Next Article in Journal
Studying the Construction of Floor Mosaics in the Roman Villa of Pisões (Portugal) Using Noninvasive Methods: High-Resolution 3D GPR and Photogrammetry
Previous Article in Journal
Multi-Source Data Integration to Investigate a Deep-Seated Landslide Affecting a Bridge
Open AccessArticle

Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection

Department of Archaeological Science and Conservation, Moesgaard Museum, Moesgård Allé 20, 8270 Højbjerg, Denmark
Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark
Center for Urban Network Evolutions (UrbNet), Aarhus University, Moesgård Allé 20, 8270 Højbjerg, Denmark
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(16), 1881;
Received: 19 June 2019 / Revised: 19 July 2019 / Accepted: 25 July 2019 / Published: 12 August 2019
PDF [8775 KB, uploaded 12 August 2019]


Across the world, cultural heritage is eradicated at an unprecedented rate by development, agriculture, and natural erosion. Remote sensing using airborne and satellite sensors is an essential tool for rapidly investigating human traces over large surfaces of our planet, but even large monumental structures may be visible as only faint indications on the surface. In this paper, we demonstrate the utility of a machine learning approach using airborne laser scanning data to address a “needle-in-a-haystack” problem, which involves the search for remnants of Viking ring fortresses throughout Denmark. First ring detection was applied using the Hough circle transformations and template matching, which detected 202,048 circular features in Denmark. This was reduced to 199 candidate sites by using their geometric properties and the application of machine learning techniques to classify the cultural and topographic context of the features. Two of these near perfectly circular features are convincing candidates for Viking Age fortresses, and two are candidates for either glacial landscape features or simple meteor craters. Ground-truthing revealed the latter sites as ice age features, while the cultural heritage sites Borgø and Trælbanke urge renewed archaeological investigation in the light of our findings. The fact that machine learning identifies compelling new candidate sites for ring fortresses demonstrates the power of the approach. Our automatic approach is applicable worldwide where digital terrain models are available to search for cultural heritage sites, geomorphological features, and meteor impact craters. View Full-Text
Keywords: airborne laser scanning (ALS); lidar; archaeology; machine learning; feature detection airborne laser scanning (ALS); lidar; archaeology; machine learning; feature detection

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Stott, D.; Kristiansen, S.M.; Sindbæk, S.M. Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection. Remote Sens. 2019, 11, 1881.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top