An Exploratory Study on the Effect of Petroleum Hydrocarbon on Soils Using Hyperspectral Longwave Infrared Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples
- Each soil type was air-dried and sieved (2 mm).
- For each soil, a mixture of soil and crude oil was created.
- The mixture weighed 1150 g and contained 90 wt % soil and 10 wt % crude oil.
- The mixture was added in increasing amounts to uncontaminated soil samples (weights between 0 and 200 g), thus creating samples of mixture + uncontaminated soil.
- Each sample (mixture + uncontaminated soil) was mixed using a glass stirring stick until a homogeneous sample was obtained.
2.2. Scene Setting and Measurements
2.3. Emissivity Calculations
2.4. Preprocessing the Data
2.5. Data Analysis
3. Results and Discussion
3.1. Potential Shift in the Spectral Features of the Predominant Minerals
3.2. PLS Models
3.3. Variable Importance in Projection (VIP)
3.4. PLS Models with Additive Noise
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramirez, M.I.; Arevalo, A.P.; Sotomayor, S.; Bailon-Moscoso, N. Contamination by oil crude extraction—Refinement and their effects on human health. Environ. Pollut. 2017, 231, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, F.; Méndez, J.; Pásaro, E.; Laffon, B. Review on the effects of exposure to spilled oils on human health. J. Appl. Toxicol. JAT 2010, 30, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Chima, U.D.; Vure, G. Implications of crude oil pollution on natural regeneration of plant species in an oil-producing community in the Niger Delta Region of Nigeria. J. For. Res. 2014, 25, 915–921. [Google Scholar] [CrossRef]
- Shapiro, K.; Khanna, S.; Ustin, S.; Shapiro, K.; Khanna, S.; Ustin, S.L. Vegetation Impact and Recovery from Oil-Induced Stress on Three Ecologically Distinct Wetland Sites in the Gulf of Mexico. J. Mar. Sci. Eng. 2016, 4, 33. [Google Scholar] [CrossRef]
- Cloutis, E.A. Spectral reflectance properties of hydrocarbons: Remote-sensing implications. Science 1989, 245, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications, 1st ed.; Wiley: Chichester, UK; Hoboken, NJ, USA, 2004; ISBN 978-0-470-85428-0. [Google Scholar]
- Schwartz, G.; Ben-Dor, E.; Eshel, G. Quantitative Analysis of Total Petroleum Hydrocarbons in Soils: Comparison between Reflectance Spectroscopy and Solvent Extraction by 3 Certified Laboratories. Appl. Environ. Soil Sci. 2012, 2012, e751956. [Google Scholar] [CrossRef]
- Winkelmann, K.H. On the Applicability of Imaging Spectrometry for the Detection and Investigation of Contaminated Sites with Particular Consideration Given to the Detection of Fuel Hydrocarbon Contaminants in Soil. Ph.D. Thesis, Brandenburg University of Technology, Senftenberg, Germany, 2005. [Google Scholar]
- Hörig, B.; Kühn, F.; Oschütz, F.; Lehmann, F. HyMap hyperspectral remote sensing to detect hydrocarbons. Int. J. Remote Sens. 2001, 22, 1413–1422. [Google Scholar] [CrossRef]
- Scafutto, R.D.M.; de Filho, C.R.S.; de Oliveira, W.J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens. 2017, 128, 146–157. [Google Scholar] [CrossRef]
- Kruse, F.A. Imaging SpectrometryUse of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California. Remote Sens. Environ. 1988, 24, 31–51. [Google Scholar] [CrossRef]
- Forrester, S.T.; Janik, L.J.; McLaughlin, M.J.; Soriano-Disla, J.M.; Stewart, R.; Dearman, B. Total Petroleum Hydrocarbon Concentration Prediction in Soils Using Diffuse Reflectance Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2013, 77, 450–460. [Google Scholar] [CrossRef]
- Hazel, G.; Bucholtz, F.; Aggarwal, I.D.; Nau, G.; Ewing, K.J. Multivariate Analysis of Mid-IR FT-IR Spectra of Hydrocarbon-Contaminated Wet Soils. Appl. Spectrosc. 1997, 51, 984–989. [Google Scholar] [CrossRef]
- Molpeceres, G.; Timón, V.; Jiménez-Redondo, M.; Escribano, R.; Maté, B.; Tanarro, I.; Herrero, V.J. Structure and infrared spectra of hydrocarbon interstellar dust analogs. Phys. Chem. Chem. Phys. 2017, 19, 1352–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Meijde, M.; Knox, N.M.; Cundill, S.L.; Noomen, M.F.; van der Werff, H.M.A.; Hecker, C. Detection of hydrocarbons in clay soils: A laboratory experiment using spectroscopy in the mid- and thermal infrared. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 384–388. [Google Scholar] [CrossRef]
- Pelta, R.; Ben-Dor, E. Assessing the detection limit of petroleum hydrocarbon in soils using hyperspectral remote-sensing. Remote Sens. Environ. 2019, 224, 145–153. [Google Scholar] [CrossRef]
- Schumacher, D. Hydrocarbon-Induced Alteration of Soils and Sediments. AAPG Memoir 1996, 71–89. [Google Scholar] [CrossRef]
- Agassi, E.; Hirsch, E.; Ronen, A. Spectral and spatial measurements of atmospheric aerosol clouds with a hyperspectral sensor. In SPIE Proceedings, Electro-Optical Remote Sensing, Photonic Technologies, and Applications IV; Kamerman, G.W., Steinvall, O., Lewis, K.L., Hollins, R.C., Merlet, T.J., Bishop, G.J., Gonglewski, J.D., Eds.; SPIE: Bellingham, WA, USA, 2010; p. 78350I. [Google Scholar]
- Eisele, A.; Chabrillat, S.; Hecker, C.; Hewson, R.; Lau, I.C.; Rogass, C.; Segl, K.; Cudahy, T.J.; Udelhoven, T.; Hostert, P.; et al. Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties. Remote Sens. Environ. 2015, 163, 296–311. [Google Scholar] [CrossRef]
- McDowell, M.L.; Kruse, F.A. Integrated visible to near infrared, short wave infrared, and long wave infrared spectral analysis for surface composition mapping near Mountain Pass, California. In SPIE Proceedings; SPIE: Bellingham, WA, USA, 2015; Volume 9472, p. 94721C. [Google Scholar]
- Notesco, G.; Kopačková, V.; Rojík, P.; Schwartz, G.; Livne, I.; Dor, E.B. Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic. Remote Sens. 2014, 6, 7005–7025. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, R.G.; Calvin, W.M.; Taranik, J.V. SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sens. Environ. 2003, 85, 48–63. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 1984, 89, 12. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Tran, T.N.; Afanador, N.L.; Buydens, L.M.C.; Blanchet, L. Interpretation of variable importance in Partial Least Squares with Significance Multivariate Correlation (sMC). Chemom. Intell. Lab. Syst. 2014, 138, 153–160. [Google Scholar] [CrossRef]
- Chong, I.-G.; Jun, C.-H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S. Particle size effects on soil reflectance explained by an analytical radiative transfer model. Remote Sens. Environ. 2018, 210, 375–386. [Google Scholar] [CrossRef]
- Bogrekci, I.; Lee, W.S. Improving phosphorus sensing by eliminating soil particle size effect in spectral measurement. Trans. ASAE 2005, 48, 1971–1978. [Google Scholar] [CrossRef]
- Udvardi, B.; Kovács, I.J.; Fancsik, T.; Kónya, P.; Bátori, M.; Stercel, F.; Falus, G.; Szalai, Z. Effects of Particle Size on the Attenuated Total Reflection Spectrum of Minerals. Appl. Spectrosc. 2017, 71, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
Code | Local Name | USDA | Location | Description | PSD (% volume) | Texture | ||
---|---|---|---|---|---|---|---|---|
Clay (<2 μm) | Silt (2 to 50 μm) | Sand (>50 μm) | ||||||
Evrona | Salt playa | Salorthids | Evrona playa (Beer Ora), Israel | Evrona playa is a salt flat, consists of CaCO3 and other salts. | 3.8 | 21.0 | 75.2 | Loamy sand |
Hamra | Red sand soil | Rhodoxeralfs | Kibbutz Nir -Eliyahu, Israel | Sandy red soil. Its grains are covered by minerals and iron oxide, aluminum oxide and Manganese. | 2.4 | 4.8 | 92.8 | Sand |
Kokhav | Dark-clay soil | Haploxeralfs | Kibbutz Kokahv Michael, Israel | This soil is located at a transition area and therefore it is a mixture of alluvium soil and grumusol mixed with sand. | 12.4 | 34.4 | 53.2 | Sandy Loam |
Samples | n | R2 | Slope | RMSE (wt %) | nRMSE (%) | |
---|---|---|---|---|---|---|
Hamra | H00-H05 | 323 | 0.96 | 0.95 | 0.32 | 6.45 |
H00-H06 | 371 | 0.97 | 0.96 | 0.35 | 5.82 | |
H00-H07 | 421 | 0.96 | 0.97 | 0.49 | 6.94 | |
H00-H08 | 460 | 0.94 | 0.96 | 0.66 | 8.19 | |
H00-H09 | 517 | 0.91 | 0.93 | 0.89 | 9.88 | |
H00-H10 | 567 | 0.89 | 0.91 | 1.06 | 10.60 | |
Mean | 0.94 | 0.94 | 0.63 | 7.98 | ||
STD | 0.03 | 0.02 | 0.27 | 1.76 | ||
CV | 3.10% | 2.17% | 43.46% | 22.06% | ||
Evrona | E00-E05 | 320 | 0.92 | 0.91 | 0.47 | 9.47 |
E00-E06 | 368 | 0.91 | 0.88 | 0.59 | 9.91 | |
E00-E07 | 421 | 0.90 | 0.86 | 0.72 | 10.25 | |
E00-E08 | 474 | 0.90 | 0.85 | 0.82 | 10.25 | |
E00-E09 | 531 | 0.87 | 0.83 | 1.05 | 10.62 | |
E00-E10 | 567 | 0.86 | 0.82 | 1.20 | 12.03 | |
Mean | 0.89 | 0.85 | 0.80 | 10.58 | ||
STD | 0.02 | 0.03 | 0.25 | 0.92 | ||
CV | 2.38% | 3.52% | 31.21% | 8.69% | ||
Kokhav | K00-K05 | 267 | 0.79 | 0.81 | 0.74 | 14.87 |
K00-K06 | 315 | 0.86 | 0.89 | 0.72 | 12.02 | |
K00-K07 | 355 | 0.89 | 0.91 | 0.73 | 10.44 | |
K00-K08 | 394 | 0.89 | 0.90 | 0.81 | 10.08 | |
K00-K09 | 438 | 0.88 | 0.87 | 0.95 | 10.57 | |
K00-K10 | 478 | 0.86 | 0.85 | >1.14 | 11.39 | |
Mean | 0.86 | 0.87 | 0.84 | 11.56 | ||
STD | >0.03 | 0.03 | 0.15 | 1.61 | ||
CV | 3.98% | 3.88% | 17.94% | 13.95% |
Soil Type | Model | Figure | R2 | Slope | RMSE (wt %) | nRMSE (%) |
---|---|---|---|---|---|---|
Hamra | CC | 5 | 0.89 | 0.91 | 1.06 | 10.60 |
NN | 7 | 0.87 | 0.88 | 1.20 | 10.49 | |
CN | 7 | 0.87 | 0.89 | 1.20 | 10.67 | |
Evrona | CC | 5 | 0.86 | 0.82 | 1.20 | 12.03 |
NN | 7 | 0.83 | 0.79 | 1.33 | 12.39 | |
CN | 7 | 0.83 | 0.80 | 1.32 | 12.08 | |
Kokhav | CC | 5 | 0.86 | 0.85 | 1.14 | 11.39 |
NN | 7 | 0.83 | 0.81 | 1.26 | 11.07 | |
CN | 7 | 0.84 | 0.84 | 1.19 | 10.86 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelta, R.; Ben-Dor, E. An Exploratory Study on the Effect of Petroleum Hydrocarbon on Soils Using Hyperspectral Longwave Infrared Imagery. Remote Sens. 2019, 11, 569. https://doi.org/10.3390/rs11050569
Pelta R, Ben-Dor E. An Exploratory Study on the Effect of Petroleum Hydrocarbon on Soils Using Hyperspectral Longwave Infrared Imagery. Remote Sensing. 2019; 11(5):569. https://doi.org/10.3390/rs11050569
Chicago/Turabian StylePelta, Ran, and Eyal Ben-Dor. 2019. "An Exploratory Study on the Effect of Petroleum Hydrocarbon on Soils Using Hyperspectral Longwave Infrared Imagery" Remote Sensing 11, no. 5: 569. https://doi.org/10.3390/rs11050569
APA StylePelta, R., & Ben-Dor, E. (2019). An Exploratory Study on the Effect of Petroleum Hydrocarbon on Soils Using Hyperspectral Longwave Infrared Imagery. Remote Sensing, 11(5), 569. https://doi.org/10.3390/rs11050569