4.4. Application to Small Target Detection
5. Conclusions and Discussions
Supplementary Materials
Supplementary File 1Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, S.; Sun, S.G.; Kim, K.T. Analysis of Infrared Signature Variation and Robust Filter-Based Supersonic Target Detection. Sci. World J. 2014, 2014, 140930. [Google Scholar] [CrossRef] [PubMed]
- Romand, F.; Vialatte, A.; Croizé, L.; Payan, S.; Barthélémy, M. CO2 Thermal Infrared Signature Following a Sprite Event in the Mesosphere. J. Geophys. Res. Space Phys. Banner 2018, 123, 8039–8059. [Google Scholar] [CrossRef]
- Huang, W.; Ji, H. Effect of environmental radiation on the long-wave infrared signature of cruise aircraft. Aerosp. Sci. Technol. 2016, 56, 125–134. [Google Scholar] [CrossRef]
- Piñeros, M.F.; Ritchie, E.A.; Tyo, J.S. Estimating Tropical Cyclone Intensity from Infrared Image Data. Weather Forecast. 2011, 26, 690–698. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Wang, Q.Z.N. Infrared radiation signature of exhaust plume from solid propellants with different energy characteristics. Chin. J. Aeronaut. 2013, 26, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Soldani, F. Infrared signature: Theory and example of practical measurement methods. In Proceedings of the 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June 2015; pp. 472–478. [Google Scholar]
- Moghimi, M.J.; Lin, G.; Jiang, H. Broadband and Ultrathin Infrared Stealth Sheets. Adv. Eng. Mater. 2018, 20, 1800038. [Google Scholar] [CrossRef]
- Kim, S. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors. Sensors 2015, 15, 7267–7293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, J.; Lee, J.; Ahn, J. Midwave FTIR-Based Remote Surface Temperature Estimation Using a Deep Convolutional Neural Network in a Dynamic Weather Environment. Micromachines 2018, 9, 495. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.A. Thermal Infrared Characterization of Ground Targets and Backgrounds, 2nd ed.; SPIE Optical Engineering Press: Bellingham, WA, USA, 2004. [Google Scholar]
- Neele, F. Infrared ship signature analysis and optimisation. Proc. SPIE 2014, 5811, 188–198. [Google Scholar]
- del P. Marrugo Llorente, S.; Diaz, V.; Gómez Torres, J.M. Infrared Signature Analysis of Surface Ships. Ship Sci. Technol. 2015, 8, 57–68. [Google Scholar]
- Mahulikar, S.P.; Rao, G.A.; Sonawane, H.R.; Prasad, H.S.S. Infrared Signature Studies of Aircraft and Helicopters. PIERS Proc. 2009, 27, 26–30. [Google Scholar]
- Kim, D.G.; Park, S.J.; Choi, J.H.; Ahn, J.M.; Kim, T.K. An estimation method for radiation contrast via the inverse distance weighting. J. Mech. Sci. Technol. 2015, 29, 2529–2533. [Google Scholar] [CrossRef]
- Chen, C.; Dai, M.; Liu, H.; Fang, G.; Xie, C.; Zhang, T. Comparison and analysis on test methods of infrared radiant intensity of infrared decoy. Proc. SPIE 2014, 9300, 93000K-1. [Google Scholar]
- Han, K.I.; Kim, D.H.; Choi, J.H.; Kim, T.K. Development of an inverse distance weighted active infrared stealth scheme using the repulsive particle swarm optimization algorithm. Appl. Opt. 2018, 57, 3072–3077. [Google Scholar] [CrossRef] [PubMed]
- Longmire, M.S.; Takken, E.H. LMS and matched digital filters for optical clutter suppression. Appl. Opt. 2003, 27, 1141–1159. [Google Scholar] [CrossRef] [PubMed]
- Soni, T.; Zeidler, J.R.; Ku, W.H. Performance Evaluation of 2-D Adaptive Prediction Filters for Detection of Small Objects in Image Data. IEEE Trans. Image Process. 1993, 2, 327–340. [Google Scholar] [CrossRef]
- Sang, H.; Shen, X.; Chen, C. Architecture of a configurable 2-D adaptive filter used for small object detection and digital image processing. Opt. Eng. 2003, 48, 2182–2189. [Google Scholar] [CrossRef]
- Kim, S. Double Layered-Background Removal Filter for Detecting Small Infrared Targets in Heterogenous Backgrounds. J. Infrared Milli. Terahertz Waves 2011, 32, 79–101. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J. Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track. Pattern Recognit. 2012, 45, 393–406. [Google Scholar] [CrossRef]
- Xia, C.; Li, X.; Zhao, L. Infrared small target detection via modified random walks. Remote Sens. 2018, 10, 2004. [Google Scholar] [CrossRef]
- Tonooka, H. Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2778–2792. [Google Scholar] [CrossRef]
- Hook, S.; Gabell, A.; Green, A.; Kealy, P. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens. Environ. 1992, 42, 123–135. [Google Scholar] [CrossRef]
- Plesa, C.; Ţurcanu, D.; Bodoc, V. The use of infrared radiation for thermal signatures determination of ground targets. Rom. J. Phys. 2006, 51, 63–72. [Google Scholar]
- Adler-Golden, S.M.; Conforti, P.; Gagnon, M.; Tremblay, P.; Chamberland, M. Long-wave infrared surface reflectance spectra retrieved from Telops Hyper-Cam imagery. Proc. SPIE 2014, 9088, 90880U. [Google Scholar]
- Espen, S.; Trygve, H.L.; Kjell, W. SIMVEX 2001 Trial—Radiant Intensity Contrast. AFRL Tech. Rep. 2002, FFI/RAPPORT-2002/02568, 1–131. [Google Scholar]
- Vaitekunas, D.A. Validation of ShipIR (v3.2): Methodology and results. Proc. SPIE 2006, 6239, 62390K. [Google Scholar]
- Kuenzer, C.; Dech, S. Thermal Infrared Remote Sensing: Sensors, Methods, Applications, 1st ed.; Springer: Berlin, Germany, 2013. [Google Scholar]
- Beil, A.; Daum, R.; Matz, G.; Harig, R. Remote sensing of atmospheric pollution by passive FTIR spectrometry. Proc. SPIE 1998, 3493, 32–43. [Google Scholar] [Green Version]
- Roy, S.A. Data Processing Pipelines Tailored for Imaging Fourier-Transform Spectrometers. Ph.D. Thesis, Université Laval Québec, Québec, QC, Canada, 2008. [Google Scholar]
- Li, Y.; Zhang, Y. Robust infrared small target detection using local steering kernel reconstruction. Pattern Recognit. 2018, 77, 113–125. [Google Scholar] [CrossRef]
- Oishi, Y.; Oguma, H.; Tamura, A.; Nakamura, R.; Matsunaga, T. Animal detection using thermal images and its required observation conditions. Remote Sens. 2018, 10, 1050. [Google Scholar] [CrossRef]
Date dd/mm/yy | Time | Plate | Speed | MaxSpeed | Dir | MaxDir | AirTemp | GndTemp | Hum | Press | Visibility | Current | Solar | LWRad | Temp | TD1 | TD2 | TD3 | TD4 | TD5 | TD6 | TD7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20171227 | 1107 | 4 | 1 | 2.2 | 163 | 174 | −1.2 | −0.1 | 39 | 1030.6 | 20000 | 0 | 473.7 | 200.4 | 2.1 | −0.3 | −0.3 | −0.6 | 0.0 | −1.0 | 0.1 | −0.1 |
20171227 | 1357 | 4 | 2.6 | 4 | 139 | 169 | −0.6 | 3.3 | 36 | 1028.7 | 20000 | 0 | 485.6 | 203.5 | 2.8 | 0.3 | 0.5 | 0.5 | 1.2 | 0.4 | 1.5 | 0.9 |
20171227 | 1556 | 4 | 2.4 | 3.8 | 133 | 112 | −0.5 | 4.6 | 45 | 1028.6 | 20000 | 0 | 213.2 | 209.9 | 2.5 | 1.7 | 1.7 | 1.8 | 2.6 | 1.3 | 3.7 | 3.8 |
20171228 | 1116 | 4 | 0.8 | 1.4 | 312 | 326 | 0.8 | 0.0 | 57 | 1029.8 | 18623 | 0 | 113.2 | 296.0 | 6.1 | −0.6 | −0.9 | −1.0 | 0.0 | −1.5 | −0.3 | −0.6 |
20171228 | 1402 | 4 | 0.6 | 1 | 348 | 349 | 2 | 0.0 | 54 | 1027.7 | 17130 | 0 | 171.5 | 289.7 | 8.3 | 0.0 | 0.4 | 0.1 | 0.7 | 0.1 | 1.0 | 0.5 |
20171228 | 1559 | 4 | 0.4 | 0.8 | 118 | 112 | 2.5 | 3.1 | 56 | 1026.5 | 12711 | 20 | 128.2 | 231.9 | 8.0 | 1.5 | 1.6 | 1.6 | 2.2 | 1.4 | 3.1 | 3.2 |
20180102 | 1126 | 4 | 0.9 | 1.9 | 255 | 264 | 2.3 | 0.6 | 74 | 1028.1 | 8137 | 0 | 167.7 | 293.9 | 7.9 | 3.3 | 3.5 | 3.5 | 3.0 | 3.4 | 3.4 | 3.7 |
20180102 | 1458 | 4 | 2.4 | 3.1 | 144 | 152 | 2.5 | 5.1 | 42 | 1027.1 | 20000 | 0 | 156.0 | 260.0 | 5.5 | 3.4 | 3.5 | 3.5 | 4.5 | 3.4 | 4.1 | 4.3 |
20180102 | 1614 | 4 | 1.7 | 2.2 | 188 | 208 | 1.9 | 4.0 | 45 | 1027.6 | 20000 | 0 | 104.3 | 226.9 | 5.0 | 2.6 | 2.6 | 2.7 | 3.6 | 2.5 | 3.6 | 3.7 |
20180103 | 1103 | 4 | 3.5 | 5.6 | 168 | 186 | 0.9 | 0.0 | 53 | 1031.1 | 20000 | 0 | 502.1 | 214.3 | 3.6 | 0.6 | 0.6 | 0.7 | 1.4 | 0.5 | 1.1 | 1.3 |
20180103 | 1359 | 4 | 1.9 | 4.2 | 178 | 231 | 0.5 | 7.8 | 53 | 1029.5 | 20000 | 0 | 510.7 | 203.1 | 3.3 | 1.6 | 1.7 | 1.7 | 2.1 | 1.5 | 2.5 | 2.1 |
20180103 | 1603 | 4 | 1.6 | 4.2 | 199 | 186 | 0.7 | 6.1 | 53 | 1029.3 | 20000 | 0 | 256.6 | 214.4 | 3.6 | 2.1 | 2.3 | 2.4 | 3.1 | 2.3 | 3.4 | 3.8 |
20180104 | 1101 | 4 | 2 | 3.1 | 138 | 152 | −1.1 | 0.0 | 55 | 1027.7 | 20000 | 0 | 340.8 | 223.4 | 3.2 | −0.2 | −0.1 | −0.1 | 0.7 | −0.2 | 0.0 | 0.2 |
20180104 | 1406 | 4 | 1.9 | 3.6 | 143 | 135 | −0.5 | 4.2 | 51 | 1024.4 | 20000 | 0 | 288.9 | 256.5 | 2.3 | 1.2 | 1.4 | 1.5 | 2.4 | 1.2 | 1.8 | 1.9 |
20180104 | 1600 | 4 | 2.3 | 3.4 | 147 | 124 | −1.5 | 2.9 | 52 | 1024.6 | 20000 | 0 | 97.1 | 256.8 | 1.5 | −0.7 | −0.5 | −0.5 | 0.3 | −0.7 | −0.3 | 0.0 |
20180108 | 1111 | 4 | 1 | 1.4 | 11 | 354 | 2.4 | 4.6 | 77 | 1011.5 | 5979 | 10 | 165.2 | 299.1 | 8.6 | 4.7 | 4.9 | 4.7 | 5.7 | 4.8 | 4.7 | 4.6 |
20180108 | 1402 | 4 | 1.1 | 2 | 20 | 39 | 4.6 | 7.0 | 54 | 1007.8 | 20000 | 0 | 437.5 | 244.5 | 10.8 | 6.7 | 6.9 | 6.6 | 7.5 | 6.8 | 7.2 | 6.8 |
20180108 | 1610 | 4 | 4.4 | 6.8 | 30 | 39 | 3.9 | 4.2 | 71 | 1007.6 | 9303 | 0 | 13.5 | 315.6 | 5.2 | 4.0 | 4.0 | 4.1 | 5.0 | 3.9 | 4.0 | 4.3 |
20180109 | 1104 | 4 | 3 | 4.6 | 337 | 354 | −0.2 | 1.3 | 66 | 1014.2 | 19007 | 24 | 513.1 | 238.4 | 3.6 | 2.0 | 1.8 | 1.6 | 2.6 | 1.4 | 1.7 | 1.6 |
20180109 | 1402 | 4 | 2.2 | 6.1 | 38 | 39 | −0.1 | 4.1 | 70 | 1013.0 | 20000 | 85 | 249.6 | 237.9 | 2.5 | 1.2 | 1.3 | 1.2 | 1.7 | 1.0 | 1.4 | 1.3 |
20180109 | 1607 | 4 | 1.6 | 4.9 | 335 | 214 | 0.3 | 3.9 | 65 | 1013.2 | 20000 | 24 | 200.2 | 241.4 | 3.0 | 2.6 | 2.6 | 2.7 | 2.9 | 2.5 | 3.3 | 3.5 |
20180110 | 1112 | 4 | 1.8 | 3.5 | 160 | 225 | −4.3 | 0.8 | 88 | 1017.1 | 15125 | 0 | 56.6 | 294.2 | −1.0 | −2.6 | −2.6 | −2.4 | −1.7 | −2.9 | −2.4 | −2.1 |
20180110 | 1400 | 4 | 2.8 | 7 | 225 | 225 | −3.8 | 0.8 | 82 | 1016.5 | 6769 | 0 | 165.9 | 281.1 | −0.9 | −1.3 | −1.4 | −0.9 | −0.1 | −1.2 | −0.9 | −0.8 |
20180110 | 1558 | 4 | 4.7 | 8.7 | 231 | 259 | −4.8 | 0.8 | 79 | 1017.8 | 1680 | 0 | 79.0 | 279.2 | −2.6 | −3.5 | −3.4 | −3.2 | −2.4 | −3.5 | −3.3 | −2.9 |
20180115 | 1100 | 4 | 1.6 | 2.7 | 252 | 208 | 7.7 | 8.2 | 67 | 1024.3 | 7670 | 0 | 406.4 | 242.4 | 13.7 | 8.6 | 8.6 | 8.5 | 9.3 | 8.4 | 9.5 | 9.4 |
20180115 | 1357 | 4 | 2.9 | 4.8 | 171 | 180 | 8.5 | 13.1 | 52 | 1022.1 | 3761 | 0 | 391.8 | 234.8 | 11.2 | 9.7 | 9.8 | 9.9 | 10.7 | 9.8 | 11.8 | 10.7 |
20180115 | 1558 | 4 | 2 | 2.8 | 156 | 174 | 8.5 | 11.4 | 48 | 1021.4 | 4701 | 0 | 221.7 | 235.3 | 11.9 | 11.4 | 11.4 | 11.6 | 12.6 | 10.9 | 13.7 | 13.5 |
20180116 | 1059 | 4 | 0 | 0.4 | 141 | 158 | 5.7 | 5.1 | 75 | 1018.0 | 3367 | 0 | 90.0 | 311.6 | 12.6 | 6.4 | 6.5 | 6.6 | 7.5 | 6.4 | 6.4 | 6.5 |
20180116 | 1358 | 4 | 0.5 | 0.7 | 157 | 158 | 6.6 | 6.7 | 74 | 1014.8 | 2931 | 0 | 53.0 | 320.7 | 12.0 | 7.7 | 7.8 | 7.8 | 8.7 | 7.6 | 8.0 | 8.0 |
20180116 | 1559 | 4 | 0 | 0 | 180 | 219 | 5.9 | 6.1 | 84 | 1014.9 | 2259 | 0 | 21.7 | 323.1 | 13.2 | 6.7 | 6.7 | 6.6 | 7.6 | 6.5 | 6.9 | 7.0 |
20180118 | 1059 | 4 | 1.5 | 2.8 | 183 | 169 | 4.6 | 5.5 | 71 | 1022.7 | 6009 | 0 | 194.4 | 276.9 | 7.8 | 5.4 | 5.5 | 5.6 | 6.5 | 5.5 | 5.4 | 5.7 |
20180118 | 1400 | 4 | 1.8 | 2.4 | 159 | 186 | 4.9 | 7.8 | 68 | 1022.0 | 5398 | 0 | 335.5 | 262.3 | 8.8 | 6.1 | 6.1 | 6.2 | 7.1 | 6.0 | 6.5 | 6.5 |
20180118 | 1558 | 4 | 1.4 | 2.2 | 159 | 141 | 3.7 | 7.3 | 66 | 1022.5 | 5951 | 0 | 111.5 | 270.5 | 6.9 | 4.7 | 4.7 | 4.6 | 5.6 | 4.6 | 5.3 | 5.3 |
⋮ | ||||||||||||||||||||||
20180726 | 1101 | 4 | 1.1 | 1.8 | 43 | 0 | 26.9 | 37.1 | 88 | 1007.2 | 11467 | 0 | 461.1 | 441.0 | 36.2 | 32.5 | 32.9 | 32.4 | 34.3 | 32.7 | 33.3 | 32.2 |
20180726 | 1400 | 4 | 1.7 | 2.3 | 11 | 354 | 27.7 | 50.2 | 86 | 1006.2 | 8433 | 10 | 874.0 | 438.5 | 37.6 | 36.2 | 36.3 | 35.3 | 37.8 | 35.8 | 37.6 | 36.4 |
20180726 | 1603 | 4 | 1.0 | 1.4 | 45 | 73 | 28.4 | 49.7 | 84 | 1005.3 | 10438 | 0 | 607.2 | 424.1 | 40.3 | 37.7 | 37.8 | 36.2 | 38.2 | 36.9 | 40.3 | 36.7 |
20180731 | 1100 | 4 | 3.3 | 3.7 | 53 | 51 | 30.7 | 50.4 | 69 | 1003.5 | 20000 | 0 | 864.0 | 429.2 | 38.9 | 35.2 | 35.7 | 34.7 | −210 | −210 | −210 | −210 |
20180731 | 1400 | 4 | 2.6 | 4.8 | 143 | 152 | 34.7 | 57.1 | 48 | 1002.4 | 20000 | 0 | 893.0 | 434.4 | 38.6 | 36.8 | 37.0 | 37.3 | −210 | −210 | −210 | −210 |
20180731 | 1600 | 4 | 2.4 | 3.6 | 169 | 186 | 32.4 | 53.5 | 53 | 1001.7 | 20000 | 0 | 634.2 | 431.0 | 39.5 | 40.2 | 40.1 | 39.7 | −210 | −210 | −210 | −210 |
20180801 | 1100 | 4 | 1.4 | 2.5 | 11 | 17 | 33.7 | 51.4 | 62 | 1001.8 | 12668 | 0 | 844.0 | 439.4 | 45.8 | 37.5 | 37.8 | 36.8 | 38.1 | 37.1 | 38.7 | 37.6 |
20180801 | 1431 | 4 | 4.0 | 6.4 | 171 | 197 | 35.3 | 56.7 | 51 | 1000.9 | 20000 | 0 | 829.0 | 437.2 | 39.7 | 38.3 | 38.5 | 38.7 | 39.5 | 38.3 | 40.7 | 40.3 |
20180801 | 1600 | 4 | 3.0 | 4.5 | 171 | 219 | 35.0 | 53.1 | 49 | 1000.8 | 20000 | 0 | 647.9 | 431.9 | 39.1 | 38.4 | 38.5 | 38.6 | 39.6 | 38.4 | 40.7 | 40.1 |
20180802 | 1102 | 4 | 1.9 | 2.5 | 9 | 34 | 29.0 | 50.0 | 75 | 1004.8 | 13967 | 0 | 835.0 | 428.0 | 40.0 | 35.0 | 35.8 | 34.5 | 35.9 | 34.8 | 36.4 | 35.0 |
20180802 | 1403 | 4 | 2.2 | 3.3 | 168 | 225 | 34.3 | 57.3 | 54 | 1003.8 | 20000 | 0 | 877.0 | 441.7 | 40.7 | 38.6 | 39.2 | 38.8 | 39.8 | 38.7 | 40.9 | 42.5 |
20180802 | 1600 | 4 | 1.2 | 2.5 | 107 | 51 | 33.2 | 53.3 | 54 | 1003.4 | 20000 | 0 | 598.7 | 438.3 | 42.8 | 40.7 | 41.1 | 40.8 | 42.0 | 40.7 | 43.9 | 42.6 |
20180807 | 1100 | 4 | 1.7 | 2.3 | 22 | 0 | 30.1 | 49.7 | 77 | 1006.6 | 10114 | 0 | 819.0 | 431.7 | 42.0 | 36.5 | 37.0 | 35.8 | 37.4 | 36.1 | 37.8 | 35.9 |
20180807 | 1400 | 4 | 2.4 | 3.6 | 103 | 124 | 32.2 | 57.0 | 62 | 1005.4 | 18260 | 0 | 882.0 | 434.6 | 40.3 | 38.4 | 38.7 | 38.9 | 39.9 | 38.6 | 40.7 | 42.1 |
20180807 | 1600 | 4 | 2.6 | 4.3 | 104 | 135 | 31.2 | 53.2 | 65 | 1004.4 | 20000 | 0 | 624.5 | 429.9 | 39.4 | 38.6 | 38.9 | 38.3 | 40.5 | 38.6 | 41.4 | 40.7 |
AS-CRI | Target-Sky | Target-Sea |
---|---|---|
Stealth band [m] | 1.8048–2.0127 | 1.8048–1.9564 |
2.0022–2.0127 | 2.0022 | |
2.4802–3.1510 | 2.4802–3.6964 | |
3.1771–3.3722 | - | |
3.8443–3.8636 | - | |
4.2014–4.3194 | 4.2014–4.3194 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, J.; Lee, J.; Ahn, J. AS-CRI: A New Metric of FTIR-Based Apparent Spectral-Contrast Radiant Intensity for Remote Thermal Signature Analysis. Remote Sens. 2019, 11, 777. https://doi.org/10.3390/rs11070777
Kim S, Kim J, Lee J, Ahn J. AS-CRI: A New Metric of FTIR-Based Apparent Spectral-Contrast Radiant Intensity for Remote Thermal Signature Analysis. Remote Sensing. 2019; 11(7):777. https://doi.org/10.3390/rs11070777
Chicago/Turabian StyleKim, Sungho, Jungho Kim, Jinyong Lee, and Junmo Ahn. 2019. "AS-CRI: A New Metric of FTIR-Based Apparent Spectral-Contrast Radiant Intensity for Remote Thermal Signature Analysis" Remote Sensing 11, no. 7: 777. https://doi.org/10.3390/rs11070777
APA StyleKim, S., Kim, J., Lee, J., & Ahn, J. (2019). AS-CRI: A New Metric of FTIR-Based Apparent Spectral-Contrast Radiant Intensity for Remote Thermal Signature Analysis. Remote Sensing, 11(7), 777. https://doi.org/10.3390/rs11070777