Kd(PAR) and a Depth Based Model to Estimate the Height of Submerged Aquatic Vegetation in an Oligotrophic Reservoir: A Case Study at Nova Avanhandava
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Campaign and Data Analysis
2.2.1. Optical Data
2.2.2. Echosounder Data
2.3. Kd(PAR) Mapping
2.4. Depth and SAV Height Mapping
2.5. SAV Height Modeling
3. Results and Discussion
3.1. Kd(PAR) Mapping
3.2. Depth and SAV Height Mapping
3.2.1. Interpolation by Kriging
3.2.2. Depth and SAV Height Maps
3.3. SAV Height Modeling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Tundisi, J.G.; Matsumura-Tundisi, T. Limnologia; Oficina de Textos: São Paulo, Brazil, 2008. [Google Scholar]
- Thomaz, S.M.; Esteves, F.A.; Murphy, K.J.; Dos-Santas, A.M.; Caliman, A.; Guariento, R.D. Aquatic Macrophytes in the Tropics: Ecology of Population and Communities, Impact of Invasion and Use by Man. In Tropical Biology and Conservation Management: Ecology; Del Claro, K., Oliveira, P.S., Rico-Gray, V., Eds.; EOLSS/UNESCO: Oxford, UK, 2008; Volume V. [Google Scholar]
- Jakubauskas, M.E.; Peterson, D.L.; Campbell, S.W.; de Noyelles, F., Jr.; Campbell, S.D.; Penny, D. Mapping and Monitoring Invasive Aquatic Plant Obstructions in Navigable Waterways Using Satellite Multispectral Imagery. In Proceedings of the Pecora 15/Land Satellite Information IV/ISPRS Commission I/FIEOS 2002 Conference, Denver, CO, USA, 10–15 November 2002. [Google Scholar]
- Rockwell, H.W. Summary of a Survey of the Literature on the Economic Impact of Aquatic Weeds. The Economic Impact of Aquatic Weed; Report for the Aquatic Ecosystem Restoration Foundation; Aquatic Ecosystem Restoration Foundation: Marietta, GA, USA, 2003; Available online: http://www.aquatics.org/pubs/economic_impact.pdf (accessed on 5 November 2018).
- Caffrey, A.J.; Hoyer, M.V.; Canfield, D.E., Jr. Factors Affecting the Maximum Depth of Colonization by Submersed Macrophytes in Florida Lakes. Lake Reserv. Manag. 2007, 23, 287–297. [Google Scholar] [CrossRef]
- Camargo, A.F.M.; Pezzato, M.M.; Henry-Silva, G.G. Limitant Factors to Primary Production of Aquatic Macrophytes, “Fatores Limitantes à Produção Primária Macrófitas Aquáticas”. In Ecologia e Manejo de Macrófitas Aquáticas; Thomaz, S.M., Bini, L.M., Eds.; EDUEM: Maringá, Brazil, 2003; pp. 59–83. [Google Scholar]
- Biudes, J.F.V.; Camargo, A.F.M. Studying the Limiting Factors to Primary Production of Aquatic Macrophytes in Brazil. Oecol. Bras. 2008, 12, 7–19. [Google Scholar] [CrossRef]
- Schwarz, A.M.; Wintonb, M.; Hawes, I. Species-Specific Depth Zonation in New Zealand Charophytes as a Function of Light Availability. Aquat. Bot. 2002, 72, 209–217. [Google Scholar] [CrossRef]
- Havens, K.E. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia 2003, 493, 173–186. [Google Scholar] [CrossRef]
- Tavechio, W.L.G.; Thomaz, S.M. Effects of Light on the Growth and Photosynthesis of Egeria najas Planchon. Braz. Arch. Biol. Technol. 2003, 46, 203–209. [Google Scholar] [CrossRef]
- Thomaz, S.M. Fatores que Afetam a Distribuição e o Desenvolvimento de Macrófitas Aquáticas em Reservatórios: Uma Análise em Diferentes Escalas. In Ecologia de Reservatórios: Impactos Potenciais, Ações de Manejo e Sistemas em Cascata; Nogueira, M.G., Henry, R., Jorcin, A., Eds.; RiMa: São Carlos, Brazil, 2006; pp. 165–181. [Google Scholar]
- Rodrigues, R.B.; Thomaz, S.M. Photosynthetic and Growth Responses of Egeria Densa to Photosynthetic Active Radiation. Aquat. Bot. 2010, 92, 281–284. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Rotta, L.H.S.; Mishra, D.R.; Alcântara, E.H.; Imai, N.N. Analyzing the status of submerged aquatic vegetation using novel optical parameters. Int. J. Remote Sens. 2016, 37, 3786–3810. [Google Scholar] [CrossRef]
- Rotta, L.H.S.; Mishra, D.R.; Watanabe, F.S.Y.; Rodrigues, T.W.P.; Alcântara, E.H.; Imai, N.N. Analyzing the feasibility of a space-borne sensor (SPOT-6) to estimate the height of submerged aquatic vegetation (SAV) in inland waters. ISPRS J. Photogramm. Remote Sens. 2018, 144, 341–356. [Google Scholar] [CrossRef]
- Gallegos, C.L. Calculating Optical Water Quality Targets to Restore and Protect Submersed Aquatic Vegetation: Overcoming Problems in Partitioning the Diffuse Attenuation Coefficient for Photosynthetically Active Radiation. Estuaries 2001, 24, 381–397. [Google Scholar] [CrossRef]
- Mishra, D.R.; Narumalani, S.; Rundquist, D.; Lawson, M. Charactering the Vertical Diffuse Attenuation Coefficient for Downwelling Irradiance in Coastal Waters: Implications for Water Penetration by High Resolution Satellite Data. ISPRS J. Photogramm. Remote Sens. 2005, 60, 48–64. [Google Scholar] [CrossRef]
- Mishra, D.R.; Narumalani, S.; Rundquist, D.; Lawson, M.; Perk, R. Enhancing the detection and classification of coral reef and associated benthic habitats: A hyperspectral remote sensing approach. J. Geophys. Res. 2007, 112, C08014. [Google Scholar] [CrossRef]
- Hudon, C.; Lalonde, S.; Gagnon, P. Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Can. J. Fish. Aquat. Sci. 2000, 57 (Suppl. 1), 31–42. [Google Scholar] [CrossRef]
- Vestergaard, O.; Sand-Jensen, K. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Can. J. Fish. Aquat. Sci. 2000, 57, 2022–2031. [Google Scholar] [CrossRef]
- Nielsen, S.L.; Sand-Jensen, K.; Borum, J.; Geertz-Hansen, O. Depth Colonization of Eelgrass (Zostera marina) and Macroalgae as Determined by Water Transparency in Danish Coastal Waters. Estuaries 2002, 25, 1025–1032. [Google Scholar] [CrossRef]
- Rodrigues, T.W.P.; Alcântara, E.H.; Mishra, D.R.; Watanabe, F.S.Y.; Bernardo, N.M.R.; Rotta, L.H.S.; Imai, N.N.; Astuti, I. Performance of existing QAAs in Secchi disk depth retrieval in phytoplankton and dissolved organic matter dominated inland waters. J. Appl. Remote Sens. 2018, 12, 036017. [Google Scholar] [CrossRef]
- Rodrigues, T.W.P.; Alcantara, E.H.; Watanabe, F.S.Y.; Imai, N.N. Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme. Remote Sens. Environ. 2017, 198, 213–228. [Google Scholar] [CrossRef]
- Watanabe, F.S.Y.; Mishra, D.R.; Astuti, I.; Rodrigues, T.W.P.; Alcantara, E.H.; Imai, N.N.; Barbosa, C.C.F. Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic Waters. ISPRS J. Photogramm. Remote Sens. 2016, 121, 28–47. [Google Scholar] [CrossRef]
- Rotta, L.H.S.; Alcântara, E.H.; Watanabe, F.S.Y.; Rodrigues, T.W.P.; Imai, N.N. Atmospheric correction assessment of SPOT-6 image and its influence on models to estimate water column transparency in tropical reservoir. Remote Sens. Appl. Soc. Environ. 2016, 4, 158–166. [Google Scholar] [CrossRef]
- SSRH/CRHi. Situação dos Recursos Hídricos no Estado de São Paulo; Ano base 2009; Secretaria de Saneamento e Recursos Hídricos, Coordenadoria de Recursos Hídricos: São Paulo, Brazil, 2011. Available online: http://www.sigrh.sp.gov.br/sigrh/basecon/RelatorioSituacao2011/Relatorio_Situacao_2011.pdf (accessed on 8 May 2013).
- Petesse, M.L.; Petrere, M., Jr. Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietê river basin, Brazil. Ecol. Eng. 2012, 48, 109–116. [Google Scholar] [CrossRef]
- Cavenaghi, A.L.; Velini, E.D.; Galo, M.L.B.T.; Carvalho, F.T.; Negrisoli, E.; Trindade, M.L.B.; Simionato, J.L.A. Characterization of Water Quality and Sediment Related to the Occurrence of Aquatic Plants in Five Tietê Waterhed Reservoirs. “Caracterização da Qualidade de Água e Sedimento Relacionados com a Ocorrência de Plantas Aquáticas em Cinco Reservatórios da Bacia do Rio Tietê”. Planta Daninha 2003, 21, 43–52. [Google Scholar] [CrossRef]
- Velini, E.D.; Galo, M.L.B.T.; Carvalho, F.T.; Martins, D.; Cavenaghi, A.L.; Trindade, M.L.B.; Bravin, L.F.B.; Negrisoli, E.; Antuniassi, U.R.; Simionato, J.L.A.; et al. Assessment of Aquatic Plants in the Reservoirs of AES-Tietê and Development of an Integrated Control Model for the Most Important Species. J. Environ. Sci. Health 2005, 40, 85–100. [Google Scholar] [CrossRef]
- Dall’olmo, G.; Gitelson, A.A. Effect of Bio-Optical Parameter Variability on the Remote Estimation of Chlorophyll-A Concentration in Turbid Productive Waters: Experimental Results. Appl. Opt. 2005, 44, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Dall’olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A Simple Semi-Analytical Model for Remote Estimation of Chlorophyll-A in Turbid Waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Astrium. Spot 6 & Spot 7 Imagery—User Guide; Si/Dc/13034-V1.0; Astrium: Toulouse, France, 2013; pp. 1–120. [Google Scholar]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Biosonics. User Guide: BioSonics X-Series Echosounder and Visual Acquisition 5.0; Biosonics Inc.: Seattle, WD, USA, 2002; pp. 1–60. [Google Scholar]
- Biosonics. User Guide: EcoSAV 1; Biosonics Inc.: Seattle, WD, USA, 2008; pp. 1–48. [Google Scholar]
- Biosonics. Calibration of BioSonics Digital Scientific Echosounder Using T/C Calibration Spheres; Biosonics Inc.: Seattle, WD, USA, 2004; pp. 1–11. [Google Scholar]
- Sabol, B.M.; Melton, R.E.; Chamberlan, R.; Doering, P.; Haunert, K. Evaluation of A Digital Echo Sounder System for Detection of Submersed Aquatic Vegetation. Estuaries 2002, 25, 133–141. [Google Scholar] [CrossRef]
- Chamberlain, R.H.; Doening, P.H.; Orlando, B.; Sabol, B.M. Comparison of Manual and Hydroacoustic Measurement of Seagrass Distribution in the Caloosahatchee Estuary, Florida. Fla. Sci. 2009, 72, 386–405. [Google Scholar]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 111–147. [Google Scholar] [CrossRef]
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Adler-Golden, S.M.; Matthew, M.W.; Bernstein, L.S.; Levine, R.Y.; Berk, A.; Richtsmeier, S.C.; Acharya, P.K.; Anderson, G.P.; Felde, G.; Gardner, J.; et al. Atmospheric correction for shortwave spectral imagery based on MODTRAN4. SPIEProc.Imaging Spectrom. Proc. SPIE 1999, 3753, 61–69. [Google Scholar] [CrossRef]
- Yamamoto, J.K.; Landim, P.M.B. Geoestatística: Conceitos e aplicações; Oficina de Textos: São Paulo, Brazil, 2013. [Google Scholar]
- Rotta, L.H.S. Inferência Espacial Para Mapeamento de Macrófitas Submersas—Estudo de Caso. Dissertation of Master’s Degree—Cartographic Sciences, São Paulo State University, São Paulo, Brazil, 2011. Available online: http://www2.fct.unesp.br/pos/cartografia/docs/teses/d_rotta_lh.pdf (accessed on 5 November 2018).
- Valley, R.D.; Drake, M.T.; Anderson, C.S. Evaluation of alternative interpolation techniques for the mapping of remotely-sensed submersed vegetation abundance. Aquat. Bot. 2005, 81, 13–25. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Cho, H.J. Effects of Prevailing Winds on Turbidity of a Shallow Estuary. Int. J. Environ. Res. Public Health 2007, 4, 185–192. [Google Scholar] [CrossRef]
- Bini, L.M.; Thomaz, S.M. Prediction of Egeria najas and Egeria densa occurrence in a large subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay). Aquat. Bot. 2005, 83, 227–238. [Google Scholar] [CrossRef]
- Canfield, D.E., Jr.; Langeland, K.A.; Lind, S.B.; Haller, W.T. Relations between water transparency and maximum depth of macrophyte colonization in lakes. J. Aquat. Plant Manag. 1985, 23, 25–28. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotta, L.H.; Mishra, D.R.; Alcântara, E.; Imai, N.; Watanabe, F.; Rodrigues, T. Kd(PAR) and a Depth Based Model to Estimate the Height of Submerged Aquatic Vegetation in an Oligotrophic Reservoir: A Case Study at Nova Avanhandava. Remote Sens. 2019, 11, 317. https://doi.org/10.3390/rs11030317
Rotta LH, Mishra DR, Alcântara E, Imai N, Watanabe F, Rodrigues T. Kd(PAR) and a Depth Based Model to Estimate the Height of Submerged Aquatic Vegetation in an Oligotrophic Reservoir: A Case Study at Nova Avanhandava. Remote Sensing. 2019; 11(3):317. https://doi.org/10.3390/rs11030317
Chicago/Turabian StyleRotta, Luiz Henrique, Deepak R. Mishra, Enner Alcântara, Nilton Imai, Fernanda Watanabe, and Thanan Rodrigues. 2019. "Kd(PAR) and a Depth Based Model to Estimate the Height of Submerged Aquatic Vegetation in an Oligotrophic Reservoir: A Case Study at Nova Avanhandava" Remote Sensing 11, no. 3: 317. https://doi.org/10.3390/rs11030317
APA StyleRotta, L. H., Mishra, D. R., Alcântara, E., Imai, N., Watanabe, F., & Rodrigues, T. (2019). Kd(PAR) and a Depth Based Model to Estimate the Height of Submerged Aquatic Vegetation in an Oligotrophic Reservoir: A Case Study at Nova Avanhandava. Remote Sensing, 11(3), 317. https://doi.org/10.3390/rs11030317