Next Article in Journal
R-CNN-Based Ship Detection from High Resolution Remote Sensing Imagery
Previous Article in Journal
Efficient Identification of Corn Cultivation Area with Multitemporal Synthetic Aperture Radar and Optical Images in the Google Earth Engine Cloud Platform
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Yadav. K. and Congalton. R. Accuracy Assessment of Global Food Security-Support Analysis Data (GFSAD) Cropland Extent Maps Produced at Three Different Spatial Resolutions. Remote Sens. 2018, 10, 1800

Department of Natural Resources & the Environment, University of New Hampshire, Durham, NH 03824, USA
*
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(6), 630; https://doi.org/10.3390/rs11060630
Submission received: 9 January 2019 / Revised: 28 January 2019 / Accepted: 28 February 2019 / Published: 15 March 2019
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
This research paper [1] presented the accuracy assessment of the published cropland extent maps created by the GFSAD team and which are available for download from LPDAAC. It is very important to provide all the references for these maps. Therefore, after publication of this research paper [1], the authors wish to make the following additions to this paper. These additions are citations that were inadvertently left out of the original paper. Citations are added to the text and to figures and tables, where appropriate.
In the abstract, the original sentence ‘An accuracy assessment and comparison of these three GFSAD cropland extent maps was performed to establish their quality and reliability for monitoring croplands both at global and regional scales’ should be updated as ‘An accuracy assessment and comparison of these three GFSAD cropland extent maps produced and published by different researchers was performed to establish their quality and reliability for monitoring croplands both at global and regional scales’.
In the introduction section, the references from [5–7] should be updated to include [5–18]. In the Datasets section, Table 2 should be updated with an additional reference column presenting [5], [6–8], and [9–18] in each row (as shown below). In the Conclusions section, “The assessment report of the GFSAD30m cropland extent map is available online at https://lpdaac.usgs.gov [64]” must be updated at the end of the first paragraph.
The caption of Figure 2 should be updated with ‘The GFSAD 1 km [5], 250 m [6–8], and 30 m [9–18] cropland extent maps generated by multiple producers.
The caption of Figure 5 should be updated with ‘The distribution of the eight regions along with the entire reference data set of 1800 samples (Source: Geo-Wiki) used in the assessment of GFSAD1km cropland extent map’.
The caption of Table 6 should be updated with ‘Regions, their area, and number of samples (Source: GeoWiki) that were used to assess the GFSAD1km Cropland extent map’.
The caption of Figure 6 should be updated with ‘The distribution of reference samples distributed in the four regions (Source: Independent datasets generated by assessment team and field data collected for Australia [6,11]) used to assess GFSAD250m cropland extent map’.
The caption of Figure 7 should be updated with ‘The distribution of regions and reference samples (Source: Independent reference datasets generated by assessment team from CDL and high-resolution imagery and field data collected for Australia [6,11]) used to assess the GFSAD30m cropland extent map’.
In the Discussion section, the first sentence ‘With the release of three different resolution GFSAD cropland extent maps, it becomes crucial to know their individual accuracy and similarity to make a choice on using these maps in different agriculture field sizes’ should be updated with the citation [5–18].
In the Conclusions section, the second sentence should be updated as ‘With the recent release of the three different GFSAD cropland extent maps produced by different researchers, their quality and reliability must be evaluated at global and regional scales’.
The references section should be updated as follows to include those that we inadvertently left out:
  • Gong, P.; Clinton, N.; Yu, L.; Liang, L. The 30 m global land cover products from China: progress and perspectives. In Proceedings of the International Symposium on Land Cover Mapping for the African Continent, Nairobi, Kenya, 25–27 June 2013.
  • Atzberger, C.; Vuolo, F.; Klisch, A.; Rembold, F.; Meroni, M.; Mello, M.P.; Formaggio, A. Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; Thenkabail, P.S., Ed.; 2015th ed.; CRC Press-Taylor and Francis Group: Boca Raton, 2015; ISBN 1482217988.
  • Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping global cropland and field size. Glob. Chang. Biol. 2015, 21, 1980–1992, doi:10.1111/gcb.12838.
  • Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863, doi:10.3390/rs2071844.
  • Teluguntla, P.G.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Giri, C.; Milesi, C.; Ozdogan, M.; Congalton, R.G.; Tilton, J.C.; Sankey, T.T.; et al. Global Food Security Support Analysis Data at Nominal 1 km (GFSAD1km) Derived from Remote Sensing in Support of Food Security in the Twenty-First Century: Current Achievements and Future Possibilities. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; CRC Press: Boca Raton, FL, USA, 2016; pp. 131–160, doi:10.1201/b19322-9.
  • Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Oliphant, A.; Poehnelt, J.; Yadav, K.; Rao, M.; Massey, R. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data. Int. J. Digit. Earth 2017, 10, 944–977, doi:10.1080/17538947.2016.1267269.
  • Massey, R.; Sankey, T.T.; Congalton, R.G.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M.; Sánchez Meador, A.J. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types. Remote Sens. Environ. 2017, 198, 490–503, doi:10.1016/j.rse.2017.06.033.
  • Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244, doi:10.1016/j.isprsjprs.2017.01.019.
  • Massey, R.; Sankey, T.T.; Yadav, K.; Congalton, R.G.; Tilton, J.C. Integrating cloud-based workflows in continental-scale cropland extent classification. Remote Sens. Environ. 2018, 219, 162–179, doi:10.1016/J.RSE.2018.10.013.
  • Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using sentinel-2 and Landsat-8 Data on Google Earth Engine. Remote Sens. 2017, 9, 1065.
  • Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, H. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340, ISSN 0924-2716. doi:10.1016/j.isprsjprs.2018.07.017.
  • Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Congalton, R.G.; Yadav, K.; Dungan, J.; Oliphant, A.J.; Poehnelt, J.; et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m Africa: Cropland Extent Product (GFSAD30AFCE); NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017.
  • Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Oliphant, A.J.; Sankey, T.; Poehnelt, J.; Yadav, K.; Massey, R.; et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for Australia, New Zealand, China, and Mongolia: Cropland Extent Product (GFSAD30AUNZCNMOCE); NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017.
  • Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Congalton, R.G.; Yadav, K.; Massey, R.; Gumma, M.K.; Smith, C. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for Southeast & Northeast Asia: Cropland Extent Product (GFSAD30SEACE); NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017.
  • Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.; Oliphant, A.J.; Xiong, J.; Congalton, R.G.; Yadav, K.; Phalke, A.; Smith, C. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for South Asia, Afghanistan and Iran: Cropland Extent Product (GFSAD30SAAFGIRCE); NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017.
  • Phalke, A.; Ozdogan, M.; Thenkabail, P.S.; Congalton, R.G.; Yadav, K.; Massey, R.; Teluguntla, P.; Poehnelt, J.; Smith, C. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for Europe, Middle-East, Russia and Central Asia: Cropland Extent Product (GFSAD30EUCEARUMECE); NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017.
  • Massey, R.; Sankey, T.T.; Yadav, K.; Congalton, R.G.; Tilton, J.C.; Thenkabail, P.S. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30 m for North America: Cropland Extent Product (GFSAD30NACE); NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017.
  • Zhong, Y.; Giri, C.; Thenkabail, P.S.; Teluguntla, P.; Congalton, R.G.; Yadav, K.; Oliphant, A.J.; Xiong, J.; Poehnelt, J.; Smith, C. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m for South America: Cropland Extent Product (GFSAD30SACE); NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017.
  • Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and Applications of GlobeLand30: A Review. ISPRS Int. J. Geo-Inf. 2017, 6, 230, doi:10.3390/ijgi6080230.
  • Pérez-Hoyos, A.; Rembold, F.; Kerdiles, H.; Gallego, J. Comparison of global land cover datasets for cropland monitoring. Remote Sens. 2017, 9, doi:10.3390/rs9111118.
  • Thenkabail, P.S. Global croplands and their importance for water and food security in the twenty-first century: Towards an ever green revolution that combines a second green revolution with a blue revolution. Remote Sens. 2010, 2, 2305–2312, doi:10.3390/rs2092305.
  • Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46, doi:10.1016/0034-4257(91)90048-B.
  • Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89, doi:10.1016/S0034-4257(97)00083-7.
  • Stehman, S.V.; Czaplewski, R.L. Design and Analysis for Thematic Map Accuracy Assessment—An application of satellite imagery. Remote Sens. Environ. 1998, 64, 331–344, doi:10.1016/S0034-4257(98)00010-8.
  • Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 1999; ISBN 1420055127.
  • Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131, doi:10.1016/j.rse.2012.10.031.
  • Bicheron, P.; Bicheron, P.; Defourny, P.; Defourny, P.; Brockmann, C.; Brockmann, C.; Schouten, L.; Schouten, L.; Vancutsem, C.; Vancutsem, C.; et al. GLOBCOVER—Products Description and Validation Report; MEDIAS-France: Toulouse, France, 2008; Volume 33, pp. 1–47, doi:10013/epic.39884.d016.
  • Fritz, S.; Havlik, P.; Schneider, U.; Schmid, E.; Obersteiner, M. Uncertainties in Global Land Cover Data and its Implications for Climate Change Mitigation Policies Assessment. In Proceedings of the 33rd International Symposium on Remote Sensing of Environment (ISRSE-33) “Sustaining the Millennium Development Goals”, Stresa, Italy, 4–8 May 2009; pp. 1–4.
  • Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 2010, 114, 2271–2285, doi:10.1016/j.rse.2010.05.003.
  • Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654, doi:10.1080/01431161.2012.748992.
  • Yu, L.; Wang, J.; Clinton, N.; Xin, Q.; Zhong, L.; Chen, Y.; Gong, P. FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digit. Earth 2013, 6, 521–533, doi:10.1080/17538947.2013.822574.
  • Sedano, F.; Gong, P.; Ferrão, M. Land cover assessment with MODIS imagery in southern African Miombo ecosystems. Remote Sens. Environ. 2005, 98, 429–441, doi:10.1016/j.rse.2005.08.009.
  • Frey, K.E.; Smith, L.C. How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia. Glob. Biogeochem. Cycles 2007, 21, doi:10.1029/2006GB002706.
  • Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201, doi:10.1016/S0034-4257(01)00295-4.
  • Gallego, F.J. Remote sensing and land cover area estimation. Int. J. Remote Sens. 2004, 25, 3019–3047, doi:10.1080/01431160310001619607.
  • Foody, G.M.; Boyd, D.S. Using Volunteered Data in Land Cover Map Validation: Mapping West African Forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1305–1312, doi:10.1109/JSTARS.2013.2250257.
  • Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland extent mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13, doi:10.1016/j.isprsjprs.2015.09.013.
  • FAO Global Forest Resources Assessment 2010; FAO Forestry Paper 163; Food and Agriculture Organization (FAO): Rome, Italy, 2010; 350p, ISBN 978-92-5-106654-6.
  • Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps; European Communities: Luxembourg, 2006; Volume 51, 48p, doi:10.1080/01431160512331326521.
  • Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272, doi:10.1080/01431160903131000.
  • Card, D. Using know map category marginal frequencies to improve estimates of thematic map accuracy. Photogramm. Eng. Remote Sens. 1982, 48, 432–439.
  • Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2009; ISBN 0873719867.
  • Yadav, K.; Congalton, R.G. Issues with large area thematic accuracy assessment for mapping cropland extent: A tale of three continents. Remote Sens. 2018, 10, doi:10.3390/rs10010053.
  • Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399, doi:10.1111/j.1530-9290.2010.00257.x.
  • Kaptué Tchuenté, A.T.; Roujean, J.-L.; De Jong, S.M. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 207–219, doi:10.1016/j.jag.2010.11.005.
  • Kuenzer, C.; van Beijma, S.; Gessner, U.; Dech, S. Land surface dynamics and environmental challenges of the Niger Delta, Africa: Remote sensing-based analyses spanning three decades (1986–2013). Appl. Geogr. 2014, 53, 354–368, doi:10.1016/j.apgeog.2014.07.002.
  • Giri, C.; Pengra, B.; Long, J.; Loveland, T.R. Next generation of global land cover characterization, mapping, and monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 30–37, doi:10.1016/j.jag.2013.03.005.
  • Bai, Y.; Feng, M.; Jiang, H.; Wang, J.; Liu, Y. Validation of land cover maps in China using a sampling-based labeling approach. Remote Sens. 2015, 7, 10589–10606, doi:10.3390/rs70810589.
  • Giri, C.; Zhu, Z.; Reed, B. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens. Environ. 2005, 94, 123–132, doi:10.1016/j.rse.2004.09.005.
  • Fritz, S.; See, L.; McCallum, I.; Schill, C.; Obersteiner, M.; van der Velde, M.; Boettcher, H.; Havlík, P.; Achard, F. Highlighting continued uncertainty in global land cover maps for the user community. Environ. Res. Lett. 2011, 6, 044005, doi:10.1088/1748-9326/6/4/044005.
  • Fritz, S.; See, L.; You, L.; Justice, C.; Becker-Reshef, I.; Bydekerke, L.; Cumani, R.; Defourny, P.; Erb, K.; Foley, J.; et al. The Need for Improved Maps of Global Cropland. EOS Trans. Am. Geophys. Union 2013, 94, 31–32, doi:10.1002/2013EO030006.
  • Bayas, J.C.L.; See, L.; Perger, C.; Justice, C.; Nakalembe, C.; Dempewolf, J.; Fritz, S. Validation of automatically generated global and regional cropland data sets: The case of Tanzania. Remote Sens. 2017, 9, 1–23, doi:10.3390/rs9080815.
  • Frohn, R. Remote Sensing for Landscape Ecology: New Metric Indicators for Monitoring, Modeling, and Assessment of Ecosystems; CRC Press-Taylor and Francis Group: Boca Raton, FL, USA, 1997.
  • Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 2014, 6, 12070–12093, doi:10.3390/rs61212070.
  • Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733, doi:10.1080/01431160802698919.
  • Vancutsem, C.; Marinho, E.; Kayitakire, F.; See, L.; Fritz, S. Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sens. 2013, 5, 19–41, doi:10.3390/rs5010019.
  • Tsendbazar, N.-E.; Bruin, S. De; Fritz, S.; Herold, M. Spatial Accuracy Assessment and Integration of Global Land Cover Datasets. Remote Sens. 2015, 7, 15804–15821, doi:10.3390/rs71215804.
  • Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358, doi:10.1080/10106049.2011.562309.
  • Fisette, T.; Rollin, P.; Aly, Z.; Campbell, L.; Daneshfar, B.; Filyer, P.; Smith, A.; Davidson, A.; Shang, J.; Jarvis, I. AAFC annual crop inventory: Status and challenges. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 270–274, doi:10.1109/Argo-Geoinformatics.2013.6621920.
  • Fischer, G.; Nachtergaele, F.O.; Prieler, S.; Teixeira, E.; Toth, G.; van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-ecological Zones (GAEZ): Model Documentation; Food and Agriculture Organization (FAO): Rome, Italy; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2012; pp. 1–179.
  • Sun, P. Using a Similarity Matrix Approach to Evaluate the Accuracy of Rescaled Maps. Remote Sens. 2018, 10, 487, doi:10.3390/rs10030487.
  • Olofsson, P.; Stehman, S.V.; Woodcock, C.E.; Sulla-Menashe, D.; Sibley, A.M.; Newell, J.D.; Friedl, M.A.; Herold, M. A global land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens. 2012, 33, 5768–5788, doi:10.1080/01431161.2012.674230.
  • Stehman, S.V. Impact of sample size allocation when using stratified random sampling to estimate accuracy and area of land-cover change. Remote Sens. Lett. 2012, 3, 111–120, doi:10.1080/01431161.2010.541950.
  • Congalton, R.G.; Yadav, K.; McDonnell, K.; Poehnelt, J.; Stevens, B.; Gumma, M.K.; Teluguntla, P.; Thenkabail, P.S. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) @ 30-m: Cropland Extent Validation (GFSAD30VAL); NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017.
The above changes do not impact the scientific results. The manuscript will be updated, and the original will remain online on the article webpage, with a reference to this correction. We apologize for any inconvenience caused by this mistake. Including these additional references will make it easier for the reader to understand the crop maps the analysis in this paper used.

References

  1. Yadav, K.; Congalton, R.G. Accuracy Assessment of Global Food Security-Support Analysis Data (GFSAD) Cropland Extent Maps Produced at Three Different Spatial Resolutions. Remote Sens. 2018, 10, 1800. [Google Scholar] [CrossRef]
Table 2. Description of the three different GFSAD cropland extent maps.
Table 2. Description of the three different GFSAD cropland extent maps.
DatasetsYearSpatial ResolutionInput DataAssessment RegionsClassification SchemeSourceReferences
GFSAD1km20101 kmExisting cropland extent mapsEntire world
(8 Regions)
Irrigated and Rain-fed cropland classeshttps://lpdaac.usgs.gov/dataset_discovery/measures/measures_products_table/gfsad1kcm_v001[5]
GFSAD250m2008,2014250 mMODIS4 Continents (US, Africa, Australia, and South-Asia)Cropland and Non-CroplandAfrica: https://lpdaac.usgs.gov/node/1276
North-America: https://lpdaac.usgs.gov/node/1277
South-America: https://lpdaac.usgs.gov/node/1278
Europe, Central Asia, Russia, Middle-East: https://lpdaac.usgs.gov/node/1279
[6–8]
GFSAD30m201430 mLandsatEntire world
(15 regions)
Cropland and Non-CroplandSouth-Asia: https://lpdaac.usgs.gov/node/1280
South-East Asia: https://lpdaac.usgs.gov/node/1281
Australia, China, New Zealand, Mongolia: https://lpdaac.usgs.gov/node/1282
[9–18]

Share and Cite

MDPI and ACS Style

Yadav, K.; Congalton, R.G. Correction: Yadav. K. and Congalton. R. Accuracy Assessment of Global Food Security-Support Analysis Data (GFSAD) Cropland Extent Maps Produced at Three Different Spatial Resolutions. Remote Sens. 2018, 10, 1800. Remote Sens. 2019, 11, 630. https://doi.org/10.3390/rs11060630

AMA Style

Yadav K, Congalton RG. Correction: Yadav. K. and Congalton. R. Accuracy Assessment of Global Food Security-Support Analysis Data (GFSAD) Cropland Extent Maps Produced at Three Different Spatial Resolutions. Remote Sens. 2018, 10, 1800. Remote Sensing. 2019; 11(6):630. https://doi.org/10.3390/rs11060630

Chicago/Turabian Style

Yadav, Kamini, and Russell G. Congalton. 2019. "Correction: Yadav. K. and Congalton. R. Accuracy Assessment of Global Food Security-Support Analysis Data (GFSAD) Cropland Extent Maps Produced at Three Different Spatial Resolutions. Remote Sens. 2018, 10, 1800" Remote Sensing 11, no. 6: 630. https://doi.org/10.3390/rs11060630

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop