# UBathy: A New Approach for Bathymetric Inversion from Video Imagery

^{1}

^{2}

^{3}

^{*}

^{†}

^{‡}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Principal Component Analysis

#### 2.2. Wave Frequency and Wavenumber: Phase Fitting

#### 2.3. Wavenumber: Function Fitting

#### 2.4. Depth Inversion

## 3. Results

#### 3.1. Analysis for Synthetic Linear Waves: Phase Fitting

#### 3.2. Analysis for Synthetic Nonlinear Waves: Function Fitting and Windowing

## 4. Discussion

#### 4.1. Error Sources

#### 4.2. Sensitivity to $\Delta t$, $\Delta x$, ${R}_{t}$, and ${R}_{x}$

#### 4.3. Sensitivity to the Inversion Method, ${T}_{\mathrm{max}}$, and ${W}_{t}$

#### 4.4. Field Data

#### 4.5. Future Work

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

CRAB | Coastal Research Amphibious Buggy |

CSM | Cross Spectral Matrix |

PCA | Principal Component Analysis |

EOF | Empirical Orthogonal Function |

PC | Principal Component |

RMSE | Root Mean Square Error |

## Appendix A. Nonlinear Wave Field Generation

## References

- Davidson, M.; van Koningsveld, M.; de Kruif, A.; Rawson, J.; Holman, R.; Lamberti, A.; Medina, R.; Kroon, A.; Aarninkhof, S. The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coast. Eng.
**2007**, 54, 463–475. [Google Scholar] [CrossRef] - Kroon, A.; Davidson, M.; Aarninkhof, S.; Archetti, R.; Armaroli, C.; Gonzalez, M.; Medri, S.; Osorio, A.; Aagaard, T.; Holman, R.; et al. Application of remote sensing video systems to coastline management problems. Coast. Eng.
**2007**, 54, 493–505. [Google Scholar] [CrossRef] - Calvete, D.; Coco, G.; Falqués, A.; Dodd, N. (Un)predictability in rip channel systems. Geophys. Res. Lett.
**2007**, 34. [Google Scholar] [CrossRef] - Arriaga, J.; Rutten, J.; Ribas, F.; Falqués, A.; Ruessink, G. Modeling the long-term diffusion and feeding capability of a mega-nourishment. Coast. Eng.
**2017**, 121, 1–13. [Google Scholar] [CrossRef] - Birkemeier, W.; Mason, C. The crab: A unique nearshore surveying vehicle. J. Surv. Eng.
**1984**, 110, 1–7. [Google Scholar] [CrossRef] - Monteys, X.; Harris, P.; Caloca, S.; Cahalane, C. Spatial prediction of coastal bathymetry based on multispectral satellite imagery and multibeam data. Remote Sens.
**2015**, 7, 13782–13806. [Google Scholar] [CrossRef] - Clarke, J.; Mayer, L.; Wells, D. Shallow-water imaging multibeam sonars: A new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Mar. Geophys. Res.
**1996**, 18, 607–629. [Google Scholar] [CrossRef] - Guenther, G.; Thomas, R.; LaRocque, P. Design considerations for achieving high accuracy with the SHOALS bathymetric lidar system. Proc. SPIE
**1996**, 2964, 54–71. [Google Scholar] [CrossRef] - Levoy, F.; Anthony, E.; Monfort, O.; Robin, N.; Bretel, P. Formation and migration of transverse bars along a tidal sandy coast deduced from multi-temporal Lidar datasets. Mar. Geol.
**2013**, 342, 39–52. [Google Scholar] [CrossRef] - Stumpf, R.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr.
**2003**, 48, 547–556. [Google Scholar] [CrossRef] - Stockdon, H.; Holman, R. Estimation of wave phase speed and nearshore bathymetry from video imagery. J. Geophys. Res. Ocean.
**2000**, 105, 22015–22033. [Google Scholar] [CrossRef] - Holman, R.; Plant, N.; Holland, T. CBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Ocean.
**2013**, 118, 2595–2609. [Google Scholar] [CrossRef] - Bell, P.S. Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coast. Eng.
**1999**, 37, 513–527. [Google Scholar] [CrossRef] - Borge, J.; Rodríquez Rodríguez, G.; Hessner, K.; González, P. Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean. Technol.
**2004**, 21, 1291–1300. [Google Scholar] [CrossRef] - Holman, R.; Haller, M. Remote sensing of the nearshore. Annu. Rev. Mar. Sci.
**2013**, 5, 95–113. [Google Scholar] [CrossRef] [PubMed] - Holland, K.; Holman, R.; Lippmann, T.; Stanley, J.; Plant, N. Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Ocean. Eng.
**1997**, 22, 81–91. [Google Scholar] [CrossRef] - Holman, R.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng.
**2007**, 54, 477–491. [Google Scholar] [CrossRef] - Nieto, M.A.; Garau, B.; Balle, S.; Simarro, G.; Zarruk, G.A.; Ortiz, A.; Tintore, J.; Alvarez-Ellacuria, A.; Gomez-Pujol, L.; Orfila, A. An open source, low cost video-based coastal monitoring system. Earth Surf. Process. Landf.
**2010**, 35, 1712–1719. [Google Scholar] [CrossRef] - Boak, E.; Turner, I. Shoreline definition and detection: A review. J. Coast. Res.
**2005**, 21, 688–703. [Google Scholar] [CrossRef] - Simarro, G.; Bryan, K.; Guedes, R.; Sancho, A.; Guillén, J.; Coco, G. On the use of variance images for runup and shoreline detection. Coast. Eng.
**2015**, 99, 136–147. [Google Scholar] [CrossRef] - Plant, N.; Holman, R. Intertidal beach profile estimation using video images. Mar. Geol.
**1997**, 140, 1–24. [Google Scholar] [CrossRef] - Aarninkhof, S.; Turner, I.; Dronkers, T.; Caljouw, M.; Nipius, L. A video-based technique for mapping intertidal beach bathymetry. Coast. Eng.
**2003**, 49, 275–289. [Google Scholar] [CrossRef] - Alexander, P.; Holman, R. Quantification of nearshore morphology based on video imaging. Mar. Geol.
**2004**, 208, 101–111. [Google Scholar] [CrossRef] - Almar, R.; Coco, G.; Bryan, K.; Huntley, D.; Short, A.; Senechal, N. Video observations of beach cusp morphodynamics. Mar. Geol.
**2008**, 254, 216–223. [Google Scholar] [CrossRef] - Ojeda, E.; Guillén, J. Shoreline dynamics and beach rotation of artificial embayed beaches. Mar. Geol.
**2008**, 253, 51–62. [Google Scholar] [CrossRef] - Morales-Márquez, V.; Orfila, A.; Simarro, G.; Gómez-Pujol, L.; Álvarez-Ellacuría, A.; Conti, D.; Galán, A.; Osorio, A.F.; Marcos, M. Numerical and remote techniques for operational beach management under storm group forcing. Nat. Hazards Earth Syst. Sci.
**2018**, 18, 3211–3223. [Google Scholar] [CrossRef] - Van Dongeren, A.; Plant, N.; Cohen, A.; Roelvink, D.; Haller, M.; Catalán, P. Beach Wizard: Nearshore bathymetry estimation through assimilation of model computations and remote observations. Coast. Eng.
**2008**, 55, 1016–1027. [Google Scholar] [CrossRef] - Aarninkhof, S.; Ruessink, B.; Roelvink, J. Nearshore subtidal bathymetry from time-exposure video images. J. Geophys. Res. Ocean.
**2005**, 110, 1–13. [Google Scholar] [CrossRef] - Bergsma, E.; Conley, D.; Davidson, M.; O’Hare, T. Video-based nearshore bathymetry estimation in macro-tidal environments. Mar. Geol.
**2016**, 374, 31–41. [Google Scholar] [CrossRef] - Rutten, J.; De Jong, S.; Ruessink, G. Accuracy of Nearshore Bathymetry Inverted from X-Band Radar and Optical Video Data. IEEE Trans. Geosci. Remote Sens.
**2017**, 55, 1106–1116. [Google Scholar] [CrossRef] - Kalman, R. A new approach to linear filtering and prediction problems. J. Fluids Eng. Trans. ASME
**1960**, 82, 35–45. [Google Scholar] [CrossRef] [Green Version] - Brodie, K.L.; Palmsten, M.L.; Hesser, T.J.; Dickhudt, P.J.; Raubenheimer, B.; Ladner, H.; Elgar, S. Evaluation of video-based linear depth inversion performance and applications using altimeters and hydrographic surveys in a wide range of environmental conditions. Coast. Eng.
**2018**, 136, 147–160. [Google Scholar] [CrossRef] [Green Version] - Merrifield, M.; Guza, T. Detecting Propagating Signals with Complex Empirical Orthogonal Functions: A Cautionary Note. J. Phys. Oceanogr.
**1990**, 20, 1628–1633. [Google Scholar] [CrossRef] - Simarro, G.; Ribas, F.; Álvarez, A.; Guillén, J.; Chic, O.; Orfila, A. ULISES: An open source code for extrinsic calibrations and planview generations in coastal video monitoring systems. J. Coast. Res.
**2017**, 33, 1217–1227. [Google Scholar] [CrossRef] - Svendsen, I.A. Introduction to Nearshore Hydrodynamics; World Scientific: Singapore, 2017. [Google Scholar] [CrossRef]
- Shi, F.; Kirby, J.; Harris, J.; Geiman, J.; Grilli, S. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model.
**2012**, 43–44, 36–51. [Google Scholar] [CrossRef] - Coastal-Imaging-Research-Network/cBathy-Toolbox. Available online: https://github.com/Coastal-Imaging-Research-Network/cBathy-Toolbox (accessed on 25 July 2018).

**Figure 1.**Angle of the Pricipal Component (PC) (

**A**–

**C**) and frequency (

**D**–

**F**) for the monochromatic (

**A**,

**D**), bichromatic (

**B**,

**E**), and reflective (

**C**,

**F**) 1D cases versus time: First (second) mode is in solid (dashed) lines. Red lines are for the mean angular frequencies.

**Figure 2.**Angle of the Empirical Orthogonal Function ((

**A**–

**C**), wavenumber from phase fitting

**D**–

**F**), depth from phase fitting (

**G**–

**I**), function fitting (

**J**–

**L**), and windowing (

**M**–

**O**, with ${w}_{t}=40\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$) for each of the monochromatic, bichromatic, and reflective 1D cases: First (second) mode is in solid (dashed) lines. Blue lines are for the exact depth.

**Figure 3.**Angle of the PC before centering (circles) and after centering around $t={t}_{0}=10\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$ (triangles) for $\Delta t=1\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$ and ${R}_{t}=3\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$: Red denotes the point of interest, and blue indicates the neighbour points used.

**Figure 4.**Evolution of the Root Mean Square (RMS) error in h, ${\mathrm{E}}_{h}^{\mathrm{RMS}}$, as a function of ${t}_{\mathrm{max}}$ for the monochromatic case using phase fitting (without windowing).

**Figure 5.**Bathymetries (in meters) for the analysis of linear waves (

**A**) and nonlinear waves (

**B**): The white strip next to the shore highlights $h=0.75\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$.

**Figure 6.**Initial snapshots for linear synthetic wave trains W1 (

**A**), W2 (

**B**), and W3 (

**C**) and their superposition WS (

**D**): Spatial domain is $200\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}\times 300\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ (in the alongshore and cross-shore directions), and pixel intensity is a linear function of the modelled free surface elevation.

**Figure 7.**Angles ${\alpha}_{t}$ (

**A**) and ${\alpha}_{x}$ (

**B**) of the first PC and EOF corresponding to linear propagation of W1 for $\Delta t=0.5\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$ and $\Delta x=4\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$: The explained variance is above $99\%$.

**Figure 8.**Recovered k (

**A**) and h (

**C**) and the corresponding local relative errors, ${\u03f5}_{k}$ and ${\u03f5}_{h}$ (

**B**,

**D**, in %), obtained using the phase fitting method for the first EOF corresponding to linear propagation of W1 and for $\Delta t=0.5\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, $\Delta x=2\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$, ${R}_{t}=1\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, and ${R}_{x}=8\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$.

**Figure 9.**Phase fitting without windowing of the three modes of the linear polychromatic wave field WS for $\Delta t=0.5\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, $\Delta x=2\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$, ${R}_{t}=1\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, and ${R}_{x}=8\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$: ${\alpha}_{x}$ (

**A**–

**C**) and ${\u03f5}_{h}$ (

**D**–

**F**).

**Figure 10.**Initial snapshots for synthetic nonlinear wave trains W1 (

**A**) and WS (

**B**) for $\mathrm{F}=2.5$: Spatial domain is $200\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}\times 300\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ (in the alongshore and cross-shore directions), and pixel intensity is a linear function of the modelled free surface elevation.

**Figure 11.**Results for ${\alpha}_{x}$ (

**A**–

**C**) and ${\u03f5}_{h}$ (

**D**–

**F**) obtained with the phase fitting method without windowing from the nonlinear polychromatic wave field WS with $\mathrm{F}=1.0$ for $\Delta t=0.532\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, $\Delta x=2\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$, ${R}_{t}=1.1\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, ${R}_{x}=8\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$, and ${t}_{\mathrm{max}}=90\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$.

**Figure 12.**Results for ${\u03f5}_{h}$ obtained with phase fitting (

**A**), function fitting (

**B**), and windowing (

**C**, with ${w}_{t}=60\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$) from the first mode for the nonlinear polychromatic wave field WS with $\mathrm{F}=1.0$, $\Delta t=0.532\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, $\Delta x=2\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$, ${R}_{t}=1.1\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, ${R}_{x}=8\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$, and ${t}_{\mathrm{max}}=150\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$.

**Figure 13.**Propagation of the errors in k and $\omega $ to water depth h when using the dispersion relation.

**Figure 14.**Propagation of the errors ${\u03f5}_{h}$ in the bathymetry inversion for three time windows.

**Figure 15.**On top (bottom) are results from cBathy (uBathy). From left to right: measured bathymetry with the CRAB (

**A**,

**E**, in m), inferred bathymetry (

**B**,

**F**, in m), error of the inferred bathymetry (

**C**,

**G**, in m), and histogram of the errors for the pixels (

**D**,

**H**).

**Table 1.**Wave conditions in the seaward boundary for the 1D examples: For each wave train (two at most), ${\mathrm{T}}_{j}$ is the period, ${a}_{j}^{0}$ is the wave amplitude at $x=0$, and ${\mathrm{dir}}_{j}$ is the direction of wave propagation (+, rightwards).

Cases | ${\mathbf{T}}_{1}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ | ${\mathit{a}}_{1}^{0}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{cm}\right]\phantom{\rule{0.166667em}{0ex}}$ | ${\mathbf{dir}}_{1}$ | ${\mathbf{T}}_{2}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ | ${\mathit{a}}_{2}^{0}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{cm}\right]\phantom{\rule{0.166667em}{0ex}}$ | ${\mathbf{dir}}_{2}$ |
---|---|---|---|---|---|---|

monochromatic | $5.1$ | $3.0$ | + | − | − | − |

bichromatic | $5.1$ | $3.0$ | + | $8.3$ | $1.0$ | + |

reflective | $5.1$ | $3.0$ | + | $5.1$ | $1.0$ | − |

**Table 2.**Summary of the results of the Principal Component Analysis (PCA) obtained for the 1D examples.

Mode | ${\mathit{\sigma}}^{2}\phantom{\rule{0.166667em}{0ex}}[\%]\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{T}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ | |
---|---|---|---|

monochromatic | 1 | $99.5$ | $5.1$ |

bichromatic | 1 | $87.6$ | $5.1$ |

2 | $12.1$ | $8.3$ | |

reflective | 1 | $99.7$ | $5.1$ |

**Table 3.**Wave conditions in the seaward boundary for the analysis of synthetic 2D cases: For each wave train, $\mathrm{T}$ is the period, $\mathrm{A}$ is the wave amplitude in deep waters, $\theta $ is the angle with respect to the shore normal in deep waters, and $\phi $ is a phase lag.

Wave Train | $\mathbf{T}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{A}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{cm}\right]\phantom{\rule{0.166667em}{0ex}}$ | $\mathit{\theta}\phantom{\rule{0.166667em}{0ex}}\left[{}^{\xb0}\right]\phantom{\rule{0.166667em}{0ex}}$ | $\mathit{\phi}\phantom{\rule{0.166667em}{0ex}}\left[{}^{\xb0}\right]\phantom{\rule{0.166667em}{0ex}}$ |
---|---|---|---|---|

W1 | $7.945$ | $10.0$ | $-16.588$ | $39.0$ |

W2 | $12.00$ | $6.0$ | $+0.0$ | $0.0$ |

W3 | $5.022$ | $2.0$ | $+26.079$ | $108.7$ |

**Table 4.**Relative errors for $\omega $, ${\u03f5}_{\omega}$ (in %), as a function of $\Delta t$ and ${R}_{t}$ for $\Delta x=2\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$, corresponding to linear propagation of W1.

${\mathit{R}}_{\mathit{t}}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{\Delta}\mathit{t}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ | |||
---|---|---|---|---|

$\mathbf{0.25}$ | $\mathbf{0.50}$ | $\mathbf{1.0}$ | $\mathbf{2.0}$ | |

$0.5$ | $-0.066$ | $-0.049$ | — | — |

$1.0$ | $-0.101$ | $-0.092$ | $-0.051$ | — |

$2.0$ | $-0.105$ | $-0.105$ | $-0.095$ | $0.024$ |

$4.0$ | $-24.7$ | $-48.4$ | $-72.7$ | $-55.4$ |

**Table 5.**Relative RMSE for k, ${\u03f5}_{k}^{\mathrm{RMS}}$ (in %) for $h\u2a7e0.75\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$, as a function of $\Delta x$ and ${R}_{x}$ for $\Delta t=0.5\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$ and ${R}_{t}=1.0\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$ corresponding to linear propagation of W1.

${\mathit{R}}_{\mathit{x}}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{m}\right]\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{\Delta}\mathit{x}\left[\mathbf{m}\right]$ | |||
---|---|---|---|---|

1 | 2 | 4 | 10 | |

2 | $0.583$ | $0.578$ | — | — |

4 | $0.542$ | $0.530$ | $0.508$ | — |

8 | $0.466$ | $0.468$ | $0.487$ | — |

12 | $1.279$ | $1.002$ | $4.579$ | $0.741$ |

16 | $5.534$ | $5.453$ | $6.091$ | $0.732$ |

**Table 6.**Summary of the results of the PCA obtained using phase fitting (without windowing) for linear wave propagation and $\Delta t=0.5\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, $\Delta x=2.0\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$, ${R}_{t}=1.0\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{s}$, and ${R}_{x}=8\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$: Relative RMS errors ${\u03f5}_{k}^{\mathrm{RMS}}$ and ${\u03f5}_{h}^{\mathrm{RMS}}$ are given for $h\u2a7e0.75\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$. Next to the retrieved period, the corresponding wave field is indicated.

Mode | ${\mathit{\sigma}}^{2}\phantom{\rule{0.166667em}{0ex}}[\%]\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{T}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ | ${\mathit{\u03f5}}_{\mathit{\omega}}\phantom{\rule{0.166667em}{0ex}}[\%]\phantom{\rule{0.166667em}{0ex}}$ | ${\mathit{\u03f5}}_{\mathit{k}}^{\mathbf{RMS}}\phantom{\rule{0.166667em}{0ex}}[\%]\phantom{\rule{0.166667em}{0ex}}$ | ${\mathit{\u03f5}}_{\mathit{h}}^{\mathbf{RMS}}\phantom{\rule{0.166667em}{0ex}}[\%]\phantom{\rule{0.166667em}{0ex}}$ | |
---|---|---|---|---|---|---|

1 | $99.2$ | $7.952$ (W1) | $-0.092$ | $0.468$ | $1.083$ | |

monochromatic | 1 | $98.7$ | $11.993$ (W2) | $0.062$ | $0.526$ | $1.085$ |

1 | $99.9$ | $5.022$ (W3) | $-0.003$ | $4.232$ | $18.572$ | |

1 | $71.0$ | $7.955$ (W1) | $-0.122$ | $1.432$ | $3.182$ | |

polychromatic | 2 | $25.3$ | $11.949$ (W2) | $0.423$ | $2.703$ | $5.826$ |

3 | $2.9$ | $5.028$ (W3) | $-0.124$ | $6.665$ | $27.554$ |

**Table 7.**Results of the PCA obtained for nonlinear wave propagation of the monochromatic W1 case with different $\mathrm{F}$ factors: Next to the retrieved period, the corresponding wave field is indicated (when applicable).

Factor $\mathbf{F}$ | Mode | ${\mathit{\sigma}}^{2}\phantom{\rule{0.166667em}{0ex}}[\%]\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{T}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ |
---|---|---|---|

$0.25$ | 1 | $98.7$ | $7.953$ (W1) |

$1.0$ | 1 | $94.6$ | $7.948$ (W1) |

2 | $3.9$ | $3.961$ ( — ) | |

$2.5$ | 1 | $87.6$ | $7.955$ (W1) |

2 | $8.4$ | $3.958$ ( — ) | |

3 | $2.0$ | $2.637$ ( — ) |

**Table 8.**Summary of the results for nonlinear wave propagation of the polychromatic WS case with different $\mathrm{F}$ factors: Relative RMSE, ${\u03f5}_{h}^{\mathrm{RMS}}$, are given for $h\u2a7e0.75\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$. Here, “p” and “f” stand for phase and function fitting of the wavenumber. Next to the retrieved period, the corresponding wave field is indicated (when applicable).

Factor $\mathbf{F}$ | Mode | ${\mathit{\sigma}}^{2}\phantom{\rule{0.166667em}{0ex}}[\%]\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{T}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ | ${\mathit{\u03f5}}_{\mathit{h}}^{\mathbf{RMS}}\phantom{\rule{0.166667em}{0ex}}[\%]\phantom{\rule{0.166667em}{0ex}}$ | |
---|---|---|---|---|---|

$\mathbf{p}$ | $\mathbf{f}$ | ||||

1 | $58.6$ | $7.954$ (W1) | $19.0$ | $10.1$ | |

$0.25$ | 2 | $36.2$ | $11.882$ (W2) | $54.5$ | $23.4$ |

3 | $3.1$ | $5.023$ (W3) | $24.8$ | $10.7$ | |

1 | $52.5$ | $7.951$ (W1) | $13.5$ | $11.7$ | |

$1.0$ | 2 | $34.2$ | $11.870$ (W2) | $37.1$ | $25.2$ |

3 | $4.2$ | $4.779$ ( — ) | — | — | |

1 | $45.4$ | $7.964$ (W1) | $30.3$ | $31.7$ | |

$2.5$ | 2 | $31.6$ | $11.849$ (W2) | $36.4$ | $39.0$ |

3 | $6.9$ | $4.788$ ( — ) | — | — |

**Table 9.**Results for the first mode for nonlinear wave propagation of the polychromatic WS case with different $\mathrm{F}$ factors, total video length ${t}_{\mathrm{max}}$, and window width ${w}_{t}$: Relative RMSE, ${\u03f5}_{h}^{\mathrm{RMS}}$, is given for $h\u2a7e0.75\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$. Here, “p” and “f” stand for results using phase and function fitting for ${t}_{\mathrm{max}}$, respectively. The number of sub-videos are included in parentheses.

${\mathit{t}}_{\mathbf{max}}$ | $\mathbf{F}$ | ${\mathit{\u03f5}}_{\mathit{h}}^{\mathbf{RMS}}\phantom{\rule{0.166667em}{0ex}}[\%]\phantom{\rule{0.166667em}{0ex}}$ | ||||||
---|---|---|---|---|---|---|---|---|

p | f | Windowing, ${\mathit{w}}_{\mathit{t}}\phantom{\rule{0.166667em}{0ex}}\left[\mathbf{s}\right]\phantom{\rule{0.166667em}{0ex}}$ | ||||||

$\mathbf{30}\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{40}\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{60}\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{80}\phantom{\rule{0.166667em}{0ex}}$ | $\mathbf{90}\phantom{\rule{0.166667em}{0ex}}$ | ||||

(112) | (94) | (56) | (18) | (1) | ||||

$0.25$ | $19.0$ | $10.1$ | $28.0$ | $13.1$ | $13.6$ | $16.2$ | $19.0$ | |

$90$ s | $1.00$ | $13.5$ | $11.7$ | $28.1$ | $10.3$ | $10.8$ | $14.1$ | $13.5$ |

$2.50$ | $30.3$ | $31.7$ | $86.1$ | $91.0$ | $83.8$ | $30.8$ | $30.3$ | |

(225) | (207) | (169) | (131) | (113) | ||||

$0.25$ | $18.4$ | $8.2$ | $24.8$ | $11.6$ | $12.0$ | $11.9$ | $11.0$ | |

$150$ s | $1.00$ | $13.0$ | $10.1$ | $24.2$ | $8.2$ | $8.8$ | $8.6$ | $7.0$ |

$2.50$ | $27.5$ | $26.5$ | $99.1$ | $52.5$ | $43.2$ | $30.9$ | $15.1$ |

cBathy | uBathy | |
---|---|---|

percentage of points | $60\%$ | $84\%$ |

average error (bias) | $-0.50\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ | $-0.27\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

RMS error | $1.38\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ | $1.29\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{3.33333pt}{0ex}}\mathrm{m}$ |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Simarro, G.; Calvete, D.; Luque, P.; Orfila, A.; Ribas, F.
UBathy: A New Approach for Bathymetric Inversion from Video Imagery. *Remote Sens.* **2019**, *11*, 2722.
https://doi.org/10.3390/rs11232722

**AMA Style**

Simarro G, Calvete D, Luque P, Orfila A, Ribas F.
UBathy: A New Approach for Bathymetric Inversion from Video Imagery. *Remote Sensing*. 2019; 11(23):2722.
https://doi.org/10.3390/rs11232722

**Chicago/Turabian Style**

Simarro, Gonzalo, Daniel Calvete, Pau Luque, Alejandro Orfila, and Francesca Ribas.
2019. "UBathy: A New Approach for Bathymetric Inversion from Video Imagery" *Remote Sensing* 11, no. 23: 2722.
https://doi.org/10.3390/rs11232722