Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery
Abstract
1. Introduction
2. Case Study Area and Data
2.1. Case Study Area
2.2. Data Collections
2.2.1. Nighttime Satellite Imagery
2.2.2. Population, Settlement, and Agricultural Data
3. Methods
3.1. Data Pre-Processing
3.2. Model and Simulation of GDP
4. Results and Discussion
4.1. Results
4.2. Data Comparisons
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
District | Region | Rural GDP (Million US $) | Urban GDP (Million US $) | GDP Per Capita (US $) |
---|---|---|---|---|
Abim | Karamoja | 5.83 | 1.78 | 128 |
Adjumani | West Nile | 61.24 | 7.04 | 150 |
Agago | Northern | 24.93 | 5.87 | 86 |
Alebtong | Northern | 16.76 | 0.57 | 68 |
Amolatar | Northern | 18.28 | 0.00 | 127 |
Amudat | Karamoja | 12.15 | 0.39 | 90 |
Amuria | Eastern | 26.96 | 0.58 | 52 |
Amuru | Northern | 77.63 | 1.50 | 317 |
Apac | Northern | 91.21 | 6.85 | 247 |
Arua | West Nile | 101.15 | 75.17 | 202 |
Budaka | Eastern | 11.40 | 11.75 | 117 |
Bududa | Eastern | 40.40 | 5.43 | 244 |
Bugiri | Eastern | 34.84 | 29.08 | 122 |
Buhweju | South West | 32.30 | 1.03 | 275 |
Buikwe | Central | 19.06 | 354.35 | 769 |
Bukedea | Eastern | 29.75 | 4.59 | 160 |
Bukomansimbi | Central | 39.04 | 7.72 | 288 |
Bukwo | Eastern | 20.21 | 0.61 | 416 |
Bulambuli | Eastern | 18.62 | 10.10 | 177 |
Buliisa | Western | 12.96 | 0.00 | 145 |
Bundibugyo | Western | 27.62 | 11.14 | 126 |
Bushenyi | South West | 51.28 | 65.01 | 415 |
Busia | Eastern | 27.17 | 47.48 | 225 |
Butaleja | Eastern | 30.36 | 11.30 | 166 |
Butambala | Central | 15.55 | 22.58 | 297 |
Buvuma | Central | 5.24 | 0.00 | 84 |
Buyende | Eastern | 45.07 | 1.45 | 150 |
Dokolo | Northern | 29.06 | 2.88 | 153 |
Gomba | Central | 26.40 | 7.01 | 196 |
Gulu | Northern | 50.39 | 88.84 | 492 |
Hoima | Western | 58.47 | 77.40 | 209 |
Ibanda | South West | 82.68 | 29.75 | 408 |
Iganga | Eastern | 152.67 | 91.35 | 434 |
Isingiro | South West | 265.41 | 26.58 | 611 |
Jinja | Eastern | 35.28 | 625.23 | 1199 |
Kaabong | Karamoja | 29.53 | 0.00 | 59 |
Kabale | South West | 49.07 | 83.17 | 405 |
Kabarole | Western | 158.02 | 64.35 | 505 |
Kaberamaido | Eastern | 21.33 | 0.58 | 95 |
Kagadi | Western | 19.35 | 12.24 | 69 |
Kakumiro | Western | 20.64 | 5.78 | 120 |
Kalangala | Central | 3.71 | 5.48 | 112 |
Kaliro | Eastern | 27.21 | 52.22 | 338 |
Kalungu | Central | 38.59 | 36.48 | 401 |
Kampala | Kampala | 3.49 | 6269.64 | 3368 |
Kamuli | Eastern | 72.44 | 41.54 | 202 |
Kamwenge | Western | 79.47 | 7.38 | 233 |
Kanungu | South West | 65.78 | 12.77 | 304 |
Kapchorwa | Eastern | 19.82 | 10.31 | 226 |
Kasese | Western | 81.75 | 154.39 | 292 |
Katakwi | Eastern | 17.96 | 1.00 | 94 |
Kayunga | Central | 36.35 | 42.59 | 200 |
Kibaale | Western | 60.40 | 3.64 | 453 |
Kiboga | Central | 23.66 | 24.64 | 222 |
Kibuku | Eastern | 22.23 | 7.56 | 144 |
Kiruhura | South West | 97.11 | 18.07 | 336 |
Kiryandongo | Western | 34.40 | 46.36 | 223 |
Kisoro | South West | 36.26 | 20.47 | 230 |
Kitgum | Northern | 16.08 | 19.67 | 125 |
Koboko | West Nile | 12.62 | 0.00 | 44 |
Kole | Northern | 61.37 | 0.60 | 229 |
Kotido | Karamoja | 47.60 | 0.36 | 166 |
Kumi | Eastern | 23.84 | 7.97 | 110 |
Kween | Eastern | 15.53 | 0.00 | 136 |
Kyankwanzi | Central | 38.79 | 4.18 | 223 |
Kyegegwa | Western | 40.67 | 6.26 | 256 |
Kyenjojo | Western | 58.57 | 12.08 | 161 |
Lamwo | Northern | 14.09 | 0.00 | 71 |
Lira | Northern | 23.67 | 122.63 | 341 |
Luuka | Eastern | 89.09 | 10.04 | 351 |
Luwero | Central | 48.74 | 148.98 | 412 |
Lwengo | Central | 56.57 | 60.72 | 416 |
Lyantonde | Central | 25.06 | 21.85 | 424 |
Manafwa | Eastern | 44.38 | 21.34 | 154 |
Maracha | West Nile | 35.95 | 8.39 | 203 |
Masaka | Central | 47.82 | 230.47 | 1051 |
Masindi | Western | 32.44 | 49.78 | 187 |
Mayuge | Central | 37.38 | 89.07 | 232 |
Mbale | Eastern | 88.91 | 269.65 | 715 |
Mbarara | South West | 221.84 | 394.65 | 1311 |
Mitooma | South West | 48.82 | 4.98 | 262 |
Mityana | Central | 32.78 | 83.85 | 350 |
Moroto | Karamoja | 7.87 | 16.04 | 147 |
Moyo | West Nile | 16.49 | 3.63 | 34 |
Mpigi | Central | 35.96 | 298.05 | 1624 |
Mubende | Central | 215.47 | 125.19 | 489 |
Mukono | Central | 34.22 | 958.08 | 1654 |
Nakapiripirit | Karamoja | 20.27 | 0.00 | 102 |
Nakaseke | Central | 25.44 | 25.76 | 234 |
Nakasongola | Central | 69.35 | 12.77 | 481 |
Namayingo | Eastern | 20.75 | 0.00 | 80 |
Namutumba | Eastern | 48.36 | 4.40 | 217 |
Napak | Karamoja | 12.25 | 0.00 | 51 |
Nebbi | West Nile | 45.68 | 12.33 | 151 |
Ngora | Eastern | 13.91 | 6.47 | 105 |
Ntoroko | Western | 6.09 | 3.83 | 92 |
Ntungamo | South West | 240.62 | 50.98 | 552 |
Nwoya | Northern | 49.38 | 1.19 | 802 |
Omoro | Northern | 27.45 | 0.19 | 183 |
Otuke | Northern | 7.59 | 0.00 | 78 |
Oyam | Northern | 96.58 | 18.18 | 251 |
Pader | Northern | 21.25 | 4.12 | 92 |
Pallisa | Eastern | 41.43 | 10.14 | 124 |
Rakai | Central | 94.92 | 42.93 | 275 |
Rubanda | South West | 17.26 | 0.35 | 85 |
Rubirizi | South West | 30.73 | 4.69 | 257 |
Rukungiri | South West | 76.06 | 22.50 | 278 |
Serere | Eastern | 108.12 | 1.41 | 312 |
Sheema | South West | 44.65 | 20.44 | 256 |
Sironko | Eastern | 24.83 | 21.47 | 174 |
Soroti | Eastern | 98.46 | 72.86 | 444 |
Ssembabule | Central | 69.02 | 12.11 | 341 |
Tororo | Eastern | 136.89 | 119.59 | 466 |
Wakiso | Central | 32.00 | 4262.30 | 2496 |
Yumbe | West Nile | 63.40 | 0.00 | 91 |
Zombo | West Nile | 28.55 | 7.90 | 148 |
References
- Deb, S. Gap between GDP and HDI: Are the Rich Country Experiences Different from the Poor? In Proceedings of the IARIW-OECD Special Conference, Paris, France, 16–17 August 2015. [Google Scholar]
- World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP/248; United Nations, Department of Economic and Social Affairs, Population Division: Rome, Italy, 2017.
- Clark, J.I.; Rhind, D.W. Population data and global environmental change; International Social Science Council and UNESCO: Paris, France, 1992. [Google Scholar]
- Rose, A.N.; Bright, E.A. The LandScan Global Population Distribution Project: Current State of the Art and Prospective Innovation; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2014.
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring Economic Growth from Outer Space. Am. Econ. Rev. Nashv. 2012, 102, 994–1028. [Google Scholar] [CrossRef]
- Welch, R. Monitoring urban population and energy utilization patterns from satellite Data. Remote Sens. Environ. 1980, 9, 1–9. [Google Scholar] [CrossRef]
- Welch, R.; Zupko, S. Urbanized area energy-utilization patterns from DMSP data. Photogramm. Eng. Remote Sens. 1980, 46, 201–207. [Google Scholar]
- Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. Asia Pac. Adv. Netw. 2010, 30, 114–130. [Google Scholar] [CrossRef]
- Hillger, D.; Kopp, T.; Lee, T.; Lindsey, D.; Seaman, C.; Miller, S.; Solbrig, J.; Kidder, S.; Bachmeier, S.; Jasmin, T. First-light imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 94, 1019–1029. [Google Scholar] [CrossRef]
- Agriculture in Sub-Saharan Africa: Prospects and challenges for the next decade. In OECD-FAO Agricultural Outlook 2016–2025; OECD: Paris, France, 2016; pp. 59–95. ISBN 978-92-64-25322-3.
- Bundervoet, T.; Maiyo, L.; Sanghi, A. Bright Lights, Big Cities: Measuring National and Subnational Economic Growth in Africa from Outer Space, with an Application to Kenya and Rwanda; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Uganda Bureau of Statistics. Uganda Census of Agriculture 2008/2009, Volume IV: Crop Area and Production Report. Uganda Bureau of Statistics 2010; Uganda Bureau of Statistics: Kampala, Uganda, 2010. [Google Scholar]
- Uganda Bureau of Statistics. Uganda Demographic and Health Survey 2016/17; Uganda Bureau of Statistics: Kampala, Uganda, 2016. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Pesaresi, M.; Syrris, V.; Julea, A. A new method for earth observation data analytics based on symbolic machine learning. Remote Sens. 2016, 8, 399. [Google Scholar] [CrossRef]
- Uganda Bureau of Statistics. A Summary Report of the National Livestock Census, 2008; Uganda Bureau of Statistics: Kampala, Uganda, 2009. [Google Scholar]
- Food and Agriculture Organization Statistical Databases; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012.
- Cotton Development Organisation. Cotton Development Organisation Annual Report 2009–2010; Cotton Development Organisation: Kampala, Uganda, 2010. [Google Scholar]
- Uganda Bureau of Statistics. National Population and Housing Census 2014, Subcounty Report—Northern Region; Uganda Bureau of Statistics: Kampala, Uganda, 2014. [Google Scholar]
- Uganda Bureau of Statistics. National Population and Housing Census 2014, Main Report; Uganda Bureau of Statistics: Kampala, Uganda, 2014. [Google Scholar]
- Coffee Producing Areas of Uganda. Available online: https://www.geogecko.com/blog/ugandacoffeemap/ (accessed on 27 August 2018).
- FIT Insights Group Limited. Available online: https://fitinsightsgroup.com/uganda-2/ (accessed on 27 August 2018).
- Uganda Coffee Development Authority. Coffee Price Trend 1992–2015; Uganda Coffee Development Authority: Kampala, Uganda, 2015.
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Ghosh, T.L.; Powell, R.D.; Elvidge, C.E.; Baugh, K.C.; Sutton, P.; Anderson, S. Shedding Light on the Global Distribution of Economic Activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar]
- Letu, H.; Hara, M.; Yagi, H.; Naoki, K.; Tana, G.; Nishio, F.; Shuhei, O. Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects. Int. J. Remote Sens. 2010, 31, 4443–4458. [Google Scholar] [CrossRef]
- Aldhous, P. China’s burning ambition. Nature 2005, 435, 1152–1154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Lo, C.P. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Townsend, A.; Bruce, D. The Use of Night-time Lights Satellite Imagery as a Measure of Australia’s Regional Electricity Consumption and Population Distribution. Int. J. Remote Sens. 2010, 31, 4459–4480. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Geography and macroeconomics: New data and new findings. Proc. Natl. Acad. Sci. USA 2006, 103, 3510–3517. [Google Scholar] [CrossRef] [PubMed]
- Kummu, M.; Taka, M.; Guillaume, J.H. Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Sci. Data 2018, 5, 180004. [Google Scholar] [CrossRef] [PubMed]
- Nordhaus, W.; Azam, Q.; Corderi, D.; Hood, K.; Makarova, N.; Mukhtar, A.; Miltner, A.; Weiss, J. The G-Econ Database on Gridded Output: Methods and Data; Yale University, 2006; Available online: http://gecon.yale.edu/ (accessed on 29 August 2018).
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of gross domestic product at sub-national scales using nighttime satellite imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Rafa, M.; Moyer, J.D.; Li, J.; Scheer, J.; Sutton, P. Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery. Remote Sens. 2019, 11, 163. https://doi.org/10.3390/rs11020163
Wang X, Rafa M, Moyer JD, Li J, Scheer J, Sutton P. Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery. Remote Sensing. 2019; 11(2):163. https://doi.org/10.3390/rs11020163
Chicago/Turabian StyleWang, Xuantong, Mickey Rafa, Jonathan D. Moyer, Jing Li, Jennifer Scheer, and Paul Sutton. 2019. "Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery" Remote Sensing 11, no. 2: 163. https://doi.org/10.3390/rs11020163
APA StyleWang, X., Rafa, M., Moyer, J. D., Li, J., Scheer, J., & Sutton, P. (2019). Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery. Remote Sensing, 11(2), 163. https://doi.org/10.3390/rs11020163