Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran
Abstract
:1. Introduction
2. Geology of the TCMB and Mineralization
3. Materials and Methods
3.1. Pre-processing of the Remote Sensing Data
3.2. Image Processing Algorithms
3.2.1. Principal Component Analysis (PCA)
3.2.2. Band Ratio Matrix Transformation (BRMT)
3.2.3. Mixture Tuned Matched Filtering (MTMF)
3.2.4. Spectral Angle Mapper (SAM)
3.3. Fieldwork Data, Laboratory Analysis and Verification
4. Results and Discussion
4.1. Alteration Mapping Results Derived from ASTER Data
4.2. Fieldwork, Laboratory Analysis and Verification Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cox, D.P. Descriptive model of polymetallic veins. In Mineral Deposit Models; Cox, D.P., Singer, D.A., Eds.; U.S. Geological Survey Bulletin: Reston, VI, USA, 1986; Volume 1693, p. 125. [Google Scholar]
- Haynes, S.J. Vein-type ore deposits: Introduction. Ore Geol. Rev. 1993, 8, 205–211. [Google Scholar] [CrossRef]
- Ono, S.; Hirai, K.; Matsueda, H.; Kabashima, T. Polymetallic Mineralization at the Suttsu Vein-type Deposit, Southwestern Hokkaido, Japan. Resour. Geol. 2004, 54, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Gharesi, M.; Karimi, M. Vein type mineralization and related alterations of Narigun polymetalli deposit, East of Yazd, Central Iran. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM); Springer: Berlin/Heidelberg, Germany, 2012; pp. 229–236. [Google Scholar]
- Tu, W.; Du, Y.S.; Wang, G.W.; Lei, Y.P. Cordilleran vein type Pb-Zn-polymetallic deposits of the Xidamingshan district, Guangxi, SW China: Fluid inclusion and geochemical studies. Geol. Ore Depos. 2013, 55, 494–502. [Google Scholar] [CrossRef]
- Box, S.E.; Bookstrom, A.A.; Zientek, M.L.; Derkey, P.D.; Ashley, R.P.; Elliot, J.E.; Peters, S.G. Assessment of Undiscovered Mineral Resources in the Pacific Northwest: A Contribution to the Interior Columbia Basin Ecosystem Management Project; USGS Open-File Report OF 95-682; USGS: Reston, VI, USA, 1996.
- Lowell, J.D.; Guilbert, J.M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol. 1970, 65, 373–408. [Google Scholar] [CrossRef]
- Mahanta, P.; Maiti, S. Regional scale demarcation of alteration zone using ASTER imageries in South Purulia Shear Zone, East India: Implication for mineral exploration in vegetated regions. Ore Geol. Rev. 2018, 102, 846–861. [Google Scholar] [CrossRef]
- Ahmadirouhani, R.; Rahimi, B.; Karimpour, M.H.; Malekzadeh Shafaroudi, A.; Pour, A.B.; Pradhan, B. Integration of SPOT-5 and ASTER satellite data for structural tracing and hydrothermal alteration mineral mapping: Implications for Cu–Au prospecting. Int. J. Image Data Fusion 2018, 9, 237–262. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Hong, J.K.; Park, Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geol. Rev. 2017. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Park, Y.; Hong, J.K. Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int. 2018, 33, 1281–1306. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, T.S.; Park, Y.; Hong, J.K.; Zoheir, B.; Pradhan, B.; Ayoobi, I.; Hashim, M. Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens. 2018, 10, 1186. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Sci. 16, 23–46. [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto Int. 2018. [Google Scholar] [CrossRef]
- Testa, F.J.; Villanueva, C.; Cooke, D.R.; Zhang, L. Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER imagery. Remote Sens. 2018, 10, 203. [Google Scholar] [CrossRef]
- Askari, G.; Pour, A.B.; Pradhan, B.; Sarfi, M.; Nazemnejad, F. Band Ratios Matrix Transformation (BRMT): A Sedimentary Lithology Mapping Approach Using ASTER Satellite Sensor. Sensors 2018, 18, 3213. [Google Scholar] [CrossRef] [PubMed]
- Mars, J.C. Regional Mapping of Hydrothermally Altered Igneous Rocks along the Urumieh-Dokhtar, Chagai, and Alborz Belts of Western Asia Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data and Interactive Data Language (IDL) Logical Operators—A Tool for Porphyry Copper Exploration and Assessment; U.S. Geological Survey Scientific Investigations Report 2010-5090-O; USGS: Reston, VI, USA, 2014; 36p.
- Abrams, M. The Advanced Spaceborne Thermal Emission and Reflaction Radiometer (ASTER). Data Products for the high spatial resolution imager on NASA Terra Platform. Int. J. Remote Sens. 2000, 21, 847–859. [Google Scholar] [CrossRef]
- Fujisada, H. Design and performance of ASTER instrument. In Advanced and Next-Generation Satellites; Breckinridge, J.B., Ed.; International Society for Optics and Photonics: Bellingham, WA, USA, 1995; Volume 2583, pp. 16–25. [Google Scholar]
- Kurata, K.; Yamaguchi, Y. Integration and Visualization of Mineralogical and Topographical Information Derived from ASTER and DEM data. Remote Sens. 2019, 11, 162. [Google Scholar] [CrossRef]
- Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C. Mapping hydrothermally altered rocks at Cuprite, Nevada, using te Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), A new satellite-imaging system. Econ. Geol. 2003, 98, 1019–1027. [Google Scholar] [CrossRef]
- Carrino, T.A.; Crósta, A.P.; Toledo, C.L.B.; Silva, A.M.; Silva, J.L. Geology and hydrothermal alteration of the Chapi Chiara prospect and nearby targets, Southern Peru, using ASTER data and reflectance spectroscopy. Econ. Geol. 2015, 110, 73–90. [Google Scholar] [CrossRef]
- Cudahy, T. Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration. Geosciences 2016, 6, 52. [Google Scholar] [CrossRef]
- Sheikhrahimi, A.; Pour, B.A.; Pradhan, B.; Zoheir, B. Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER remote sensing data: A case study from the Sanandaj-Sirjan Zone, Iran. Adv. Space Res. 2019, in press. [Google Scholar] [CrossRef]
- Rajendran, S.; Nasir, S. Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits. Ore Geol. Rev. 2017, 88, 317–335. [Google Scholar] [CrossRef]
- Rajendran, S.; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. J. Asian Earth Sci. 2011, 41, 99–106. [Google Scholar] [CrossRef]
- Rajendran, S.; Al-Khirbasha, S.; Pracejusa, B.; Nasira, S.; Al-Abria, A.H.; Kusky, T.M.; Ghulam, A. ASTER detection of chromite-bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geol. Rev. 2012, 44, 121–135. [Google Scholar] [CrossRef]
- Rastad, E.; Tajeddin, H.; Rashidnejad-Omran, N.; Babakhani, A. Genesis and gold (copper) potential in Darestan-Baghou mining area. Iran. Geosci. J. 2000, 36, 60–79. (In Persian) [Google Scholar]
- Fard, M.; Rastad, E.; Ghaderi, M. Epithermal Gold and Base Metal mineralization at Gandy Deposite, North of central Iran and the Role of Rhyolitic Intrusions. J. Sci. Islamic Repub. Iran 2006, 17, 327–335. [Google Scholar]
- Shamanian, G.H.; Hedenquist, J.W.; Hattori, K.H.; Hassanzadeh, J. The Gandy and Abolhassani epithermal deposits in the Alborz magmatic arc, Semnan Province, northern Iran. Econ. Geol. 2004, 99, 691–712. [Google Scholar] [CrossRef]
- Ziaii, M.; Abedi, A.; Kamkar, A.; Zendahdel, A. GIS modelling for Au-Pb-Zn potential mapping in Torud-Chahshirin area Iran. Int. J. Min. Environ. Issues 2010, 1, 17–27. [Google Scholar]
- Moghadam, H.S.; Li, X.H.; Stern, R.J.; Santos, J.F.; Ghorbani, G.; Pourmohsen, M. Age and nature of 560–520 Ma calc-alkaline granitoids of Biarjmand, northeast Iran: Insights into Cadomian arc magmatism in northern Gondwana. Int. Geol. Rev. 2016, 58, 1492–1509. [Google Scholar] [CrossRef]
- Moghadam, H.S.; Li, X.H.; Santos, J.F.; Stern, R.J.; Griffin, W.L.; Ghorbani, G.; Sarebani, N. Neoproterozoic magmatic flare-up along the N. margin of Gondwana: The Taknar complex, NE Iran. Earth Planet. Sci. Lett. 2017, 474, 83–96. [Google Scholar] [CrossRef]
- Mehrabi, B.; Siani, M.G. Mineralogy and economic geology of Cheshmeh Hafez polymetallic deposit, Semnan province, Iran. J. Econ. Geol. 2010, 2, 1–20, (In Persian with English Abstract). [Google Scholar]
- Ghorbani, G. Chemical composition of minerals and genesis of mafic microgranular enclaves in intermediate-acidic plutonic rocks from Kuh-e-Zar area (south of Semnan). Iran. J. Crystallogr. Mineral. 2007, 2, 293–310. [Google Scholar]
- Crosta, A.P.; Desouza Filho, C.; Azevedo, F.B. Targeting key alteration mineral in epithermal deposits in Patagonia, Argentin, using ASTER imagery and principal component Analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Loughlin, W.P. Principal Components Analysis for alteration mapping. Photogramm. Eng. Remote Sens. 1991, 57, 1163–1169. [Google Scholar]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.B.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Boardman, J.W. Leveraging the high dimensionality od AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: Mixture Tuned Matched filtering. In Proceedings of the Summaries Workshop Seventh Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 12–16 January 1998; Green, R.O., Ed.; 1998; pp. 55–56. [Google Scholar]
- Harsanyi, J.C.; Farrand, W.H.; Chang, C.I. Detection of Subpixel Signatures in hyperspectral image sequences. Proceeding of the 1994 ASPRS Annual Conference, Reno, NV, USA, 25–28 April 1994; pp. 236–247. [Google Scholar]
- Boardman, J.W.; Green, R.O. Exploring the spectral variability of the Earth as Measured by AVIRIS in 1999. In Proceedings of the Summaries of the Ninth Annual JPL Airborne Geosciences Workshop; Jet Propulsion Special Publication: Pasadena, CA, USA, 2000; Volume 8, p. 10. [Google Scholar]
- Eshraghi, S.A.; Jalali, A. Geologycal Map of Moaleman, 1:100,000; Geology Survey: Tehran, Iran, 2006. [Google Scholar]
- Alavi, M. Tectonic of zagros orogenic belt of Iran; new data and interpretation. Tectonophysics 1994, 229, 211–238. [Google Scholar] [CrossRef]
- Alavi, M.; Vaziri, H.; Seyed-Emami, K.; Lasemi, Y. The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geol. Soc. Am. Bull. 1997, 109, 1563–1575. [Google Scholar] [CrossRef]
- Alavi, M. Structures of the Zagros fold-thrust belt in Iran. Am. J. Sci. 2007, 307, 1064–1095. [Google Scholar] [CrossRef]
- Hushmandzadeh, A.R.; Alavi, M.; Haghipour, A.A. Evalution of Geological Phenomenon in Toroud Area (From Precambrian to Recent) of Iran; Report No. H5; GSI.IR: Tehran, Iran, 1978; 136p. [Google Scholar]
- Akhyani, M.; Kharqani, M.; Rahimi, M.; Sereshki, F. Alteration Zones Detection of Troud-Chah Shirin Volcanic—Plutonic Belt using different processing methods of ASTER images. Eng. Environ. Geol. 2015, 24, 107–116. [Google Scholar]
- Liaghat, S.; Sheykhi, V.; Najjaran, M. Petrology, gheochemistry and genesis of Baghu turquoise, Damghan. J. Sci. 2008, 34, 133–142, (In Persian with English Abstract). [Google Scholar]
- Nahidifar, E.; Fardoost, F.; Rezaii, M. Mineralogy of Dian Copper Deposit (South of Damghan). In Proceedings of the 17th Symposium of Geological Survey of Iran, Tehran, Iran, (In Persian). 29–31 October 2013. [Google Scholar]
- Roohbakhsh, P.; Karimpour, M.H.; Malekzadeh, A. Geology, mineralization, geochemistry and petrology of intrusions in the Kuh Zar Au-Cu deposit, Damghan. J. Econ. Geol. 2018, 10, 1–2. [Google Scholar]
- Green, A.A.; Craig, M.D. Analysis of aircraft spectrometer data, with logarithmic residuals. In Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop; Vane, G., Goetz, A., Eds.; JPL: Pasadena, CA, USA, 1985; pp. 111–119. [Google Scholar]
- Research Systems, Inc. ENVI Tutorials; Research Systems, Inc.: Boulder, CO, USA, 2008. [Google Scholar]
- Iwasaki, A.; Tonooka, H. Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2747–2751. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J. Asian Earth Sci. 2011, 42, 1309–1323. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. Spectral transformation of ASTER and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran. Int. J. Phys. Sci. 2011, 6, 2037–2059. [Google Scholar]
- Pour, B.A.; Hashim, M. Identifying areas of high economic-potential copper mineralization using ASTER data in Orumieh–Dokhtar Volcanic Belt, Iran. Adv. Spaceborn Res. 2012, 49, 753–769. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Honarmand, M.; Ranjbar, H.; Shahabpour, J. Application of Principal Component Analysis and Spectral Angle Mapping in the mapping of hysrothermal alteration in the Jebal–Barez area, southeastern Iran. Resour. Geol. 2012, 62, 119–139. [Google Scholar] [CrossRef]
- Khaleghi, M.; Ranjbar, H.; Shahabpour, J.; Honarmand, M. Spectral angle mapping, Spectral information divergence and Principal component analysis of the ASTER SWIR data for exploration of porphyry copper mineralization in the Sarduiyeh area, Kerman province, Iran. Appl. Geomat. 2014, 6, 49–58. [Google Scholar] [CrossRef]
- Siljestrom, P.; Moreno, A.; Vikgren, K.; Cáceres Puro, L. The application of selective principal components analysis (SPCA) to a Thematic Mapper (TM) image for the recognition of geomorphologic configuration. Int. J. Remote Sens. 1997, 18, 3843–3852. [Google Scholar] [CrossRef]
- Fraser, S.J.; Green, A. A software defoliant for geological analysis of band ratios. Int. J. Remote Sens. 1987, 8, 525–532. [Google Scholar] [CrossRef]
- Abdelsalam, M.; Stern, R. Mapping gossan in arid regions with landsat TM and SIR-C images, the Beddaho Alteration Zone in northern Eritrea. J. Afr. Earth Sci. 2000, 30, 903–916. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2006, 2, 161–186. [Google Scholar] [CrossRef]
- Rowan, L.C.; Robert, G.S.; John, C. Distribution of hydrothermally altered rocks in the Peko Diq, Pakestan mineralized area based on spectralysis of ASTER data. Remote Sens. Environ. 2006, 104, 74–87. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Yield estimation from hyperspectral imagery using spectral angle mapper (SAM). Am. Soc. Agric. Biol. Eng. 2008, 51, 729–737. [Google Scholar]
- Hosseinjani, M.; Tangestani, M. Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduyeh area, SE Kerman, Iran. Int. J. Digit. Earth 2011, 4, 487–504. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE. Remote Sens. Environ. 2003, 87, 123–135. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A. Automated Spectra Analysis: A Geologic Example Using AVIRIS Data, North Grapevine on Geologic Remote Sensing; Environmental Research Institute of Michigan: Arbor, MI, USA, 1994; pp. 407–418. [Google Scholar]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.R. Introductory Digital Image Processing; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Sabins, F.F. Remote sensing for mineral exploration. J. Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; U.S. Geological Survey Data Series 1035; USGS: Reston, VI, USA, 2017; 61p.
- Askari, G.; Li, Y.; Moezzi Nasab, R. An adaptive polygonal centroidal voronoi tessellation algorithm for segmentation of noisy SAR images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-2/W3, 65–68. [Google Scholar] [CrossRef]
- Velosky, J.C.; Stern, R.J.; Johnson, P.R. Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Res. 2003, 123, 235–247. [Google Scholar] [CrossRef]
- Hunt, G.R. Electromagnetic radiation: The communication link in remote sensing. In Remote Sensing in Geology; Siegal, B.S., Gillespie, A.R., Eds.; John Wiley & Sons: New York, NY, USA, 1980; pp. 5–45. [Google Scholar]
- Burns, R.G. Mineralogical Applications of Crystal Field Theory; Cambridge University Press: Cambridge, UK, 1993; 551p. [Google Scholar]
- Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. In Manual of Remote Sensing; Rencz, A., Ed.; Wiley and Sons Inc.: New York, NY, USA, 1999; Volume 3, pp. 3–58. [Google Scholar]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near-infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Sgavetti, M.; Pomilio, L.; Meli, S. Reflectance spectroscopy (0.3–2.5 μm) at various scales for bulk-rock identification. Geosphere 2006, 2, 142–160. [Google Scholar] [CrossRef]
- Di Tommaso, I.; Rubinstein, N. Hydrothermal alteration mapping using ASTER data in the infiernillo porphyry deposite, Argentina. Ore Geol. Rev. 2007, 32, 275–270. [Google Scholar] [CrossRef]
- Kruse, F.A.; Perry, S.L. Mineral mapping using simulated Worldview-3 short-wave-infrared imagery. Remote Sens. 2013, 5, 2688–2703. [Google Scholar] [CrossRef]
- Hunt, G.R.; Evarts, R.C. The use of near-infrared spectroscopy to determine the degree of serpentinization of ultramafic rocks. Geophysics 1980, 46, 316–321. [Google Scholar] [CrossRef]
- Hunt, G.R. Near-infrared 1/3–2/4 (μm) spectra of alteration minerals potential for use in remote sensing. J. Geophys. 1979, 44, 1974–1986. [Google Scholar] [CrossRef]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brwon, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Cudahy, T.J.; Ramanaidou, E.R. Measurement of the hematite: Goethite ratio using field visible and near-infrared reflectance spectrometry in channel iron deposits, Western Australia. Aust. J. Earth Sci. 1997, 44, 411–420. [Google Scholar] [CrossRef]
- Frost, R.L.; Johansson, U. Combination bands in the infrared spectroscopy of kaolins—A drift spectroscopic study. Clays Clay Miner. 1998, 46, 466–477. [Google Scholar] [CrossRef]
- Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. Am. Mineral. 1986, 71, 151–162. [Google Scholar]
A | Band1 | Band2 | Band4 | B | Band4 | Band5 | Band6 | |
PC1 | −0.57 | −0.57 | −0.58 | PC1 | 0.58 | −0.57 | −0.57 | |
PC2 | −0.42 | −0.39 | 0.81 | PC2 | −0.81 | 0.35 | 0.46 | |
PC3 | −0.7 | −0.14 | −0.14 | PC3 | −0.61 | −0.73 | 0.67 | |
C | Band5 | Band6 | Band7 | D | Band7 | Band8 | Band9 | |
PC1 | −0.57 | −0.57 | −0.57 | PC1 | −0.58 | −0.57 | −0.57 | |
PC2 | −0.42 | −0.39 | 0.81 | PC2 | −0.73 | 0.06 | 0.67 | |
PC3 | −0.69 | 0.71 | 0.02 | PC3 | 0.35 | −0.81 | 0.45 |
Band Ratio | Negative | Positive | Band Ratio | Negative | Positive | ||||
---|---|---|---|---|---|---|---|---|---|
−r | C% | +r | C% | −r | C% | +r | C% | ||
n1 | −0.34 | 1.86 | 0.40 | 4.81 | n19 | −0.58 | 3.13 | 0.12 | 1.49 |
n2 | −0.86 | 4.65 | 0.36 | 4.38 | n20 | −0.60 | 3.24 | 0.13 | 1.61 |
n3 | −0.54 | 2.91 | 0.28 | 3.42 | n21 | −0.37 | 2.01 | 0.12 | 1.40 |
n4 | −0.98 | 5.32 | 0.12 | 1.39 | n22 | −0.82 | 4.44 | 0.22 | 2.66 |
n5 | −0.56 | 3.06 | 0.12 | 1.50 | n23 | −0.36 | 1.96 | 0.31 | 3.71 |
n6 | −0.60 | 3.26 | 0.12 | 1.45 | n24 | −0.36 | 1.98 | 0.35 | 4.23 |
n7 | −0.63 | 3.42 | 0.13 | 1.57 | n25 | −0.37 | 2.03 | 0.33 | 4.02 |
n8 | −0.45 | 2.46 | - | - | n26 | −0.51 | 2.75 | 0.52 | 6.22 |
n9 | −0.32 | 1.75 | 0.32 | 3.87 | n27 | −0.44 | 2.37 | 0.21 | 2.56 |
n10 | −0.55 | 3.01 | 0.15 | 1.79 | n28 | −0.41 | 2.25 | 0.31 | 3.68 |
n11 | −0.55 | 2.96 | 0.11 | 1.36 | n29 | −0.43 | 2.33 | 0.34 | 4.07 |
n12 | −0.41 | 2.23 | - | - | n30 | −0.36 | 1.94 | 0.56 | 6.74 |
n13 | −0.98 | 5.32 | 0.13 | 1.62 | n31 | −0.32 | 1.75 | 0.33 | 4.04 |
n14 | −0.40 | 2.18 | 0.11 | 1.30 | n32 | −0.37 | 2.02 | 0.32 | 3.85 |
n15 | −0.48 | 2.62 | - | - | n33 | −0.38 | 2.06 | 0.39 | 4.69 |
n16 | −0.54 | 2.94 | 0.18 | 2.21 | n34 | −0.23 | 1.27 | 0.40 | 4.83 |
n17 | −0.95 | 5.19 | 0.26 | 3.17 | n35 | −0.52 | 2.84 | 0.18 | 2.18 |
n18 | −0.39 | 2.11 | 0.16 | 1.98 | n36 | −0.44 | 2.38 | 0.18 | 2.22 |
BT Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Eigenvalue | 0.12300000006606 | 0.00928 | 0.00643 | 0.00335 | 0.00255 | 0.00125 | 0.00098 | 0.00083 | 0.00005 | 0.00002 |
V% | 83.24 | 6.28 | 4.35 | 2.27 | 1.72 | 0.85 | 0.66 | 0.56 | 0.03 | 0.01 |
0.40 | 0.25 | 0.17 | 0.22 | 0.23 | 0.27 | 0.21 | 0.24 | - | - | |
% | 20.07 | 12.70 | 8.51 | 11.02 | 11.39 | 13.67 | 10.58 | 12.06 | - | - |
−0.92 | −0.42 | −0.38 | −0.36 | −0.27 | −0.24 | −0.27 | −0.26 | - | - | |
% | 29.48 | 13.36 | 12.08 | 11.54 | 8.78 | 7.62 | 8.82 | 8.32 | - | - |
Contribution > 3% | BT | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive | n30 | n26 | n34 | n1 | n33 | n2 | n24 | n29 | n31 | n25 | n9 | n32 | n23 | n28 | n3 | n17 |
Negative | n10 | n5 | n19 | n20 | n6 | n7 | n22 | n2 | n17 | n13 | n4 | - | - | - | - | - |
(A) Ground Truth Samples | |||||
Class | Argillic | Phyllic | Propylitic | User Acc. (Percent) | |
Unclassified | 1 | 15 | 1 | - | |
Argillic | 57 | 0 | 0 | 98.2 | |
Phyllic | 0 | 84 | 0 | 84.8 | |
Propylitic | 0 | 0 | 49 | 98 | |
Prod. Acc. | 100 | 100 | 100 | ||
Over. acc. (Percent) | Kappa Coef. (Percent) | ||||
95.7 | 0.93 | ||||
(B) Ground Truth Samples | |||||
Class | Argillic | Phyllic | Propylitic | User Acc. (Percent) | |
Unclassified | 1 | 2 | 9 | - | |
Argillic | 53 | 25 | 6 | 62 | |
Phyllic | 4 | 72 | 0 | 92.3 | |
Propyllitic | 0 | 0 | 35 | 79.5 | |
Prod. Acc. | 92.9 | 74.2 | 85.3 | - | |
Over. acc. (Percent) | Kappa Coef. (Percent) | ||||
84.4 | 0.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noori, L.; Pour, A.B.; Askari, G.; Taghipour, N.; Pradhan, B.; Lee, C.-W.; Honarmand, M. Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens. 2019, 11, 495. https://doi.org/10.3390/rs11050495
Noori L, Pour AB, Askari G, Taghipour N, Pradhan B, Lee C-W, Honarmand M. Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sensing. 2019; 11(5):495. https://doi.org/10.3390/rs11050495
Chicago/Turabian StyleNoori, Lida, Amin Beiranvand Pour, Ghasem Askari, Nader Taghipour, Biswajeet Pradhan, Chang-Wook Lee, and Mehdi Honarmand. 2019. "Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran" Remote Sensing 11, no. 5: 495. https://doi.org/10.3390/rs11050495
APA StyleNoori, L., Pour, A. B., Askari, G., Taghipour, N., Pradhan, B., Lee, C.-W., & Honarmand, M. (2019). Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sensing, 11(5), 495. https://doi.org/10.3390/rs11050495