Hyperspectral Imaging Retrieval Using MODIS Satellite Sensors Applied to Volcanic Ash Clouds Monitoring
Abstract
:1. Introduction
2. Background
2.1. Remote Sensing with MODIS
2.2. Spectral Retrieval
3. Methodology
Relative Ash Concentration
4. Results and Discussion
4.1. Computational Results for Ash Reflectance Retrieval
4.2. Volcanic Ash Detection Validation Using a Synthetic Image
- A data cube of dimension () pixels was composed by data from MODIS Channels 8, 9, 10, 11, 31, and 32, using pixels from different targets (ash clouds at different concentrations, ocean, land, and water clouds, as depicted in Figure 6a).
- High-resolution spectra were estimated with the model Equation (5), for each pixel, using the response of MODIS Channels 8, 9, 10, and 11. In Figure 6b is shown the recovered spectra from the different targets. Note the accuracy in the retrieval procedure (compared with the training spectra in Figure 2b) when ash pixels were used with the model, in comparison with the noisy spectra recovered using response channels from other targets.
- GFC was calculated at each pixel, between the estimated high-resolution spectra and the whole spectra contained in the training spectra L. Then, the best GFC was saved. If GFC surpassed a threshold of 0.940, then the pixel was considered as an ash target. Otherwise, the pixel contained information from another target. In parallel, the temperature difference method was computed using MODIS Channels 31 and 32. If temperature differences , then the pixel would be considered as ash [3].
- A simple binary classification was computed over the entire synthetic image using both the proposed and temperature difference methods. In Table 2 are presented the results (in percentage %).
4.3. Volcanic Ash Monitoring Using MODIS Satellite Images
4.4. Analysis and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People Vulnerability and Disasters, 1st ed.; Routledge: London, UK, 1994; pp. 3–11. [Google Scholar]
- Prata, A.J. Satellite detection of hazardous volcanic clouds and the risk to global air traffic. Nat. Hazards 2009, 51, 303–324. [Google Scholar] [CrossRef]
- Pergola, N.; Tramutoli, V.; Marchese, F.; Scaffidi, I.; Lacava, T. Improving volcanic ash cloud detection by a robust satellite technique. Remote Sens. Environ. 2004, 90, 1–22. [Google Scholar] [CrossRef]
- Longo, B.M.; Rossignol, A.; Green, J.B. Cardiorespiratory health effects associated with sulphurous volcanic air pollution. Public Health 2008, 122, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Tomašek, I.; Horwell, C.J.; Bisig, C.; Damby, D.E.; Comte, P.; Czerwinski, J.; Petri-Fink, A.; Clift, M.J.; Drasler, B.; Rothen-Rutishauser, B. Respiratory hazard assessment of combined exposure to completegasoline exhaust and respirable volcanic ash in a multicellular humanlung model at the air-liquid interface. Environ. Pollut. 2018, 238, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Durant, A.J.; Bonadonna, C.; Horwell, C.J. Atmospheric and Environmental Impacts of Volcanic Particulates. Elements 2010, 6, 235. [Google Scholar] [CrossRef]
- Wilson, G.; Wilson, T.M.; Deligne, N.I.; Cole, J.W. Volcanic hazard impact to critical infrastructure: A review. J. Volcanol. Geotherm. Res. 2014, 286, 148–182. [Google Scholar] [CrossRef]
- Sparks, R.S.J.; Biggs, J.; Neuberg, J.W. Monitoring Volcanoes. Science 2012, 335, 1310–1311. [Google Scholar] [CrossRef] [PubMed]
- Lavallée, Y.; Meredith, P.; Dingwell, D.; Hess, K.U.; Wassermann, J.; Cordonnier, B.; Gerik, A.; Kruhl, J. Seismogenic lavas and explosive eruption forecasting. Nature 2008, 453, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Pavez, A.; Remy, D.; Bonvalot, S.; Diament, M.; Gabalda, G.; Froger, J.L.; Julien, P.; Legrand, D.; Moisset, D. Insight into ground deformations at Lascar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: Implications on volcano dynamics and future space monitoring. Remote Sens. Environ. 2006, 100, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Menard, G.; Moune, S.; Vlastélic, I.; Aguilera, F.; Valade, S.; Bontemps, M.; González, R. Gas and aerosol emissions from Lascar volcano (Northern Chile): Insights into the origin of gases and their links with the volcanic activity. J. Volcanol. Geotherm. Res. 2014, 287, 51–67. [Google Scholar] [CrossRef]
- Edmonds, M. New geochemical insights into volcanic degassing. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2008, 366, 4559–4579. [Google Scholar] [CrossRef] [PubMed]
- Aiuppa, A.; Burton, M.; Caltabiano, T.; Giudice, G.; Guerrieri, S.; Liuzzo, M.; Murè, F.; Salerno, G. Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Patrick, M.R.; Orr, T.; Antolik, L.; Lee, L.; Kamibayashi, K. Continuous monitoring of Hawaiian volcanoes with thermal cameras. J. Appl. Volcanol. 2014, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Ofeigsson, B.G.; Hooper, A.; Sigmundsson, F.; Sturkell, E.; Grapenthin, R. Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Johnson, J.B.; Ripepe, M. Volcano infrasound: A review. J. Volcanol. Geotherm. Res. 2011, 206, 61–69. [Google Scholar] [CrossRef]
- Pugnaghi, S.; Guerrieri, L.; Corradini, S.; Merucci, L. Real time retrieval of volcanic cloud particles and SO2 by satellite using an improved simplified approach. Atmos. Meas. Tech. 2016, 9, 3053–3062. [Google Scholar] [CrossRef] [Green Version]
- Francis, P.; Rotheryr, D. Remote sensing of active volcanoes. Annu. Rev. Earth Planet. Sci. 2000, 28, 81–106. [Google Scholar] [CrossRef]
- Oppenheimer, C. Review article: Volcanological applications of meteorological satellites. Int. J. Remote Sens. 1998, 19, 2829–2864. [Google Scholar] [CrossRef]
- Corradini, S.; Montopoli, M.; Guerrieri, L.; Ricci, M.; Scollo, S.; Merucci, L.; Marzano, F.; Pugnaghi, S.; Prestifilippo, M.; Ventress, L.; et al. A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption Characterization: The 23 November 2013 Etna Lava Fountain. Remote Sens. 2016, 8, 58. [Google Scholar] [CrossRef]
- Bignami, C.; Corradini, S.; Merucci, L.; De Michele, M.; Raucoules, D.; De Astis, G.; Stramondo, S.; Piedra, J. Multisensor Satellite Monitoring of the 2011 Puyehue-Cordon Caulle Eruption. IEEE J. Appl. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2786–2796. [Google Scholar] [CrossRef]
- Ellrod, G.P.; Connell, B.H.; Hillger, D.W. Improved detection of airborne volcanic ash using multispectral infrared satellite data. J. Geophys. Res. 2003, 108, 4356. [Google Scholar] [CrossRef]
- Poret, M.; Corradini, S.; Merucci, L.; Costa, A.; Andronico, D.; Montopoli, M.; Vulpiani, G.; Freret-Lorgeril, V. Reconstructing volcanic plume evolution integrating satellite and ground-based data: Application to the 23 November 2013 Etna eruption. Atmos. Chem. Phys. 2018, 18, 4695–4714. [Google Scholar] [CrossRef]
- Delene, D.J.; Rose, W.I.; Grody, N.C. Remote sensing of volcanic ash clouds using special sensor microwave imager data. J. Geophys. Res. Solid Earth 1996, 101, 11579–11588. [Google Scholar] [CrossRef] [Green Version]
- Dubuisson, P.; Herbin, H.; Minvielle, F.; Compiègne, M.; Thieuleux, F.; Parol, F.; Pelon, J. Remote sensing of volcanic ash plumes from thermal infrared: A case study analysis from SEVIRI, MODIS and IASI instruments. Atmos. Meas. Tech. 2014, 7, 359–371. [Google Scholar] [CrossRef]
- Ganci, G.; Bilotta, G.; Cappello, A.; Herault, A.; Del Negro, C. HOTSAT: A Multiplatform system for the thermal monitoring of volcanic activity using satellite data. Geol. Soc. London, Spec. Publ. 2016, 426, 207–221. [Google Scholar] [CrossRef]
- Laiolo, M.; Coppola, D.; Barahona, F.; Benítez, J.; Cigolini, C.; Escobar, D.; Funes, R.; Gutierrez, E.; Henriquez, B.; Hernandez, A.; et al. Evidences of volcanic unrest on high-temperature fumaroles by satellite thermal monitoring: The case of Santa Ana volcano, El Salvador. J. Volcanol. Geotherm. Res. 2017, 340, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Plank, S.; Nolde, M.; Richter, R.; Fischer, C.; Martinis, S.; Riedlinger, T.; Schoepfer, E.; Klein, D. Monitoring of the 2015 Villarrica volcano eruption by means of DLR’s experimental TET-1 satellite. Remote Sens. 2018, 10, 1379. [Google Scholar] [CrossRef]
- Wen, S.; Rose, W.I. Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5. J. Geophys. Res. Atmos. 1994, 99, 5421–5431. [Google Scholar] [CrossRef]
- Ishimoto, H.; Masuda, K.; Fukui, K.; Shimbori, T.; Inazawa, T.; Tuchiyama, H.; Ishii, K.; Sakurai, T. Estimation of the refractive index of volcanic ash from satellite infrared sounder data. Remote Sens. Environ. 2016, 174, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Marchese, F.; Falconieri, A.; Pergola, N.; Tramutoli, V. Monitoring the Agung (Indonesia) Ash Plume of November 2017 by Means of Infrared Himawari 8 Data. Remote Sens. 2018, 10, 919. [Google Scholar] [CrossRef]
- Blackett, M. An Overview of Infrared Remote Sensing of Volcanic Activity. J. Imaging 2017, 3, 13. [Google Scholar] [CrossRef]
- Scheck, L.; Frèrebeau, P.; Buras-Schnell, R.; Mayer, B. A fast radiative transfer method for the simulation of visible satellite imagery. J. Quant. Spectrosc. Radiat. Transf. 2016, 175, 54–67. [Google Scholar] [CrossRef]
- Pyatkin, V.P.; Rublev, A.N.; Rusin, E.V.; Uspenskii, A.B. A fast radiative transfer model for hyperspectral IR satellite sounders. Pattern Recognit. Image Anal. 2015, 25, 514–516. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502. [Google Scholar] [CrossRef] [PubMed]
- Spinetti, C.; Corradini, S.; Buongiorno, M.F. Volcanic ash retrieval at Mt. Etna using AVHRR and MODIS data. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6749, p. 67491M. [Google Scholar]
- Wright, R.; Flynn, L.; Garbeil, H.; Harris, A.; Pilger, E. Automated volcanic eruption detection using MODIS. Remote Sens. Environ. 2002, 82, 135–155. [Google Scholar] [CrossRef] [Green Version]
- Kervyn, M.; Ernst, G.G.J.; Harris, A.J.L.; Belton, F.; Mbede, E.; Jacobs, P. Thermal remote sensing of the low intensity carbonatite volcanism of Oldoinyo Lengai, Tanzania. Int. J. Remote Sens. 2008, 29, 6467–6499. [Google Scholar] [CrossRef]
- Murphy, S.; Wright, R.; Oppenheimer, C.; Filho, C.S. MODIS and ASTER synergy for characterizing thermal volcanic activity. Remote Sens. Environ. 2013, 131, 195–205. [Google Scholar] [CrossRef]
- Yamanouchi, T.; Suzuki, K.; Kawaguchi, S. Detection of clouds in Antarctica from infrared multispectral data of AVHRR. J. Meteorol. Soc. Jpn. Ser. II 1987, 65, 949–962. [Google Scholar] [CrossRef]
- Prata, A. Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int. J. Remote Sens. 1989, 10, 751–761. [Google Scholar] [CrossRef]
- Ederer, G. 2018. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/modis/ (accessed on 15 September 2018).
- Maloney, L.T.; Wandell, B.A. Color constancy: A method for recovering surface spectral reflectance. J. Opt. Soc. Am. 1986, 3, 29–33. [Google Scholar] [CrossRef]
- López-Álvarez, M.A.; Hernández-Andrés, J.; Valero, E.M.; Romero, J. Selecting algorithms, sensors, and linear bases for optimum spectral recovery of skylight. J. Opt. Soc. Am. 2007, 24, 942–956. [Google Scholar] [CrossRef]
- Madhavan, S.; Xiong, X.; Wu, A.; Wenny, B.N.; Chiang, K.; Chen, N.; Wang, Z.; Li, Y. Noise Characterization and Performance of MODIS Thermal Emissive Bands. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3221–3234. [Google Scholar] [CrossRef] [Green Version]
- Toro, C.; Arias, L.; Torres, S.; Sbarbaro, D. Flame spectra-temperature estimation based on a color imaging camera and a spectral reconstruction technique. Appl. Opt. 2014, 53, 6351–6361. [Google Scholar] [CrossRef] [PubMed]
- Garcés, H.O.; Arias, L.E.; Rojas, A.J.; Cuevas, J.; Fuentes, A. Combustion Diagnostics by Calibrated Radiation Sensing and Spectral Estimation. IEEE Sens. J. 2017, 17, 5871–5879. [Google Scholar] [CrossRef]
- López-Álvarez, M.A.; Hernández-Andrés, J.; Romero, J.; Lee, R.L. Designing a practical system for spectral imaging of skylight. Appl. Opt. 2005, 44, 5688–5695. [Google Scholar] [CrossRef] [PubMed]
- Imai, F.H.; Berns, R.S. Spectral estimation using trichromatic digital cameras. Proc. Int. Symp. Multispectral Imag. Color Reprod. Digit. Arch. 1999, 42, 1–8. [Google Scholar]
- Maloney, L.T. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J. Opt. Soc. Am. 1986, 3, 1673–1683. [Google Scholar] [CrossRef]
- López-Álvarez, M.A.; Hernández-Andrés, J.; Romero, J. Developing an optimum computer-designed multispectral system comprising a monochrome CCD camera and a liquid-crystal tunable filter. Appl. Opt. 2008, 47, 4381–4390. [Google Scholar] [Green Version]
- Carvajal, R.C.; Arias, L.E.; Garces, H.O.; Sbarbaro, D.G. Comparative Analysis of a Principal Component Analysis-Based and an Artificial Neural Network-Based Method for Baseline Removal. Appl. Spectrosc. 2016, 70, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Hardeberg, J.Y. Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches; Universal-Publishers: Irvine, CA, USA, 2001; pp. 157–162. [Google Scholar]
- Vernier, J.P.; Fairlie, T.D.; Murray, J.J.; Tupper, A.; Trepte, C.; Winker, D.; Pelon, J.; Garnier, A.; Jumelet, J.; Pavolonis, M.; et al. An Advanced System to Monitor the 3D Structure of Diffuse Volcanic Ash Clouds. Am. Meteorol. Soc. 2013, 52, 2125–2138. [Google Scholar] [CrossRef]
- Pflug, B. Estimation of optical thickness of volcanic ash clouds using satellite data. In Remote Sensing of Clouds and the Atmosphere XIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2009; Volume 7475, p. 747517. [Google Scholar]
- Lee, K.H.; Wong, M.S.; Chung, S.R.; Sohn, E. Improved volcanic ash detection based on a hybrid reverse absorption technique. Atmos. Res. 2014, 143, 31–42. [Google Scholar] [CrossRef]
- Seftor, C.J.; Hsu, N.C.; Herman, J.R.; Bhartia, P.K.; Torres, O.; Rose, W.I.; Schneider, D.J.; Krotkov, N. Detection of volcanic ash clouds from Nimbus 7/total ozone mapping spectrometer. J. Geophys. Res. Atmos. 1997, 14, 16749–16759. [Google Scholar] [CrossRef]
- Prata, A.J. Infrared radiative transfer calculations for volcanic ash clouds. Geophys. Res. Lett. 1989, 16, 1293–1296. [Google Scholar] [CrossRef]
PC | GFC | RMSE |
---|---|---|
1 | 0.9999 | 1.0700 |
2 | 0.9999 | 0.8366 |
3 | 0.9999 | 0.7473 |
4 | 0.9999 | 0.7115 |
5 | 0.9999 | 0.8129 |
6 | 0.9999 | 0.8300 |
7 | 0.9998 | 1.1453 |
8 | 0.9970 | 1.4362 |
Criterion | Performance (%) Proposed Method | Performance (%) Temperature Differences Method |
---|---|---|
True positive (ash row) | 86.22 | 99.11 |
False positive (ash row) | 13.77 | 0.88 |
False negative (other targets row) | 29.33 | 81.77 |
True negative (other targets row) | 70.66 | 18.22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias, L.; Cifuentes, J.; Marín, M.; Castillo, F.; Garcés, H. Hyperspectral Imaging Retrieval Using MODIS Satellite Sensors Applied to Volcanic Ash Clouds Monitoring. Remote Sens. 2019, 11, 1393. https://doi.org/10.3390/rs11111393
Arias L, Cifuentes J, Marín M, Castillo F, Garcés H. Hyperspectral Imaging Retrieval Using MODIS Satellite Sensors Applied to Volcanic Ash Clouds Monitoring. Remote Sensing. 2019; 11(11):1393. https://doi.org/10.3390/rs11111393
Chicago/Turabian StyleArias, Luis, Jose Cifuentes, Milton Marín, Fernando Castillo, and Hugo Garcés. 2019. "Hyperspectral Imaging Retrieval Using MODIS Satellite Sensors Applied to Volcanic Ash Clouds Monitoring" Remote Sensing 11, no. 11: 1393. https://doi.org/10.3390/rs11111393
APA StyleArias, L., Cifuentes, J., Marín, M., Castillo, F., & Garcés, H. (2019). Hyperspectral Imaging Retrieval Using MODIS Satellite Sensors Applied to Volcanic Ash Clouds Monitoring. Remote Sensing, 11(11), 1393. https://doi.org/10.3390/rs11111393