Precise Onboard Real-Time Orbit Determination with a Low-Cost Single-Frequency GPS/BDS Receiver
Abstract
1. Introduction
2. Algorithm
2.1. Dynamical Models
2.2. GNSS Measurements
2.3. Parameter Estimation
3. Experiments
3.1. Datasets and Orbit Determination Strategies
3.2. Reference Orbits
3.3. Force Model Trade-off
3.4. Effect of Measurements Type
3.5. Impact of GPS/BDS Fusion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, B.T.; Seifert, E. An evaluation of Global Positioning System data for Landsat-4 orbit determination. In Proceedings of the AIAA 23rd Space Sciences Meeting, Reno, NV, USA, 14–17 January 1985. [Google Scholar]
- Montenbruck, O.; Ramos-Bosch, P. Precision real-time navigation of LEO satellites using global positioning system measurements. GPS Solut. 2008, 12, 187–198. [Google Scholar] [CrossRef]
- Wang, F.; Gong, X.; Sang, J.; Zhang, X. A novel method for precise onboard real-time orbit determination with a standalone GPS receiver. Sensors 2015, 15, 30403–34018. [Google Scholar] [CrossRef] [PubMed]
- Cerri, L.; Berthias, J.P.; Bertiger, W.I.; Haines, B.J.; Lemoine, F.G.; Mercier, F.; Ries, J.C.; Willis, P.; Zelensky, N.P.; Ziebart, M. Precision orbit determination standards for the Jason series of altimeter missions. Mar. Geod. 2010, 33, 379–418. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Shi, C.; Jiang, K.; Guo, X.; Dai, X.; Meng, X.; Yang, Z.; Yang, G.; Liao, M. Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations. J. Geod. 2017, 91, 1313–1327. [Google Scholar] [CrossRef]
- Sweeting, M.N. Modern small satellites-changing the economics of space. Proc. IEEE 2018, 106, 343–361. [Google Scholar] [CrossRef]
- Collins, J.T.; Conger, R.E. MANS: Autonomous navigation and orbit control for communications satellites. In Proceedings of the 15th AIAA International Communications Satellites Systems Conference, San Diego, CA, USA, 28 February–3 March 1994. [Google Scholar]
- Guinn, J.R.; Williams, B.G.; Wolff, P.J.; Fennessey, R.; Wiest, T. TAOS orbit determination results using Global Positioning Satellites. Adv. Astronaut. Sci. 1995, 89, 95–146. [Google Scholar]
- Wertz, J.R. Autonomous navigation and autonomous orbit control in planetary orbits as a means of reducing operations cost. In Proceedings of the 5th International Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations, Pasadena, CA, USA, 8–11 July 2003. [Google Scholar]
- Plam, Y.; Allen, R.V.; Wertz, J.; Bauer, T. Autonomous orbit control experience on TacSat-2 using Microcosm’s Orbit Control Kit (OCK). In Proceedings of the 31st Annual AAS Guidance and Control Conference, Breckenridge, CO, USA, 1–6 February 2008. [Google Scholar]
- Hart, R.C.; Hartman, K.R.; Long, A.C.; Lee, T.; Oza, D.H. Global Positioning System (GPS) Enhanced Orbit Determination Experiment (GEODE) on the small satellite technology initiative (SSTI) lewis spacecraft. In Proceedings of the ION-GPS-1996, Kansas City, MO, USA, 17–20 September 1996. [Google Scholar]
- Hart, R.C.; Long, A.C.; Lee, T. Autonomous navigation of the SSTI/Lewis spacecraft using the Global Positioning System (GPS). In Proceedings of the Flight Mechanics Symposium, GSFC, Greenbelt, MD, USA, 19–21 May 1997. [Google Scholar]
- Gill, E.; Montenbruck, O.; Brieß, K. GPS-based autonomous navigation for the BIRD satellite. In Proceedings of the 15th International Symposium on Spaceflight Dynamics, Biarritz, France, 26–30 June 2000. [Google Scholar]
- Gill, E.; Montenbruck, O.; Brieß, K. Flight experience of the BIRD onboard navigation system. In Proceedings of the 16th International Symposium on Space Flight Dynamics, Pasadena, CA, USA, 3–7 December 2001. [Google Scholar]
- Gill, E.; Montenbruck, O.; Kayal, H. The BIRD satellite mission as a milestone toward GPS-based autonomous navigation. Navigation 2001, 48, 69–75. [Google Scholar] [CrossRef]
- Montenbruck, O.; Gill, E.; Markgraf, M. Phoenix-XNS—A miniature real-time navigation system for LEO satellites. In Proceedings of the NAVITEC’2006, Noordwijk, The Netherlands, 11–13 December 2006. [Google Scholar]
- Gill, E.; Montenbruck, O.; Arichandran, K.; Tan, S.H.; Bretschneider, T. High-precision onboard orbit determination for small satellites-the GPS-based XNS on X-SAT. In Proceedings of the 6th Symposium on Small Satellites Systems and Services, La Rochelle, France, 20–24 September 2004. [Google Scholar]
- Montenbruck, O.; Nortier, B.; Mostert, S. A miniature GPS receiver for precise orbit determination of the Sunsat 2004 micro-satellite. In Proceedings of the 2004 National Technical Meeting of The Institute of Navigation (ION NTM 2004), San Diego, CA, USA, 26–28 January 2004. [Google Scholar]
- Montenbruck, O.; Markgraf, M.; Naudet, J.; Santandrea, S.; Gantois, K.; Vuilleumier, P. Autonomous and precise navigation of the PROBA-2 spacecraft. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008. [Google Scholar]
- Montenbruck, O.; Swatschina, P.; Markgraf, M.; Santandrea, S.; Naudet, J.; Tilmans, E. Precision spacecraft navigation using a low-cost GPS receiver. GPS Solut. 2012, 16, 519–529. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, X.; Qu, L.; Zhao, Q. Precise orbit determination of FY-3C with calibration of orbit biases in BeiDou GEO satellites. Remote Sens. 2018, 10, 382. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Q.; Geng, J.; Lou, Y.; Ge, M.; Liu, J. Recent development of PANDA software in GNSS data processing. In Proceedings of the International Conference on Earth Observation Data Processing and Analysis (ICEODPA), Wuhan, China, 28–30 December 2008. [Google Scholar]
- Wang, F. Theory and Software Development on Autonomous Orbit Determination Using Space-Borne GPS Measurements. Ph.D. Thesis, Wuhan University, Wuhan, China, 2006. [Google Scholar]
- Gong, X. Key Technologies and Software toward Decimeter-Level Autonomous Orbit Determination with Space-Borne GPS Carrier-Phase Measurements. Master’s Thesis, Wuhan University, Wuhan, China, 2015. [Google Scholar]
- Odijk, D.; Nadarajah, N.; Zaminpardaz, S.; Teunissen, P.J.G. GPS, Galileo, QZSS and IRNSS differential ISBs: Estimation and application. GPS Solut. 2017, 21, 439–450. [Google Scholar] [CrossRef]
- Nicolini, L.; Caporali, A. Investigation on Reference Frames and Time Systems in Multi-GNSS. Remote Sens. 2018, 10, 80. [Google Scholar] [CrossRef]
- Torre, A.D.; Caporali, A. An analysis of intersystem biases for multi-GNSS positioning. GPS Solut. 2015, 19, 297–307. [Google Scholar] [CrossRef]
- Montenbruck, O.; Gill, E. Ionospheric correction for GPS tracking of LEO satellites. J. Navig. 2002, 55, 293–304. [Google Scholar] [CrossRef]
Model | Onboard RTOD (SATPODS) | Post POD (PANDA) |
---|---|---|
Measurement model | ||
GNSS data | Single-frequency GPS/BeiDou Navigation System (BDS) phase and pseudo-range measurements (LH + C1) for the FY3C satellite; and single-frequency pseudo-range data (C1) for the YG30/SAT1–SAT6 satellites (interval 30 s) | Dual-frequency GPS/BDS phase and pseudo-range measurements for the FY3C satellite; and single-frequency pseudo-range data (C1) for the YG30/SAT1–SAT6 satellites (interval 10 s) |
GNSS orbit and clock | Broadcast ephemeris | IGS MGEX final precise orbit and clock products |
Receiver clock | A receiver clock offset and a bias between GPS and BDS system | Epoch-wise receiver clock offset and a bias between GPS and BDS system |
Ambiguity | Pseudo-Ambiguity with a random walk process | Real constant value for each ambiguity pass |
Dynamical model | ||
Earth gravity field | Truncated EGM 2008 with low order and degree, neglect the time-varying part | EIGEN-6S, adopt 120 × 120, include the time-varying part |
N-body gravitation | Moon and Sun only, low precision analytic method (position) | Moon, Sun and other planets, JPL DE405 (position) |
Solid earth tide | Simplified model, solid only | IERS Conventions 2010 |
Earth pole tide | Neglected | IERS Conventions 2010 |
Ocean tide | Neglected | FES2004 |
Ocean pole tide | Neglected | IERS Conventions 2010 |
Relativistic effects | Neglected | IERS Conventions 2010 |
Atmosphere drag | Modified Harris-Priester model (density), fixed effective area, drag coefficient with a random walk process | DTM94 model (density), macro model, drag coefficients every 360 min |
Solar radiation | Cannonball model, fixed effective area, radiation pressure coefficient with a random walk process | Macro model, radiation pressure coefficients every 360 min |
Earth radiation | Neglected | Macro model, radiation pressure coefficients every 360 min |
Empirical acceleration | three empirical accelerations in radial, along-track and cross with a first-order Gauss-Markov model | One-cycle-per-orbit-revolution (1CPR) empirical accelerations in radial, along-track and cross |
Reference frame | ||
Coordinate system | WGS84/CGCS2000 | ITRF 2008/ITRF 2014 |
Precession/nutation | IAU1976/IAU 1980 simplified model | IAU 2006/IAU 2000R06 model |
Earth rotation parameter | Rapid predicted EOP in IERS Bulletin A | IERS final EOP products |
Estimation | ||
Estimator | EKF filter | Least square |
Mode | Sequential processing in real-time | Batch processing |
SAT | Overlap Orbit Difference (cm) | External Orbit Difference (cm) | 3D Orbit Accuracy (cm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | A | C | 1D | 3D | R | A | C | 1D | 3D | |||
FY3C | 2.4 | 6.7 | 5.3 | 5.1 | 8.9 | 3.3 | 10.7 | 7.0 | 7.6 | 13.2 | 10–15 | |
Ratio | 1.35 | 1.59 | 1.33 | 1.49 | 1.49 | |||||||
SAT1 | 2.9 | 8.5 | 9.7 | 7.7 | 13.3 | ~3.9 | ~13.6 | ~12.9 | ~11.4 | ~19.7 | ~20–25 | |
SAT2 | 5.8 | 14.5 | 7.6 | 10.0 | 17.4 | ~7.8 | ~23.2 | ~10.0 | ~14.9 | ~25.9 | ||
SAT3 | 3.6 | 9.4 | 9.6 | 8.0 | 13.9 | ~4.9 | ~14.9 | ~12.7 | ~11.9 | ~20.6 | ||
SAT4 | 4.0 | 12.0 | 8.8 | 8.9 | 15.5 | ~5.4 | ~19.2 | ~11.7 | ~13.3 | ~23.0 | ||
SAT5 | 3.6 | 9.8 | 6.5 | 7.1 | 12.3 | ~4.8 | ~15.6 | ~8.7 | ~10.6 | ~18.3 | ||
SAT6 | 4.1 | 12.2 | 10.4 | 9.6 | 16.6 | ~5.6 | ~19.5 | ~13.8 | ~14.2 | ~24.6 |
Accuracy (RMS) | Position/m | Velocity/mm/s | ||||||
---|---|---|---|---|---|---|---|---|
R | A | C | 3D | R | A | C | 3D | |
FY3C (LH + C1) | 0.171 | 0.483 | 0.122 | 0.527 | 0.419 | 0.186 | 0.139 | 0.479 |
FY3C (C1) | 0.467 | 0.672 | 0.217 | 0.847 | 0.618 | 0.385 | 0.231 | 0.764 |
SAT1 (C1) | 0.561 | 0.947 | 0.307 | 1.143 | 1.088 | 0.502 | 0.319 | 1.240 |
SAT2 (C1) | 0.567 | 0.929 | 0.340 | 1.140 | 1.052 | 0.512 | 0.359 | 1.224 |
SAT3 (C1) | 0.581 | 0.946 | 0.277 | 1.144 | 1.089 | 0.520 | 0.296 | 1.242 |
SAT4 (C1) | 0.504 | 0.981 | 0.396 | 1.171 | 1.061 | 0.491 | 0.427 | 1.245 |
SAT5 (C1) | 0.572 | 0.977 | 0.399 | 1.200 | 1.088 | 0.542 | 0.438 | 1.292 |
SAT6 (C1) | 0.514 | 0.977 | 0.463 | 1.197 | 1.061 | 0.490 | 0.492 | 1.268 |
PDOP | BDS | GPS | GPS + BDSN | GPS + BDS |
---|---|---|---|---|
FY3C | 5.499 | 2.471 | 2.247 | 2.123 |
SAT1 | 5.148 | 1.261 | 1.244 | 1.221 |
SAT2 | 4.995 | 1.281 | 1.252 | 1.236 |
SAT3 | 5.854 | 1.268 | 1.247 | 1.222 |
SAT4 | 5.258 | 1.313 | 1.293 | 1.269 |
SAT5 | 5.630 | 1.320 | 1.295 | 1.275 |
SAT6 | 5.726 | 1.295 | 1.266 | 1.244 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; Guo, L.; Wang, F.; Zhang, W.; Sang, J.; Ge, M.; Schuh, H. Precise Onboard Real-Time Orbit Determination with a Low-Cost Single-Frequency GPS/BDS Receiver. Remote Sens. 2019, 11, 1391. https://doi.org/10.3390/rs11111391
Gong X, Guo L, Wang F, Zhang W, Sang J, Ge M, Schuh H. Precise Onboard Real-Time Orbit Determination with a Low-Cost Single-Frequency GPS/BDS Receiver. Remote Sensing. 2019; 11(11):1391. https://doi.org/10.3390/rs11111391
Chicago/Turabian StyleGong, Xuewen, Lei Guo, Fuhong Wang, Wanwei Zhang, Jizhang Sang, Maorong Ge, and Harald Schuh. 2019. "Precise Onboard Real-Time Orbit Determination with a Low-Cost Single-Frequency GPS/BDS Receiver" Remote Sensing 11, no. 11: 1391. https://doi.org/10.3390/rs11111391
APA StyleGong, X., Guo, L., Wang, F., Zhang, W., Sang, J., Ge, M., & Schuh, H. (2019). Precise Onboard Real-Time Orbit Determination with a Low-Cost Single-Frequency GPS/BDS Receiver. Remote Sensing, 11(11), 1391. https://doi.org/10.3390/rs11111391